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Abstract 
Landslide hazard results in great loss of life and property. These damages can be mitigated if the  
cause and effect relationships of the events are known. In this study, we used analytical hierarchy   
process (AHP) and weighted linear combination (WLC) methods to produce landslide susceptibility   
map of the lower Mae Chaem Watershed in the north of Thailand. The study was carried out using   
remote sensing data, field surveys and geographic information system (GIS) tools. The ten factors   
that influence landslide occurrence, such as elevation, slope aspect, slope angle, distance from   
drainage, lithology, distance from lineament, soil texture, precipitation, land use/land cover (LULC)   
and NDVI were considered. The landslide susceptibility index (LSI) was calculated using the WLC   
technique based on the assigned weight and rating given by the AHP method. The result of analysis   
was verified using existing landslide locations where the accuracy rate of 64.90% was accomplished.   
The obtained landslide susceptibility map is useful for landslide hazard prevention and mitigation,   
and proper planning for land use and construction in the future. 
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Introduction 
Landslides are destructive natural phenomena   
that frequently lead to serious problems in   
hilly regions, resulting in loss of human life   
and property and severe damage to natural   
resources. Risk from landslide is normally   
defined as the expected number of lives lost,   
persons injured, property damages and   
disrupted economic activities due to a particular   
landslide hazard for a given area and reference   
period (Varnes, 1984). To reduce risk from the   
landslide incidences, knowledge of the areas  

potentially prone to landslide activity is   
crucially needed. This information is typically   
described in the form of landslide   
susceptibility map for the interested area.   
Formulation of this map depends on complex   
knowledge of slope movements and their   
controlling factors.  
 Reliability of the susceptibility maps   
depends mostly on the amount and quality of   
available data, the working scale and the   
selection of the appropriate methodology of  
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analysis and modeling. The process of creating   
the maps involves several qualitative or   
quantitative approaches (e.g., Soeters and Van   
Westen, 1996; Aleotti and Chowdhury, 1999;   
Guzzetti et al., 1999). Early attempts had  
defined susceptibility classes by qualitative   
overlaying of geological and morphological   
slope-attributes to landslide inventories   
(Nielsen et al., 1979). However, more   
sophisticated assessments involved techniques   
such as AHP, bivariate, multivariate, logistics   
regression, fuzzy logic, or artificial neural   
network (ANN) have been reported in recent   
years. For examples; by Chacón et al. (2006);  
Lee et al. (2006); Lee and Pradhan (2006,  
2007); Lee (2007a and b); Akgun and Bulut   
(2007); Akgun et al. (2008); Oh et al. (2008);   
Muthu et al. (2008); Van Westen et al. (2008);   
Vijith and Madhu (2008) and Pradhan and   
Lee (2009). 
 Qualitative methods depend critically on   
expert opinions. Most common types simply   
examine landside inventory maps to identify   
sites of similar geological and geomorpho-  
logical properties that are likely susceptible to   
failure. Some qualitative approaches, however,   
incorporate the idea of ranking and weighting,   
and may evolve to be semi-quantitative in   
nature. The application of the analytical   
hierarchy process (AHP) method, developed   
by Saaty (1980), for landslide susceptibility   
mapping has been found in, e.g., Barredo   
et al. (2000); Mwasi (2001); Nie et al. (2001)   
and Yagi (2003), while the use of weighted   
linear combination (WLC) technique was   
reported in Ayalew et al. (2004). Being partly   
subjective, results of these approaches vary   
depending on knowledge of experts. Hence,   
qualitative or semi-quantitative methods are   
often useful for regional studies (Soeters and   
Van Westen, 1996; Guzzetti et al., 1999). 
 Quantitative methods are based on  
numerical expressions of the relationship   
between controlling factors and landslide   
activity. There are two types of quantitative   
methods: deterministic and statistical (Aleotti   
and Chowdhury, 1999). Deterministic   
quantitative methods depend on engineering   
principles of slope instability expressed in  

