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Abstract

In this paper, the problem of laminar two dimensional heat transfer from two rotating circular
cylinders in cross flow of incompressible fluid under isothermal boundary condition is investigated.
The study is based on the numerical solution of the full conservation equations of mass, momentum
and energy for Reynolds numbers (based on cylinder diameter and velocity of uniform stream) up to
40 while Prandtl number ranges between 0.7 and 50. For the range of parameters considered, the
study revealed that the rate of heat transfer decreases with the increase of speed of cylinders rotation
for the gap between cylinders more than one diameter. The increase of Prandtl number resulted in
an appreciable increase in the average Nusselt number. The streamlines and isotherms are plotted
for a number of cases to show the details of the velocity and thermal fields.

Keywords: Heat transfer, flow over two rotating cylinders, incompressible fluid, finite difference
method

Introduction

The flows of fluid and forced convection across
a heated bluff body have been the subject of
considerable research interest because of their
relevance to many engineering applications. The
flow past a cylinder is considered to be an ideal
bluff body by which to study the important
phenomena of heat and mass transfer. For
instance, the knowledge of the hydrodynamic
forces experienced by submerged cylindrical
objects such as off-shore pipelines is essential
for the design of such structures. Furthermore,

because of changing process and climatic
conditions, one also needs to determine the rate
of heat transfer from such structures.

Heat transfer and fluid flow around a single
rotating cylinder has been studied by several
researchers, see for example recent works of Badr
et al. (1989); Kang et al. (1999); Mahfouz and
Bard (1999a, 1999b); Stojkovi  et al. (2002);
Mittal and Kumar (2003); Gshwendtner (2004).

The heat transfer and flow around two
stationary or rotating circular cylinders can be
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88 Numerical Simulation of Flow and Forced Convection Heat Transfer

considered as an elementary flow which is
helpful in understanding the flow patterns,
heat transfer mechanism, and hydrodynamic
characteristics around multiple bluff bodies in
engineering practice.

Numerical computations for the flow over
multiple cylinders have intensified during the
last decade of the previous century. Chang and
Song (1990) used a vorticity-stream function
method to compute the flow past a pair of
cylinders in side-by-side and tandem arrange-
ments at Re = 100. Flow visualization and
force coefficients were shown to be in good
agreement with experiments. Mittal et al. (1997)
used a finite element method to simulate three
configurations, side-by-side, tandem and
staggered arrangements of the cylinder pair at
Re = 100  and 1000. Again, the results compared
well with experiments. Recently, Kang (2003)
investigated numerically the characteristics of
flow around two side-by-side circular cylinders
in the range of low Reynolds number defines
as Re = U��D/v (where U��and v  are the free-
stream velocity and kinematic viscosity,
respectively) over the range of 40 < Re < 160,
respectively, and the normalize gap spacing
g* < 5; he identified six kinds of wake patterns
(g* = g / D, where g and D are the distance
between two cylinders surfaces and the cylinder
diameter, respectively).

The problem of flow pass two rotating
cylinders in side-by-side arrangement has not
been investigated widely. Papers of Sungnul and
Moshkin (2006, 2008) are devoted to study the
self-motion of two rotating circular cylinders.
Only two recent studies (Yoon et al., 2007, 2009)
have been found that investigate the flow
around two rotating circular cylinders in side-
by-side arrangement in the range of   α  < 2
for various gap spacing at Re = 100 (α is the
rotational speed at the cylinder surface
normalized by the free-stream velocity). Only
one paper of Joucaviel et al. (2008) has been
found, which studies the thermal behavior of
an assembly of rotating cylinders aligned in a
cross-flow.

