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Abstract
The problem of fully-developed natural-convective heat and mass transfer through a porous medium
in a vertical channel is investigated analytically. One region is filled with a micropolar fluid and the
other region with a viscous fluid or both regions are filled with viscous fluids. Using the boundary and
interface conditions, the expressions for linear velocity, micro-rotation velocity, temperature, and
mass have been obtained. Numerical results are presented graphically for the distribution of velocity,
micro-rotation velocity, temperature, and mass fields for various values of physical parameters such
as the ratio of the Grashof number to Reynolds number, viscosity ratio, channel width ratio, conduc-
tivity ratio, and micropolar fluid material parameter. It is found that the effect of the micropolar fluid
material parameter suppresses the velocity whereas it enhances the micro-rotation velocity. The
effect of the ratio of the Grashof number to Reynolds number is found to enhance both the linear
velocity and the micro-rotation velocity. The effects of the width ratio and the conductivity ratio are
found to enhance the temperature distribution.
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Introduction
The research area of micropolar fluids has been
of great interest because the Navier-Stokes
equations for Newtonian fluids cannot success-
fully describe the characteristic of fluid with
suspended particles. There exist several
approaches to study the mechanics of fluids with
a substructure. Ericksen (1960 a and b) derived
field equations which account for the presence
of substructures in the fluid. It has been experimen-
tally demonstrated by Hoyt and Fabula (1964)

and Vogel and Patterson (1964) that fluids
containing a small amount of polymeric additives
display a reduction in skin friction. Eringen (1966)
formulated the theory of micropolar fluids which
display the effects of local rotary inertia and
couple stresses. This theory can be used to
explain the flow of colloidal fluids, liquid crystal,
animal blood, etc. Eringen (1972) extended the
micropolar fluid theory and developed the theory
of thermomicropolar fluids. Extensive reviews of
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the theory and application can be found in the
review articles by Ariman et al. (1974) and the
recent books by Lukaszewicz (1999) and Eringen
(2001).

Physically, micropolar fluids may be
described as non-Newtonian fluids consisting
of dumb-bell molecules or a short rigid
cylindrical element, polymer fluids, fluid
suspension, etc. The presence of dust or smoke,
particularly in a gas, may also be modeled using
micropolar fluid dynamics. The theory of
micropolar fluids first proposed by Eringen (1966)
is capable of describing such fluids.

Studies of external convective flows of
micropolar fluids have focused mainly on free,
forced and mixed convection problems.
Applications are found in a variety of
engineering problems, such as air conditioning
of a room, solar energy collecting devices,
material processing, and passive cooling of
nuclear reactors. Studies of the flows of heat
convection in micropolar fluids have focused
mainly on a flat plate Ahmadi (1976); Jena and
Mathur (1982); Yucel (1989); and Rahman et al.
(2009) or on regular surfaces Balram and Sastry
(1973); Lien et al. (1990). Chamkha et al. (2002)
analyzed numerical and analytical solutions of
the developing laminar free convection of a
micropolar fluid in a vertical parallel plate
channel with asymmetric heating. The subject of
2-fluid flow and heat transfer has been
extensively studied due to its importance in the
chemical and nuclear industries. The design of a
2-fluid heat transport system for space
application requires knowledge of heat and mass
transfer processes and fluid mechanics under
reduced gravity conditions. Identification of the
2-fluid flow region and determination of the
pressure drop, void fraction, quality reaction, and
2-fluid heat transfer coefficient are of great
importance for the design of 2-fluid systems.
Lohsasbi and Sahai (1988) studied 2-phase
magnetohydrodynamic (MHD) flow and heat
transfer in a parallel plate channel with the fluid
in 1 phase being electrically conducted.
Malashetty and Leela (1992) have analyzed the
Hartmann flow characteristic of 2 fluids in a
horizontal channel. The study of 2-phase flow

and heat transfer in an inclined channel has been
studied by Malashetty and Umavathi (1997) and
Malashetty et al. (2001). Fully-developed
free-convective flow of micropolar and viscous
fluids in a vertical channel was investigated by
Kamar et al. (2009). Kumar and Gupta (2009)
considered the unsteady MHD and heat
transfer of 2 viscous immiscible fluids through a
porous medium in a horizontal channel.

The aim of this paper is to investigate
the fully-developed heat and mass natural-
convective flow through a porous medium in a
vertical channel with an asymmetric wall
temperature distribution.