terms of the factor of safety. Due to the need   
for exhaustive data from individual slopes,   
these methods are often effective for mapping   
only small areas. Landslide susceptibility   
mapping using either multivariate or bivariate   
statistical approaches analyzes the historical   
link between landslide-controlling factors and   
the distribution of landslides (Guzzetti et al.,   
1999). 
 The increase of computer-based tools   
has been found to be useful in the hazard   
mapping of landslides. One of such significant   
tools is geographic information systems   
(GIS). A GIS is commonly defined as a   
powerful set of tools for collecting, storing,   
retrieving at will, displaying, and transforming   
spatial data (Burrough and McDonnel, 1998).   
With help of GIS, it is possible to integrate   
spatial data of different layers to determine   
influence of the parameters on landslide   
occurrence. The process of GIS-aided   
landslide susceptibility mapping at present   
involves several methods that can be   
considered as either qualitative or quantitative   
as stated earlier. 

Study Area 
The lower Mae Chaem watershed is a   
significant basin of Mae Ping River, which is   
the main river in the upper north Thailand and   
the largest tributary of central Thailand’s   
Chao Phraya River. Its location is approximately   
at latitudes 18°06′00″N to 18°38′24″N and   
longitudes 98°04′12″E to 98°38′24″E, covering  
area of about 1,932 km2 in the Chiang Mai   
and Mae Hong Son Provinces. It comprises of   
3 districts (or Amphoe) within Chiang Mai   
border and two districts within Mae Hong Son   
border. 
 Topography of the watershed is relatively   
steep with elevation ranging from 260 m to   
2540 m, and small narrow floodplains appear   
close to the river (Figure 1). About 90% of its   
area is mountainous covered with diversified   
plant communities that form various types of   
forest, where rice and other agricultural products,   
especially vegetables and orchards, are normally   
cultivated in the low area. In recent years, the  
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watershed has experienced several devatated   
landslide incidences that brought vast damage   
to properties and natural environment, and   
some loss of human life (Table 1). 

 Based on field surveys and local   
records, the dominant landslides found in  
the area are shallow slides on steep slopes,   
especially those associated with the granite   

Figure 1.  Location map of the study area, the lower Mae Chaem watershed 

Table 1. Summary of the crucial landslide incidences in the study area 
 

Date/Place The effect of the disaster 

September 15, 2002 

Mae Chaem, Chiang Mai 

The infrastructures were affected such as bridge, road, drainage systems and 
agricultural areas. 

October 2, 2002 

Mae Sariang, Mae Hong Son 

The infrastructures were affected such as bridge, road, drainage systems and 

agricultural areas with several casualties. 

May 6, 2004 

Mae Chaem, Chiang Mai 

1 people died, 3 houses were destroyed, agricultural areas and property were 

affected. 

September 14, 2005 
Mae Sariang and Mae La Noi, 

Mae Hong Son 

The infrastructures were affected such as bridge, road. 

 

September 19, 2005 

Mae Chaem, Chiang Mai 

Some houses were destroyed, and infrastructures were affected such as 
bridge, road, drainage systems and agricultural areas.  

Source : Department of Mineral Resources, Mae Chaem District Office and internet  resource) 
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terrain, being triggered by the prolonged   
heavy rainfall. However, rock falls and deep   
seated failures have also been found   
infrequently. 

Data and Methodology 

Data 

 Typically, the instability factors that can   
introduce severe landslides in some particular   
area include surface and bedrock, lithology   
and structure, seismicity, slope, steepness,   
morphology, stream evolution, groundwater   
conditions, climate, vegetation cover, land   
use, and human activity. In this study, ten   
factors were considered which are elevation,   
slope aspect, slope angle, distance from   
drainage, lithology, distance from lineament,   
soil texture, rainfall, land use/land cover   

(LULC) and the normalized difference   
vegetation index (NDVI). The first eight   
factors were extracted from the associated   
database acquired from the respective   
responsible agencies (as detailed in Table 2),   
while LULC and NDVI maps were derived   
from the Landsat-5 TM satellite images   
(Tables 2 and Figures 2(a-j)). These factors   
can be separated into three broad categories:   
geological, topographical and environmental   
conditioning parameters. The working scale of   
geographic maps was chosen at 1:50,000. All   
the collected data were converted to a raster  
grid with 25 m × 25 m cells for the use with  
AHP technique. The total cell number is   
3091791 for this study. 
 The first three components (elevation,   
slope aspect, slope angle) were derived from   
digital elevation model (DEM) of the study   
area at 10-meter contour interval using the   