As described above, the effect of rotation
for a single cylinder and of the gap spacing
between two cylinders at rest in side-by-side
arrangement on the corresponding flow and

heat transfer has been studied by numerous
researchers. Only a few researchers have
studied the problem of flow pass two rotating
cylinders in a side-by-side arrangement.
However, the heat transfer and fluid flow past a
pair of rotating circular cylinders in side-by-side
arrangement have not been addressed at all.
This paper presents a numerical investigation
of the characteristics of the two-dimensional
heat transfer and the laminar flow around two
rotating circular cylinders in side-by-side
arrangements. In order to consider the combined
effects of rotation and  spacing between the
two cylinders on the flow and heat transfer,
numerical simulations are performed at a
various range of absolute rotational speeds
(  α  < 2.5), for different gap spacing and
Reynolds number in the range Re < 40.
Quantitative information about the flow and
the heat transfer variables such as the local and
average Nusselt number, pressure and friction
coefficients on the cylinder surfaces is
highlighted. The patterns of the flow and
temperature fields are analyzed for a wide range
of parameters.

The mathematical formulation of the
heat/mass transfer problem of a flow past two
rotating circular cylinders is described in the next
section. The problem is recast in terms of a
cylindrical bipolar coordinate system. The
following sections present the details of the
numerical algorithm based on the projection
method to approximate the solution of the
momentum equation, and the fractional step
stabilizing correction method to approximate
the solution of the energy equation. The
validation of the numerical algorithm was done
by comparing our computational results for large
gap between the cylinders with available
numerical and experimental data for flow and
heat transfer over a single cylinder. The results
of the various numerical experiments are
reported and discussed in the final part of
our paper.

Mathematical Formulation of the
Problem

Consider the flow of a viscous incompressible
fluid along the y-direction normal to the line
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between the centers of two rotating circular
cylinders with a constant velocity and tempera-
ture at infinity, U�� , T�. The cylinders rotate about
their axes at angular velocities ωL and ωR ,
assuming that a positive value corresponds
to counter-clockwise rotation. A sketch of
the flow geometry, coordinate system and
notations are shown in Figure 1.

Figure 1. Schematic representation of the flow
and heat transfer over a pair of
rotating circular cylinders in side-
by side arrangement

The present study is restricted to long
cylinders and low Reynolds number, Re < 40.
The flow across the cylinders is steady and
two-dimensional. All flow variables are
functions of the coordinates, x and y alone. The
thermodynamical properties of the fluid
(density, specific heat capacity cp, thermal
conductivity k) are assumed to be independent
of temperature. Under these conditions, the
momentum and energy equations are not
coupled.

For the study of heat transfer and fluid
flow around two cylinders, the cylindrical bipo-
lar coordinate system is the most suited. The
ubiquitous definition of the cylindrical bipolar
coordinates (ξ , η , z )  is

   (1)

where  and  ,
a  > 0 is the characteristic length in the cylindrical
bipolar coordinates (so-called “focal distance”).
The following identities show that curves of

constant ξ and η  are circles in the xy -space

              (2)

Figure 1 shows the two cylinders
described by η =  ηR  (with ηR > 0) and  η =  ηL

(withηL < 0), respectively. The cylinders’ radii
rL and rR and the distances of their centers from
the origin dL and dR are given by

   (3)

The center-to-center distance between the
cylinders is equal to d = dL + dR . If  rL + rR  and
d are given, one can find a , ηL and ηR from
relations (1)-(3) as follows

         (4)

The fluid flow is governed by the
conservation laws of momentum, mass and
energy. The nondimensional form of the
governing equations in the cylindrical bipolar
coordinate system are

                                            (5)

                                             (6)
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         (7)

      

   (8)

where vξ  and vη  are the velocity components in
ξ and η  directions, respectively, p is the
pressure, t  is the time, T is the fluid temperature,
and h = a /(cosh η - cos ξ ). In the above equations
all quantities are rendered dimensionless, the
velocities by means of the free stream velocity
U��, all lengths by means of  the radius  rR of

right cylinder, time by rR / U��, pressure by 
and temperature by (T - T�) (TR - T�). The two
nondimensional parameters which appear in the
above equations are Reynolds number,

 , and Prandtl number,  where

μ is the viscosity of the fluid, ρ is the fluid
density. On the cylinder surfaces the constant
temperature condition and the no-slip condition
for the velocity vector are imposed. The constant
streamwise velocity and the uniform temperature
are specified at infinity.