Formulation of the Problem

The geometry under consideration illustrated
in Figure 1, consists of 2 infinite vertical
parallel walls maintained at different or equal
constant temperatures extending in x - and z -
directions. y - direction is taken as normal
to the nonconducting walls. The region

01 yh  is occupied by micropolar fluid
of density 1 , viscosity 1 , vortex viscosity
k, thermal conductivity 1k , and thermal
expansion coefficient 1 , and the region

20 hy  is occupied by viscous fluid
of density 2 , viscosity 2 , thermal
conductivity 2k , and thermal expansion coeffi-
cient 2 .

Figure 1.  Geometrical configuration

x*
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 T2  = Tw2  T1  = Tw1

  Micro- Viscous  C2 = Cw2C1  = Cw1   polar fluid
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The fluids are assumed to have constant
properties except the density in the
buoyancy terms ρ1 = ρ0[1−β1(Τ∗

1  −Τ∗
0)] and

ρ2 = ρ0[1−β2(Τ∗
2  −Τ∗

2)] in the momentum
equation, where 0T  is the mean temperature. Let
us assume that the walls of the channel are
isothermal, in particular the temperature and
concentration of the boundary at y* = -h1 is
Tw

*
1 and Cw

*
1 , while the temperature at y* = h2

is Tw
*
2 and Cw

*
2 with Tw

*
2 Tw

*
1 and Cw

*
2 Cw

*
1.

A fluid rises in the channel driven by buoyancy
forces. The transport properties of both the
fluids are assumed to be constant. It should be
mentioned here that the micropolar and viscous
fluids are immiscible (that is, no mixing between
the fluids exists) and the constitutive equations
for micropolar and viscous fluids are different.
Also, the viscosity of both fluids is different.
For instant, Synovial fluid, which is a clear
thixotropic lubrication fluid, is a good example of
a micropolar fluid and water is a good example of
a viscous fluid and it is well known that a
Synovial fluid and water cannot be mixed. Since
our model is general, one can choose any
2 different fluids which are immiscible.

It is assumed that the only non-zero
component of the velocity q along x* direction
is. u*

i  (i = 1,2) Thus, as a consequence of the
mass balance equation, we obtain

u*
i------- = 0 (1)

x*

so that u*
i  (1,2) depends only on y*.

Under these assumptions, the momentum,
energy, and mass equations are given by

Region-I
             d 2u1

*        dω*                                                μ1
*

(μ1 + k) -------- + k ----- ρ1gβ1T(T1
*  - T0

* ) - ----- u1
*

             dy*2       dy*                                                 K*

+ ρ1gβ1C(C1
*  - C0

* ) = 0 (2)

   d 2ω*                      du1
*

y --------  -k 2ω* + ------- = 0 (3)
   dy*2                  dy*

 d 2T1
*

----------- = 0 (4)
 dy*2

 d 2C1
*

----------- = 0 (5)
 dy*2

Region-II

     d 2u2
*                                                    μ2

*

μ2 -------- + ρ2gβ2T(T2
*  - T0

* ) - ----- u2
*

     dy*2                                                   K* (6)
+ ρ2gβ2C(C2

*  - C0
* ) = 0

 d 2T2
*

----------- = 0 (7)
 dy*2

 d 2C2
*

----------- = 0 (8)
 dy*2

where ω∗ is the component of micro-rotation
vector normal to the plane x* y*, g the acceleration
due to gravity, σ the coefficient of electrical
conductivity, K* the permeability of porous
medium, and γ the spin gradient viscosity. To
solve the above set of differential equations from
(2) to (6), 6 boundary conditions are required for
velocity, 4 boundary conditions for temperature,
and 4 boundary conditions for mass. The first 2
boundary conditions are obtained from the fact
that there is no slip near the wall. The next
condition is obtained by assuming the continuity
of velocity and the last 4 conditions are obtained
from the equality of stresses at the interface and
constant cell rotational velocity at the interface
as proposed by Ariman et al. (1973). Thus, the
appropriate boundary and interface conditions
on velocity in the mathematical form are

u1
*   =0 at y* = -h1, u2

*   = 0 at y* = h2,
u1

*   (0) = u2
*   (0)

              du1
*                         du1

*

(μ1 + k) -------  + kω* = μ2 -------  at y* = 0 (9)               dy*                         dy*

 dω*

-------  = 0 at y* = 0, ω* = 0 at y*= -h1

 dy*

For the corresponding temperature and
mass boundary conditions, it is assumed that
the temperatures and heat fluxes are continuous
at the interface
T1

*   = Tw
*
1  at y* = -h1, T2

*   = Tw
*
2  at y* = h2,

                              dT1
*             dT2

*

T1
*   (0) = T2

* (0), κ1 -------- = κ2  -------- at y* = 0                              dy*               dy* (10)
C1