Table 2. Spatial data layers used in the study 
 

Category Layer Data type Scale Data source 

Topographic map Elevation Point and line 1:50,000  
 Slope aspect    
 Slope angle    
Drainage map  Distance from Polygon 1:50,000  
 drainage    
Geological map Lithology Polygon 1:50,000   
Lineament map Distance from Polygon 1:50,000  
 lineament    

Soil map Soil texture  Polygon 1:50,000 
 
 

Precipitation map Precipitation GRID  1:50,000  

    
 

 
LULC map Land use/land 

cover 
GRID 25 m × 25 m  

NDVI map NDVI GRID 25 m × 25 m 
      

Royal Thai Survey 

Department 

Department of Mineral  
Resources 

Land Development 
Department 

1. Thai Meteorological 
 Department 

2. The GAME-T project 

Derivation from Landsat-5 TM 
images (taken on 12 February 
2001 and 26 February 2006) 
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appropriate commands in ArcGIS’s Surface   
Analyst tools. Slope aspect was determined by  
the down-slope direction of the maximum rate   
of change in value from each cell to its   
neighbors. Final results were reported in terms   
of the 8 basic compass directions on the   
output map (Figure 2(c)).  
 Slope angle identifies the steepest   
downhill slope for a location on a surface that   
can be calculated for each triangle in TIN and   
for each cell in raster. For a TIN, this is the   
maximum rate of change in elevation across   
each triangle. For raster, it is the maximum   
rate of change in elevation over each cell and   
its eight neighbors. The slope angle command   
takes an input surface raster and calculates an   
output raster containing the slope angle at   
each cell. The lower the slope angle value, the   
flatter the terrain; the higher the slope angle   
value, the steeper the terrain. The output slope   
angle raster can be calculated as percent slope   
angle or degree of slope angle. 
 In addition, distance from drainage was   
found using the topographic database. The   
drainage buffer was calculated at 100-meter   
intervals. The lithology map was prepared   
from a 1:50,000 scale geological map. The   
distance from lineament was calculated in   
100-meter intervals. The soil texture was   
prepared from 1:50,000 scale soil map. The   
precipitation data were provided by the Thai   
Meteorological Department (TMD) and the   
GAME-T project over the period of the study,   
and the kriging interpolation method was used   
to produce rainfall intensity map of the area. 
 LULC data were generated from   
Landsat-5 TM images using an unsupervised   
classification method (ISODATA) and field   
surveys where twelve classes; which are   
paddy field, mixed field crop, longan, truck   
crop, mixed swidden cultivation, hill   
evergreen forest, mixed deciduous forest,   
mixed forest plantation, grass and scrub,   
mine, urban, and water, were identified for   
LULC mapping (Figure 2(i)). 
 Finally, the NDVI map was generated   
from Landsat-5 TM satellite images (resolution   
of 25 m). The NDVI involves a non-linear   
transformation of the visible or red and near-  

infrared bands of satellite images (Rouse  
et al., 1973; Jackson et al., 1983; Tucker et al.,   
1991). It can be calculated using formula  
 
	 NDVI	=	(NIR−R)/(NIR+R)			 (1)	
 
where NIR and R are the observed reflectance   
in the near infrared and red portions of the   
electromagnetic spectrum, respectively. NDVI   
can be regarded as a rough measure of   
vegetation amount in terms of biomass, leaf   
area index (LAI), and percentage of vegetation   
cover.	 Its	 values	 range	 from	 -1	 to	 +1	 (pixel		 
values 0–255).  