Discretization of the Governing
Equations

Description of Grid

The computational domain is divided
into a mesh by points ξ j = ( j - 0.5)Δξ and
ηi  =  ηL + (i - 0.5)Δη where Δξ = 2π/N, Δη =
(ηR - ηL)/ M are spatial mesh sizes in both ξ
and η directions, respectively. A staggered
placement of variables is used with velocity
components u = vη located on the vertical sides
of each cell and components  v = vξ  on the
horizontal sides of each cell. We used the
fractional indexes to denote grid values of
velocity components  ui+1/2,j  = u(ηi+1/2j ,ξ j ) and
vi, j+1/2 = v(ηi ,ξ j+1/2) where ηi+1/2,= ηi + 0.5Δη ,
ξ j+1/2 = ξ j + 0.5Δξ. The pressure p and
temperature  T are represented at cell centers,
pi, j = p(ηi ,ξ j), Ti, j = T(ηi ,ξ j). The upper index
n denotes values of variables at time tn = nτ
where τ  is the step size in time.

Discretization of Navier-Stokes Equations
Simulating incompressible flows presents

a difficulty of satisfying the property of mass
conservation. The velocity field must satisfy the
incompressibility constraint, which reflects the
unability of pressure to do compression work.
For developing numerical approximations to this
problem, it is natural to exploit the techniques
of the fractional step projection method of
Chorin (1968). The main idea of the fractional
step projection method is the splitting of the
viscosity effect from the incompressibility, which
are dealt with in two separate subsequent steps.

The time derivatives are represented
by forward differences. In case of a steady
solution, time is considered as artificial
(iterative) time. If the integer n  represents the
time level, then the intermediate velocity field
can be calculated from

        (9)

     (10)

Here we used the following notation for
convective and diffusive terms

The second order central difference
scheme has been used to discretize both the
convective and diffusive terms. The velocity

components  and   are computed for
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all faces of the cells except one, where the
velocity components are given by the boundary
condition. Figure 2 shows the location of grid
points where velocity components are known
from the no-slip boundary condition or from the
boundary condition at infinity. The boundary
condition at infinity is shifted on the boundary
of finite domains Ω1 and Ω2.

The explicit advanced tilde velocity may
not necessarily lead to a flow field with zero mass
divergence in each cell. This is because at this
stage the pressure field not used. Pressure pn+1

and velocity components un+1 and vn+1 have to
be computed simultaneously in such a way that
no net mass flow takes place in or out of a cell.
In such case, we make use of an iterative
correction procedure in order to obtain a
divergence free velocity field. First, the velocity
components are updated in the following form

         (11)

        (12)

where the index s is used to denote iteration
number, s = 1, 2, 3,... . In the case s = 1, we assume
that pn+1,0 = pn. The point iterative pressure
equation becomes

          (13)

where  is the unsatisfied divergence

at the ( , )thi j  cell due to incorrect velocities

 and  .

The pressure (velocity) equations (11)-
(13) are to be iterated until the continuity
equation is satisfied to the prescribed accuracy
and then the computation proceed to next time
step (artificial time)

                           (14)

where the discretized form of continuity
equation is

                 (15)

The optimal value of the relaxation
parameter β  was found by trial and error.

The pressure advanced equation (13) can
be interpreted as Jacobi iterative method to

Figure 2.  Sketch of computational grid and implementation of boundary condition
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solve the finite-difference analog of Poisson
equation for pressure. Let iterative process
converges, i.e. vn+1= vn+1,s ,  un+1= un+1,s , and
pn+1= pn+1,s . Substituting (11) and (12)  into (15)

and requiring that , we get the

following finite-difference approximation of
Poisson equation for pressure,

                (16)

Finite difference equation (16) is an algebraic
system with respect to the unknown vector

. System of
equations (16) can be solved by the method
of false transient

              (17)

where β  is an iterative parameter. Equation
(13) is a particular case of (17) where the
forward finite difference is used to approximate
the left-hand-side in (17),

                      (18)

On the surface of the cylinders, the no-
slip condition is applied, which is equivalent to
setting the tangential velocity at the boundary
to αi , i = L, R and the normal velocity to zero.

Where αi is defined as  

 , (ωi is the

angular velocity of the cylinders). Implementa-
tion of no-slip and no-penetration boundary
conditions is straightforward. Because of the
staggered arrangement of the variables, we used
the second order one-side finite differences to

approximate the derivatives  and .

In a numerical simulation, it is impossible

to satisfy constant streamwise velocity as

. Usual practice involves the
placement of the conditions at a faraway
(“artificial”) boundary, which is located at a large
distance from the body. In our computations,
the far boundary coincides with lines ξ = const
and  η = const (recall that images of the infinity
in computational domain are two points
(ξ = 0, η = 0) and (ξ = 2π, η = 0) . To be more
exact, we choose far boundary as the boundary
of the following domain

where εη = +(kw +0.5)Δη , εξ = +(kd +0.5)Δξ ,  and
kw , kd are integer numbers. In Figure 2 a
sketch of these domains Ω1 and Ω2 is shown
by shadow regions.

At the nodes of the mesh which are
located on the boundary of the regions  Ω1 and
Ω2 we assumed that the tangent component of
velocity vector and pressure  p = p�� are known.

Here we have utilized the idea that prescribing
tangent component of velocity and pressure
gives a well-posed problem for the Navier-Stokes
equations (Antontsev et al. (1990), Moshkin
and Yambangwai (2009)). The normal to the
boundary component of the velocity vector is
computed from the requirement of continuity
equation for the cells contained in this
boundary. For example, for the case shown in
Figure 2 the boundary of region Ω1 (/or Ω2)
passes through points ‘N’, ‘S’, and ‘C’. The
tangential  component of velocity  and 
are given by boundary condition as well as the
pressure at point ‘C’ is equal to pressure at
infinity. The component of velocity vector 
is computed from the requirement of zero
divergence for the cell centered at the point ‘C’
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Discretization of the Energy Equation
The momentum and energy equations are

not coupled. The energy equation is solved
separately from the Navier-Stokes equations.
When the steady solution of Navier-Stokes
equations is computed, the iterative method
of stabilizing correction is used (Yanenko, 1971)
to find the steady distribution of temperature.
The structure of the scheme of stabilizing
correction is the following:

• the first fractional step produces
absolute consistency with the energy equation,

• all succeeding fractional steps are
corrections and serve to improve the stability.

For the 2D case, the scheme possesses
strong stability and satisfies the property of
complete consistency. The requirement of
complete consistency guarantees convergence
of the unsteady solution to the steady solution
for arbitrary time and space step size (Yaneko
1971).

To describe the scheme of stabilizing
correction, consider a two dimensional
convection-diffusion equation in the form

                   (19)

where  is the gradient

operator, and    is the Laplace operator. To find
the steady solution of (19) we use the method
of false transient. Consider the related unsteady
problem with “fiction” time

                          (20)

where  represent the derivatives in only
one space direction. For the solution of (20)

Douglas and Rachford (1956) proposed the
following scheme

       (21)

           (22)

Eliminating T k+1/2 we can rewrite system (21)
and (22) in the following uniform scheme

                    (23)

It follows from this that scheme (21) and (22),
and the equivalent scheme (23) approximate
equation (20) with the same order of accuracy
as the implicit scheme

                     (24)

Temperature references to nodes of main
computational grid related with center of cells

of discrete domain  

 .
On the boundary of the shadowed domains Ω1

and Ω2 the constant temperature of uniform
stream T = T

� is prescribed. The constant
temperature at the cylinder surfaces is approxi-
mated by the following

where T0,j and Tm+1,j are “ghost” points, which
introduced for convenience in writing the
computational code. For each fractional step a
system of linear algebraic equation with
tridiagonal matrix is solved.

Computation of Heat Transfer and Flow
Characteristics

Two groups of characteristic quantities
are of interest in the present study, one for
characterizing the forces at the cylinder surface
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and the other for the heat transfer. If Fxi and
Fyi , i = L, R are the lift and drag forces on the
cylinders; the lift and drag force coefficients
are defined by

              (25)

and each consists of components due to the
friction forces and the pressure. Hence

                 (26)

where

Here   are the unit vectors in x and y axes

directions, Σ is the cylinder perimeter, and  is
the outward unit normal to surface vector. To
evaluate the integrals we used the middle point

rule, for example, in order to compute  we
used formula:

                     (27)

where i = L, R, that is, we computed the
coefficient on the left and right cylinder surfaces,
respectively.  Pressure on the cylinder surfaces
is evaluated by extrapolation from interior
points.