Methodology 
In this study, the AHP technique was used to  
produce landslide susceptibility map for the   
lower Mae Chaem watershed, which is being   
one of the well-known landslide hotspots in   
northern Thailand. To achieve this, the   
relevant thematic layers pertaining causative   
factors were generated using remotely-sensed   
data, field surveys and GIS tools. Landslide   
susceptibility map of the study area was   
eventually prepared using AHP method. In   
this method, the landslide susceptibility index   
(LSI) value for each considered pixel was   
computed by summation of each factor’s   
weight multiplied by class weight (or rating)   
of each referred factor (for that pixel) written   
as follows::  
                                                   

  
(2) 

 
where LSI is the required landslide susceptibility   
index of the given pixel, Ri and Wi are class  
weight (or rating value) and the factor weight   
for factor i derived using AHP technique   
(Table 4). All found LSI values were then   
separated into five classes using natural   
breaks algorithm to represent five categories   
of the landslide susceptibility zone (LSZ) of   
the area; namely, 1. very high (VHS), 2. high   
(HS), 3. moderate (MS), 4. low (LS) and 5.   
very low (VLS) susceptibility zones (Table 5).   
Finally, validity of the map was examined   
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using 25 known landslide locations within the   
area obtained from the field surveys and from   
official records of the responsible authorities. 

Analytical Hierarchy Process (AHP) 

 AHP involves building a hierarchy of   
decision elements (factors) and then making   
comparisons between possible pairs in a   

matrix to give a weight for each element and   
also a consistency ratio. It is based on three   
principles: decomposition, comparative judgment   
and synthesis of priorities (Malczewski,   
1999). WLC is a standard concept to combine   
maps of landslide-controlling parameters by   
applying a standardized score (primary-level   
weight) to each class of a certain parameter   

Figure 2. Landslide related factors in the study area 
(a) elevation; (b) slope angle;  
(c) slope aspect;  (d) lithology;  
(e) distance from lineament;  (f) distance from drainage;  
(g) precipitation; (h) soil texture;  
(i) land use/land cover; (j) NDVI 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) 
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and a factor weight (secondary-level weight)   
to the parameters themselves.  
 Analytical hierarchy process (AHP) is a  
semi-qualitative method, which involves a   
matrix-based pair-wise comparison of the   
contribution of different factors for landsliding.   
It was developed by Saaty (1980) and gained   
widespread attention later on. Factor weights   
for each criterion are determined by a pair-  
wise comparison matrix as described by Saaty   
(1990, 1994), and Saaty and Vargas (2001).   
To get factor weights in AHP, one has to build   
a pair-wise comparison matrix with scores   
given in Table 3. In the construction of a pair-  
wise comparison matrix, each factor is rated   
against every other factor by assigning a   
relative dominant value between 1 and 9 to   
the intersecting cell. When the factor on the   
vertical axis is more important than the factor   
on the horizontal axis, this value varies   
between 1 and 9. Conversely, the value varies   
between the reciprocals 1/2 and 1/9. Since we   
have used ten parameters, the comparison   
matrix has 100 boxes. However, because the   
pair-wise comparison matrices are symmetrical   
in nature, only 55 values were needed to fill in   
the diagonal and the lower triangular half of   
the matrix. Then, in order to compute the   

principal eigenvector of the matrix and obtain   
a best-fit set of factor weights automatically   
as suggested by Saaty (1994) and Saaty and   
Vargas (2001), raster maps produced by   
combining the parameters with landslide   
distribution were necessary. 
 In this study, AHP considers weighting  
and rating system developed by collecting   
questionnaires from expert opinions and   
concerned research organizations, such as the   
Department of Mineral Resources and the   
Land Development Department, and the   
selection of the appropriate criteria and scores   
was guided by 20 experts from various Thai   
government officials. The diagonal boxes of a   
pair-wise comparison matrix always take a   
certain value of 1. The boxes in the upper and   
lower halves are symmetrical with one   
another and the corresponding values are,   
therefore, reciprocal with each other. Once the   
matrix is constructed, weights whose sum   
equals one, will be obtained by computer   
based image processor with thematic layers of   
all causal factors categorized on the basis of   
class weights as inputs. But, when the   
parameters are few, weights can also be   
derived by a series of simple summation and   
division processes. The weights are then   

Table 3. Scale of preference between two parameters in AHP (Saaty, 2000) 
 

Scales Degree of preferences Explanation 

1 Equally Two activities contribute equally to the objective. 

3 
 

Moderately 

 
Experience and judgment slightly to moderately favor one 

activity over another. 

5 
 

Strongly 

 
Experience and judgment strongly or essentially favor one 

activity over another. 