The vorticity in the cylindrical bipolar
coordinate system is given by the following

formula

On the cylinder surfaces the tangent derivative

is equal zero . The normal derivative 

is approximated by one-side second order
finite-differences.

The important parameter of interest in
heat transfer problems is the heat transfer rate
per unit area from the cylinder wall to the
ambient fluid. The local Nusselt number in the
cylindrical bipolar coordinate system based on
the diameter of the cylinder is

                          (28)

The average Nusselt number is calculated by
averaging the local Nusselt number over the
surface of the cylinder

                 (29)

The integral is approximated by the middle
point rule.

Validations

The first task in any numerical work is to
validate the codes ability to accurately
reproduce published experimental and
numerical results. Unfortunately, there are no
data in the literature to verify the accuracy of
the considered problem (flow over two rotating
cylinders). Since for large gap spacing between
the cylinders, the mutual influence of the
cylinders on each other is negligible we can
assume that the flow and heat transfer will be
similar to flow and heat transfer over a single
cylinder. The comparisons with flow and heat
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Figure 3. Validation of numerical algorithm (a)-pressure coefficient over cylinder surface,
(b)-the vorticity distribution over cylinder surface, for the left cylinder at Re = 20, 40,
and  g = 14

transfer around a single cylinder can be viewed
as a partial validation of the algorithm presented.
Thus, the comparisons were carried out of the
characteristics of flow and heat transfer as
obtained from our numerical results (gap spacing
g = 14, g = (d - rL - rR )/ DR ) with the published
data for a single cylinder. All computations were
performed in a large domain in order to reduce
the influence of the outer boundary. A sequence
of uniform grids is used. The wake behind a
single cylinder is steady in the flow regime
Re < 46 + 1. We assume that in the case of two
rotating circular cylinders, the steady regime
exists at least for the same range of the Reynolds
numbers. Due to symmetry with respect to the
y -axis, all our results are presented for the left
cylinder only.

The important characteristics of flow are
the drag coefficients, CD = CDf + CDp , the local
and average Nusselt numbers. They are presented
in Table 1 for Re = 20, g = 14, and Pr = 0.7.

Table 1 shows convergence of our results on a
sequence of grids and good agreement with
results from other publications.

Representative results showing the
variation of the pressure coefficient CDp and
vorticity ω on the surface of the left cylinder are
plotted in Figure 3 for the two values of the
Reynolds number Re = 20 and 40 and for the gap
spacing  g = 14.

Comparison of our numerical simulations
is performed with the numerical results of
Dennis and Chang (1970) for Re = 20 and 40,
with the experimental results of Thom for
Re = 36, 45 and Apelt for Re = 40 (Batchelor,
2000). Our data come from simulations on the
grid with 81 �  81  nodes in the ξ - η  plane. The
closest distance from the cylinder surfaces to
the far boundary for this grid is 53 cylinder
diameters. The angle variable θ is zero at the
front stagnation point and increases in the
clockwise direction on the left cylinder. The data

Table 1. Validations of the numerical algorithm. Effect of grid refinement upon CD, CDp, CDi

and average Nusselt number   for Re = 20 and g = 14

Source CD, CDp, CDi  (Pr = 0.7)

Present  (21 � 21) 2.149 1.274 0.875 2.669

Present (41 � 41) 2.112 1.274 0.838 2.481

Present (81 � 81) 2.064 1.242 0.822 2.478

Soares (2005) et al. 2.035 1.193 0.842 2.430

St lberg  et al. (2006) 2.052 1.229 0.823 -

Bharti  et al. (2007) - - - 2.465
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from our simulations (∗  - sign for Re = 20 and
o - sign for Re = 40) match the results from other
publications.