7 
 

Very strongly 

 
An activity is strongly favored over another and its 

dominance is showed in practice. 

9 
 

Extremely 
 

The evidence of favoring one activity over another is of 

the highest degree possible of an affirmation. 

2, 4, 6, 8 
 

Intermediate values 
 

Used to represent compromises between the preferences in 

weights 1, 3, 5, 7 and 9. 

Reciprocals Opposites Used for inverse comparison. 
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considered as the average of all possible ways   
of comparing the causal factors (Malczewski,   
1999). 

Application of AHP 

 The final result consists of the derived   
factor weights and class weights, and a   
calculated consistency ratio (CR), as seen in   
Table 4. In AHP, the consistency used to build   
a matrix is checked by a consistency ratio,   
which depends on the number of parameters. 
For a 10×10 matrix, the CR must be less than  
0.1 to accept the computed weights. The CR is  
a ratio between the matrix’s consistency index   
and random index, and in general ranges   
from 0 to 1. The random index is the average   
consistence index obtained by generating  
large numbers of random matrices. A CR   
close to 0 indicates the high probability that   
the weights were generated randomly (Saaty,   
1980; 1994). 
 The models with a CR greater than 0.1   
were automatically rejected, while a CR less   
than 0.1 were often acceptable. With the AHP   
method, the values of spatial factors weights   
were defined. Using a weighted linear  
sum procedure (Voogd, 1983), the acquired  
weights were used to calculate the landslide   
susceptibility. In this study, the CR is 0.068,   
the ratio indicates a reasonable level of   
consistency in the pair-wise comparison,   
that is good enough to recognize the factor   
weights. Consequently, the weight corresponding   
to precipitation is highest, whereas elevation   
is lowest (Table 4). For all cases of the gained   
class weights, the CRs less than 0.1, the ratio   
indicates a reasonable level of consistency in   
the pair-wise comparison that was good   
enough to recognize the class weights. 

Results and Discussion  
Using the AHP, the LSI values were computed   
by using Equation (2). From the calculation, it   
was found that the LSI had a minimum value   
of 0.04, and a maximum value of 0.28, with   
an average value of 0.11 and a standard   
deviation of 0.03. The LSI represents the   
relative susceptibility of a landslide occurrence.   
Therefore, the higher the index, the more   

susceptible the area is to landslide. These LSI   
values were then divided into five classes   
based on the natural breaks range, which   
represent five different zones in the landslide   
susceptibility map. These are very high   
(VHS), high (HS), moderate (MS), low (LS)   
and very low (VLS) susceptibility zones   
(Figure 3). The percentage covering areas of   
each susceptibility class are shown in Table 5   
along with number of reference landslide   
points occurred. 
 From data seen in Table 5, it is obvious   
that only 23.35% of the total area were   
classified as being in the VHS (5.51%) or HS   
(17.84%) landslide susceptibility zones but   
they had accommodated about 60% of the   
landslide reference points. Other areas are   
located in the MS (28.47%), LS (29.32%),   
and VLS (18.86%) susceptibility zones and   
only 1 landslide incidence (out of 25) being   
observed in the LS and VLS zones. To   
evaluate validity of the results shown in   
Table 5 more quantitatively, the frequency  
ratio (FR) values for each identified class are   
also given. These values were computed from  
ratio of the percentage landslide occurrences   
and the percentage area coverage (for each  
individual class to the whole study area). The   
possible values begin from 0 onwards where   
relatively high ones (e.g. much greater than 1)   
indicate high chance of having landslides   
while low values (e.g. close to 0) indicate   
lower chance of having landslide over the   
area. FR equals 1 means the considered area is   
having equal chance for landslide occurrence   
to that of the average value for the entire area.   
The FR values of 4.36 for the VHS zone and   
2.02 for the HS zone indicate the notably   
higher chance of having landslide activities in   
these areas when compared to those of the MS   
(1.26) and LS (0.14).These results emphasize   
the applicability of the susceptibility map that   
was constructed based on the AHP method   
and being depicted in Figure 3.        

Verification of the Result 

 Finally, the resulted susceptibility map   
produced was verified based on known 25   
landslide locations located within the study   
area where the area under curve (AUC)   
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Table 4. The pair-wise comparison matrix, factor weights, class weights (rating) and  
 consistency ratio 
 

Factors 1 2 3 4 5 6 7 8 9 10 11 12 Rating 

Elevation (m)              

(1) <600 1            0.027 

(2) 600 – 800 2 1           0.037 

(3)  800 - 1,000 3 2 1          0.059 

(4)  1,000 - 1,200 4 3 2 1         0.087 

(5)  1,200 – 1,400 5 4 3 2 1        0.126 

(6)  1,400 – 1,600 7 6 5 4 3 1       0.239 

(7) >1,600 9 8 7 6 5 3 1      0.426 

Consistency ratio: 0.040              

Slope aspect              

(1)  Flat 1            0.026 

(2)  North 3 1           0.071 

(3)  Northeast 5 3 1          0.189 

(4)  East 3 1 1/3 1         0.071 

(5)  Southeast 3 1 1/3 1 1        0.071 

(6)  South 3 1 1/3 1 1 1       0.071 

(7)  Southwest 7 5 3 5 5 5 1      0.354 

(8)  West 3 1 1/3 1 1 1 1/5 1     0.071 

(9)  Northwest 3 1 1/3 1 1 1 1/5 1 1    0.071 

Consistency ratio: 0.008              

Slope angle              

(1)  0º – 5º 1            0.024 

(2)  5º – 10º 2 1           0.031 

(3)  10º – 15º 3 2 1          0.048 

(4)  15º – 20º 4 3 2 1         0.069 

(5)  20º – 25º 5 4 3 2 1        0.103 

(6)  25º – 30º 6 5 4 3 2 1       0.146 

(7)  30º – 35º 7 6 5 4 3 2 1      0.205 

(8)  >35º 9 8 7 6 5 4 3 1     0.378 

Consistency ratio: 0.037              

Drainage (m) 
(Distance from drainage) 

 
             

(1) <500 1            0.462 

(2)  500 – 1,000 1/3 1           0.255 

(3)  1,000 – 1,500 1/5 1/3 1          0.138 

(4)  1,500 – 2,000 1/7 1/5 1/3 1         0.067 

(5)  2,000 – 2,500 1/8 1/6 1/4 1/2 1        0.048 

(6)  >2,500 1/9 1/7 1/5 1/3 1/2 1       0.032 

Consistency ratio: 0.045 
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Table 4.   (Continued) 
 

Factors 1 2 3 4 5 6 7 8 9 10 11 12 Rating 

Lithology              

(1) Sandstone 1            0.124 

(2) Marble 1/3 1           0.053 

(3) Limestone, shale 1/3 1 1          0.053 

(4) Paragneiss 1/2 2 2 1         0.083 

(5) Alluvium 1/5 1/3 1/3 1/4 1        0.024 

(6)  Shale, chert, and   
 siltstone 

1/3 
 

1 
 

1 
 

1/2 
 

3 
 

1 
       0.053 

 

(7) Claystone and    
 siltstone 

1/4 
 

1/2 
 

1/2 
 

1/3 
 

2 
 

1/2 
 

1 
      0.031 

 

(8)  Granite 3 5 5 4 7 5 6 1     0.273 

(9)  Conglomerate,    
 sandstone 

1 
 

3 
 

3 
 

2 
 

5 
 

3 
 

4 
 

1/3 
 

1 
    0.124 

 

(10) Granodiorite    
 porphyry 

2 
 

4 
 

4 
 

3 
 

6 
 

4 
 

5 
 

1/2 
 

2 
 

1 
   0.187 

 

Consistency ratio: 0.017              

Lineament (m) 
(Distance from 
lineament) 

             

(1) <500 1            0.293 

(2)  500 – 1,000 1 1           0.293 

(3)  1,000 – 2,000 1/2 1/2 1          0.177 

(4)  2,000 – 3,000 1/3 1/3 1/2 1         0.107 

(5)  3,000 – 4,000 1/4 1/4 1/3 1/2 1        0.067 

(6)  >4,000 1/4 1/4 1/3 1/2 1 1       0.067 

Consistency ratio: 0.008              

Soil texture              

(1)  Clay 1            0.019 

(2)  Loam 4 1           0.055 

(3)  Sand 8 5 1          0.238 

(4)  Sandy loam / sandy 
clay loam 

7 
 

4 
 

1/2 
 

1 
         0.169 

 