To the authors’ knowledge, even for the
flow past a single circular cylinder, there are only
a few published sets of data pertaining to the
drag and lift coefficients at Re < 40 and
nonzero rotation. Table 2 shows comparisons
of our numerical results for Re = 20, g = 14 with
those numerically obtained by Badr et al. (1989);
Ingham and Tang (1990); Sungnul and Moshkin
(2006) and Chung (2006). The left cylinder
rotates with constant angular velocity in
clockwise direction and the right cylinder
rotates with the same speed in counterclock-
wise direction. The validation results inspire
confidence in the reliability and accuracy of the

numerical method used.

Results

Numerical computations were carried out for
Re = 5 - 40, for a range of values of Prandtl
number from 0.7 to 20, for range of rotation
α = 0.1 + 2.5, and different gap spacing. In all
 cases we represent results obtained on a grid

with 81 � 81 nodes in the computational domain.

The influence of the gap spacing on the heat
transfer rate in terms of the local Nusselt
number Nu(θ) is shown by Figures 4(a) and 4(b)
for Re = 20, α = 0 and Pr = 0.7 and 20. These
figures show that a significant influence of the
distance between cylinders on the local Nusselt
number Nu(θ) is observed for g  5.

 Table 2. Hydrodynamic parameters of flow over a rotating circular cylinder at Re = 20
with  g = 14

Contribution CD CL

α α α α α = 0.1  α α α α α = 1.0 α α α α α = 2.0 ααααα = 0.1 α α α α α = 1.0  α α α α α = 2.0

Present  (21 ��21) 2.146 2.035 1.906 0.286 2.974 6.309

Present  (41 ��41) 2.108 1.897 1.410 0.288 2.864 6.030

Present  (81 ��81) 2.052 1.847 1.346 0.293 2.770 5.825

Sungnul & Moshkin (2006) 2.120 1.887 1.363 0.291 2.797 5.866

Badr et al. (1989) 1.990 2.000 — 0.276 2.740 —

Ingham et al.(1990) 1.995 1.925 1.627 0.254 2.617 5.719

Chung (2006) 2.043 1.888 1.361 0.258 2.629 5.507

Figure 4. Local Nusselt number for different gap spacing at Re = 20, α α α α α  = 0, and (a)- Pr = 0.7,
(b)- Pr = 20
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Another aspect that seems to be interesting
is the decreasing Nu(θ) for  with
decreasing g in the case of Pr = 0.7 (rate of
convection and conduction almost equal). In the
case of Pr = 20 (convection is the dominant
mechanism of heat transfer) Nu(θ) decreases
with g decreasing for  and

 , and for  the values
of Nu(θ) increases with g decreasing. It is not
surprised that the average Nusselt number for
each individual cylinder increases with increasing
gap spacing and tends to the average Nusselt
number for a single cylinder. Figure 5 shows the
variation of the average Nusselt number with
gap spacing between non-rotating cylinders at
different Prandtl numbers and fixed  Reynolds
number, Re = 20.

As expected, the average Nusselt number
for the cylinders increases with the Prandtl
number.

Large Gap Spacing
The effect of  steady rotation of the

cylinders on heat transfer  is first studied for
large gap spacing, g = 14. Figure 6 shows the
variation of the local Nusselt number Nu(θ) at
Re = 20,  Pr = 0.7 and  Pr = 20, and for different

values of  An increase in the
rotation of the cylinders leads to a displacement
of the points of maximum and minimum Nusselt
number in the direction of rotation. At the same
time, the maximum value of the local Nusselt
number decreases with increase of rotational
speed. The minimum value of the local Nusselt
number slightly increases in step with
increasing rotation. For Pr = 20  and high
rotational speed α = 2, the rate of heat transfer
around the cylinder surface becomes almost
uniform as shown in Figure 6(b). This behavior
is quite expected, since due to the no-slip
condition the fluid layer adjacent to the cylinder
enwraps the cylinder and rotates with almost
the same angular velocity. Increasing rotational
speed to α = 2 creates a thick rotating layer
(buffering layers) around the cylinder. The heat
transfer through that layer is mostly due to
thermal conduction.