(5)  Loam with gravel 5 2 1/4 1/3 1        0.086 

(6)  Sandy loam with 
gravel 

9 
 

6 
 

2 
 

3 
 

5 
 

1 
       0.335 

 

(7)  Clay/loam with rock 3 1/2 1/6 1/5 1/3 1/7 1      0.039 

(8)  Slope complex area 4 1 1/5 1/4 1/2 1/6 2 1     0.055 

Consistency ratio: 0.034              
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Table 4.   (Continued)  
 

Factors 1 2 3 4 5 6 7 8 9 10 11 12 Rating 

Precipitation (mm)              

(1) <1,000 1            0.027 

(2)  1,000 – 1,200 2 1           0.036 

(3)  1,200 – 1,400 3 2 1          0.053 

(4)  1,400 – 1,600 5 4 3 1         0.103 

(5)  1,600 – 1,800 6 5 4 2 1        0.143 

(6)  1,800 – 2,000 8 7 6 4 3 1       0.266 

(7)  >2,000 9 8 7 5 4 2 1      0.376 

Consistency ratio: 0.049              

Land use/land cover              

(1)  Paddy field 1            0.137 

(2)  Mixed field crop 1/2 1           0.090 

(3)  Longan 1/3 1/2 1          0.063 

(4)  Truck crop 1/2 1 2 1         0.090 

(5) Mixed swidden 
cultivation 

1/2 
 

1 
 

2 
 

1 
 

1 
        0.090 

 

(6)  Hill evergreen forest 1/7 1/6 1/5 1/6 1/6 1       0.017 

(7)  Mixed deciduous forest 1/6 1/5 1/4 1/5 1/5 2 1      0.023 

(8)  Mixed forest 
plantation 

1/5 
 

1/4 
 

1/3 
 

1/4 
 

1/4 
 

3 
 

2 
 

1 
     0.033 

 

(9)  Grass and scrub 1/4 1/3 1/2 1/3 1/3 4 3 2 1    0.045 

(10) Mine 2 3 4 3 3 8 7 6 5 1   0.200 

(11) Urban, village 2 3 4 3 3 8 7 6 5 1 1  0.200 

(12) Water 1/8 1/7 1/6 1/7 1/4 1/2 1/3 1/4 1/5 1/9 1/9 1 0.013 

Consistency ratio: 0.039              

NDVI              

(1) -1.0 to 0.2 1            0.502 

(2)  0.2 to 0.4 1/3 1           0.256 

(3)  0.4 to 0.6 1/5 1/3 1          0.120 

(4) 0.6 to 0.8 1/6 1/4 1/2 1         0.074 

(5) 0.8 to 1.0 1/7 1/5 1/3 1/2 1        0.050 

Consistency ratio: 0.031              
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Table 4.   (Continued)  

Data layers 1 2 3 4 5 6 7 8 9 10 11 12 Weights 

Elevation 1            0.027 

Slope aspect 1 1           0.030 

Slope angle 5 4 1          0.165 

Drainage 2 1/2 1/5 1         0.034 

Lithology 5 5 2 3 1        0.170 

Lineaments 3 5 1/2 4 1/2 1       0.121 

Soil texture 2 3 1/5 3 1/2 1/3 1      0.054 

Precipitation 5 6 2 5 3 3 5 1     0.259 

Land use 4 4 1/3 3 1/4 1/3 3 1/5 1    0.082 

NDVI 3 3 1/5 2 1/5 1/4 2 1/5 1/2 1   0.057 

Consistency ratio: 0.068              

Table 5. Allocation of the reference landslide points within the defined landslide  
 susceptibility classes and the associated frequency ratio (FR) of each class  

Susceptibility classes 
Susceptibility index 

values % of Area 

Number of 
landslide 

points 

Frequency 
ratio (FR) 