Figure 7 shows streamline patterns and
temperature contours plot for large gap
spacing g = 14, Reynolds number Re = 20 ,

Figure 5. Average Nusselt number for different
gap spacing at Re = 20, α α α α α  = 0

Figure 6. Local Nusselt number variation on the surface of the circular cylinders at  Re = 20,
Pr = 20, Pr = 0.7 and 20, g = 14 for α α α α α  = 0, 0.1, 0.5, 1.0, and 2.0

(a) (b)
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Pr = 0.7, 20, and  α = 0.1, 1.0, 2.0. The rotation
effect substantially changes the flow pattern in
the vicinity of the cylinder. Without rotation,
the flow field exhibits a symmetric pair of
standing vortices behind the cylinder defining
a closed recirculation region. With the increase
of the rotation rate, the flow becomes
asymmetric: the vortex detaches from the
cylinder and the stagnation point rotates in the
direction opposite to the direction of cylinder
rotation departing from the surface of the
cylinders (see first row in Figure 7).The minimum
of the local Nusselt number is observed near
this point. In downstream direction, the streamlines
are shifted clockwise and the same occurs for
the isotherms (see second and third rows in

Figure 7) resulting in the asymmetrical distribution
of the local Nusselt number as shown in
Figure 6. The oncoming fluid stream is
accelerated by the rotating cylinder on the
“west’ side of an egg-shaped region of closed
streamlines. As a result, the convective heat
transfer between the ambient fluid and the fluid
within the egg-shaped region is increased at the
point of maximum velocity. This observation
explains the deviation of the maximum of the
local Nusselt number in the direction of
cylinder’s rotation. An increase in the Prandtl
number increases the compactness of the
isothermals toward the downstream direction
(compare second and third rows of Figure 7).
Owing to rotation a wake-shapes region of

Figure 7. Streamline patterns (first row), temperature contours over two circular cylinders at
Re = 20, g = 14, α  =  0.1, 1.0 amd 2.0 and for Pr = 0.7, (second row) and Pr = 20
(third row)
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is otherms is shifted in the clockwise direction
for the left-hand side cylinder (see third row in
Figure 7) and in the counterclockwise direction
for the right-hand side cylinder. This behavior
can be explained by the increasing role of
convection in the mechanism of heat transfer
with increasing Pr number. We remind here that
we represent results only for left-hand side
cylinder, which rotates in the clockwise
direction.

Figure 8(a) shows the dependence of the
average Nusselt number on the rotational speed
for Re = 20 , g = 14  and Pr = 0.7, 1.0, 5.0, 10.0, and
20.0. The average Nusselt number decreases
with increasing α. In the case Pr = 1 the average
Nusselt number drops down by 10% and in the
case of  Pr = 20 drops down by almost 50%
when α increases from 0 up to 2. This behavior
can be explained by the fluid layers adjacent to
the rotating cylinders due to no-slip requirement.

Small Gap Spacing
For small gap spacing, g = 1, the effect of

rotational speed is shown in Figures 8-12, for
Re = 10 and 20, Pr = 0.7 and 20.0, and α
in the range 0 - 2.5. Representative plots of the
streamlines and isotherms for Re = 10 and 20,
g = 1, Pr = 0.7, 10  and 20, and 0.5 < α  < 20
are shown in Figures 9-11. Due to the no-slip
requirement, there are regions of closed
streamlines near the cylinders for all values of
α. The size of these regions increases with
increasing rotational speed. At some α  = α ∗ the

two regions merge together. The main stream
flows around the fluid region, which surrounds
both cylinders and consists of two regions of
closed streamlines. These regions acts as a
buffer (blanket) isolating both cylinders from
the main stream and causing a decrease in the
overall heat transfer rate from the cylinder
surfaces. The values of α∗ depends on Reynolds
number. As can be seen from Figure 9 for
Re = 10 and α  = 0.5 main stream can not pass
through gap between cylinders, however for
Re = 20 and α   = 0.5 main stream is strong enough
to go through the gap between two cylinders. A
further increase in angular velocity α  > α ∗

is a reason of further increasing of regions size
in both x and y directions. The stagnation points
are now located on the y _ axis, both upstream
and downstream, as illustrated in Figure 9.