Very low susceptibility (VLS) 0.04 – 0.08 18.86 - (0%) 0.0 

Low susceptibility (LS) 0.08 – 0.11 29.32 1 (4%) 0.1364 

Moderate susceptibility (MS) 0.11 – 0.13 28.47 9 (36%) 1.2645 

High susceptibility (HS) 0.13 – 0.16 17.84 9 (36%) 2.0179 

Very high susceptibility (VHS) 0.16 – 0.28 05.51 6 (24%) 4.3557 

Figure 3. The landslide susceptibility map based on AHP with 25 known landslide  
 locations on the basis of natural breaks classification 
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method (as described in Lee et al., 2004) was  
used. In this method, the computed index  
values (LSI) of all cells within the study area   
(3,091,791 cells in this case) were sorted in   
descending order (from high to low values of   
LSI). Then these ordered cell values were   
divided into 100 classes, with accumulated   
1% intervals. This resulted in 100 landslide   
susceptibility classes available for performing   
the accuracy assessment (instead of just only   
5 classes as listed in Table 5). The ranking   
orders (from 1 to 100) were then given to  
each class beginning from the very high   
susceptibility ones (VHS) towards the very   
low susceptibility ones (VLS), respectively.   
 To assess the predictive capability of the   
map quantitatively, the LSI ranking orders   
(1-100) were plotted against accumulative   
amount of landslide incidences for each   
specific class (given in term of percentage of   
the total number). This appears as a line seen   
in Figure 4. This result indicates that the first  
20% of the area that LSI has highest rank   
(VHS zone) could explain 24% of all the   
referred landslides. In addition, the first 30%   
of the total area where the LSI had a higher  
rank could explain 36% of the total landslides.   
Then, the prediction accuracy of the map can   

be readily evaluated from the area under the   
plotting curve (AUC) by assuming that   
perfect prediction will have maximum AUC   
of 1. In our study (Figure 4), the AUC was   
found to be 0.6490. As a result, it could state   
that the prediction accuracy of the obtained   
map is 64.90% with respect to the ideal value   
of 100%, which is fairly satisfied.   
 Although, the prediction accuracy of the  
map is not considerably high, it can still   
be regarded as being promising tool for   
responsible authorities in planning proper   
prevention and mitigation strategies related to   
landslide incidences in the noted landslide   
prone areas on the map. The priority should   
be given to the areas that locate within the   
VHS and HS zones as they are most likely to   
have landslide activity if the triggering factors   
(especially prolonged heavy rainfall) are   
experienced. Therefore, the effective warning   
system should be established at some mostly   
concerned areas. And close monitoring of the   
improper landuse activities and permanent   
human settlements should be taken care of by   
the responsible authorities to reduce possible   
damages due to severe landslides in the VHS   
and HS zones of the study area in the future. 

Figure 4.  Illustration of cumulative frequency diagram showing landslide susceptibility  
 index rank (x-axis) occurring in cumulative percent of landslide occurrence  
 (y-axis) 
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Conclusions 
In this study, the analytical hierarchy process   
(AHP) was applied to develop landslide   
susceptibility map for the lower Mae Chaem   
watershed located in northern Thailand. To   
achieve this objective, ten landslide inducing   
factors were taken into consideration, which   
are elevation, slope aspect, slope angle,   
distance from drainage, lithology, distance   
from lineament, soil texture, precipitation,   
land use/land cover (LULC) and NDVI. The   
first eight parameters were extracted and   
calculated from their associated database   
(Table 2) while LULC and NDVI maps were   
derived from Landsat-5 TM satellite images.   
These factors were evaluated, then factor   
weight and class weight were assigned to each   
of the associated factors. 
 Based on the results given in Table 4,   
the three most influencing factors to landslide   
activity (judged from their associated weights)   
are precipitation (0.259), lithology (0.17), and   
slope angle (0.165). And the three least   
influencing factors are elevation (0.027),   
slope aspect (0.03), and distance from   
drainage (0.034). The obtained susceptibility   
map and its relevant data (Figure 3 and   
Table 5) indicate that the high and very high  
susceptible zones cover about 23.35% of the   
total area while about 48.18% were classified   
as being the low and very low susceptible   
zones. The map was verified using existing   
landslide location data based on the area   
under curve (AUC) method from which   
the prediction accuracy of 64.90% was   
accomplished.  
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