The details of the steady thermal fields
are presented in Figures 10 and 11 (for the cases
of  Re = 10  and 20, g = 1, Pr = 1, 10, 20, and
α  = 0.5,1.0,1.5, and 2.0) in the form of constant
temperature contours. Isotherm patterns depend
on the Prandtl number. For Re = 20, Pr = 20 and
α  = 0.5 there are two almost separate wake-
type isotherm patterns downstream of each
cylinders. One of the interesting features of the
temperature field is topological similarity of
isotherm patterns in cases of α  = 1.5 and
α  = 2.0. For the cases of large Prandtl numbers
Pr = 40 and 20, the convection is dominant
mechanism in heat transfer. The lines of constant

Figure 8. Average Nusselt number at Re = 20, (a)-g = 14 and (b)- g = 1, for different Prandtl
numbers

(a) (b)
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temperature in the regions of closed streamlines
follow to the streamlines contours. Heat exchange
from the cylinders to the main stream occurred
through the boundary of the fluid region, which
enwraps both cylinders. Heat transfer inside this
region is mostly due to conduction. By this
reason, the average Nusselt number almost does
not change for α >1.5 as can be seen from
Figure 8(b). Comparison of isotherms in Figures
10 and 11 shows that an increase in Prandtl

number makes wake-shape region of
temperature field more narrow downstream
behind the cylinder It is interesting to point out
that the rate of rotation does not significantly
affect the size of the wake-shaped region.

Another interesting observation is the
location of the saddle critical point in the
temperature field. This critical point is located
on the line connecting the cylinder centers in
the cases of  Re =10, α = 0.5, Pr = 0.7, and

Figure 9. Streamlines contours over two circular cylinders at Re = 10 left column and
Re = 20 right column Pr = 1, g = 1, and α α α α α  = 0.5, 1.0, 1.5, and 2.0
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Re = 20, α  = 1.0, Pr = 0.7. For larger values of
α, α >1.5 the saddle point is shifted down (in
the negative direction of y-axis) by the fluid
layers which rotate in step with cylinders due to
no-slip condition.

Figure 12 shows effect of rotation on heat
transfer in terms of the local Nusselt number
distribution. For Pr = 20 and α = 2.5 the local
Nusselt number is almost constant on the cylinder
surfaces. As a result, the average Nusselt number
drops as α increase. Dependence of the average

 number on rotational speed is demonstrated

in Figure 8(b). Figure 8(b) shows that for

,  decreases sufficiently fast,

whereas for  the rate of decrease of 
is very low. This allows us to assume that heat
transfer is almost insensitive to the speed of
rotation if  .

Conclusions

A detailed numerical study of the two-dimen-
sional heat-transfer problem and laminar flow
around two rotating circular cylinders in side-

Figure 10. Temperature contours over two circular cylinders at Re = 10, g = 1, Pr = 1, 10, 20,
and α α α α α  = 0.5, 1.0, 1.5, and 2.0
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by-side arrangement has been carried out. An
efficient finite difference algorithm has been
developed for the 2D Navier-Stokes equation
in the cylindrical bi-polar coordinate system.
Comparing the results for the case of large gap
spacing with the available in the literature
experimental and numerical data for the case of
a single cylinder shows a good agreement,

For the problem of heat-transfer and flow
around two rotating circular cylinders in side-
by-side arrangement, the average Nusselt
number decreases with increasing rotational
speed.

For large Prandtl number (Pr = 20) and
high rotational speed (α���2.0), the local Nusselt
number distribution on the cylinder surfaces
becomes almost uniform. This is due to the
no-slip condition, the increasing rotational speed
creates thick rotating layers of fluid (buffer
layers) around the cylinders.

In case of small gap spacing between the
cylinders, there are two flow regimes. In the first,
the main stream passes through the gap between
cylinders and in the second case, there is a fluid
region which surrounds both cylinders and
which consists of two sub-regions of closed

Figure 11. Temperature contours of fluid flow over two circular cylinders at Re = 20, g = 1,
Pr = 0.7, 10, 20 and α α α α α  = 0.5, 1.0, 1.5 and 2.0
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streamlines.
It has been observed that the temperature

contour pattern is similar to the streamline
contour pattern. Owing to the rotation, the
wake-shaped region of the isotherms is shifted
in direction of the cylinder rotation. An increase
in the Prandtl number increases the compactness
of the isotherms toward the downstream.
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