*   = Cw
*
1  at y* = -h1, C2

*   = Cw
*
2  at y* = h2,

                              dC1
*             dC2

*

C1
*   (0) = C2

* (0), κ1 -------- = κ2  -------- at y* = 0                               dy*               dy*
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Also we assume that

                 k                    k1γ = μ1 + ---  j = μ1 + ---  j (11)                 2                     2
where j is the micro-inertia density and
k1 = k/μ1 is the micropolar fluid material
parameter of Region-I. We notice that k1 = 0
describes the case of a viscous or Newtonian
fluid. Relation (11) expresses the fact that the
micropolar fluid field can predict the correct
behavior in the limiting case when the micro-
structure effects become negligible and total spin
reduces to the angular flow velocity or flow
vorticity. Relation (9) was established by Ahmadi
(1976) and Kline (1977) and it has been used by
many researchers, for example Rees and Bassom
(1996), Gorla (1988), and Rees and Pop (1998).

Method of Solution

We introduce the following non-dimen-
sional quantities
        y*             ui

*             Ti
*    - T0

*

yi = ----- , ui = ----- , θi = ------------- ,        hi                 U0                     T
              Ci

*    - C0
*                   h1

                  K*

φi = ------------- , Ω = ------ ω∗ , K = ------ ,
                   C               U0                          h1

2

           gβ1T Th1
3                gβ1C Ch1

3

GrT  = ----------------- , GrC  = ----------------- , (12)                 v1
2                              v1

2

          U0h1                        GrTRe = --------- , GRT  = -------- ,            v1
                               Re

             GrC                    kGRC = -------- , k1  = -----
   Re              μ1

where Gr is the Grashof number, Re the
Reynolds number, GR the mixed convection
parameter, j = h1

2 the characteristic length,
and T and C the characteristic
temperature and concentration which are
defined as T = T*

w1 - T*
w2  if T*

w1 > T*
w2 and

C = C*
w1 - C*

w2  if C*
w1 > C*

w2 respectively.
Using (12), Equations (2) to (6) in non-

dimensional form become
Region-I
d 2u1         1                k1     dΩ--------  - -------------- u1 + --------  ------- = dy2    K(1+k1)         1+k1   dy (13)

   GRT              GRC- -------- θ1 - -------- φ1
    1+k1            1+k1

d 2Ω        2k1
                  du1--------  - --------  2Ω  + ------- = 0 (14) dy2     2+k1
               dy

 d 2θ1----------- = 0 (15) dy2

 d 2φ1----------- = 0 (16) dy2

Region-II

 d 2u2
        h2

--------  - ------  u2
  = dy2      K (17)

-mbρh2GRTθ2-mbρh2GRCφ2

 d 2θ2----------- = 0 (18) dy2

 d 2φ2----------- = 0 (19) dy2

with the boundary conditions

u1(-1) = 0, u2(1) = 0, u1(0) = u2(0),

du1(0)       k1                                      1        du2(0)------------ + ---------- ω(0) = -------------------  ------------ ,   dy         1+k1
               mh(1+k1 )     dy

 dω(0)---------- = 0, ω(-1) = 0,   dy
               Tw

*
1 -T0

*                            Tw
*
2 -T0

*

θ2 (-1) = ------------ = m1
 , θ2 (1) = ------------ = m2

 , (20)                   T                                T
                        dθ1       1    dθ2θ1 (0) = θ2 (0), ------- = -------  -------                         dy      hκ    dy
              Cw

*
1 -C0

*                          Cw
*
2 -C0

*

φ1 (-1) = ------------ = n1
 , φ2 (1) = ------------ = n2

 ,                   C                             C
                         dφ1       1    dφ2φ1 (0) = φ2 (0), ------- = -------  -------                         dy      hκ    dy

where

       h1           μ1          κ1          ρ1                 β1h = ---- , m = ---- , κ = ---- , ρ = ---- , and b = ----       h2           μ21         κ2          ρ2                 β2

are the channel width ratio, viscosity ratio,
thermal conductivity ratio, density ratio, and
thermal expansion ratio, respectively.

Solution

On solving coupled linear differential
Equations from (13) to (19) under boundary and
interface conditions (20), we have the solutions
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L6 = - 4c17Kk1   2L2(L1 + R    ) + c16k1   2L2(L1 - R    )
- 2c17Kk1

2   2L2(L1 + R    ) - 4c16Kk1   2L2(L1 - R    )
+ c17   L2L3(L1 + R    ) + 2c16   2L2(L1 + R    )
+ 2c17   2L2(L1 + R    ) + c16   L2L3(L1 - R    )
+ c17k1   2L2(L1 + R    ) - 2c16k1

2 K   2L2(L1 - R    )

L7 = c15   L2L3(L1 - R    ) - 2c18   2L2(L1 + R    )
+ 4c18Kk1   2L2(L1 + R    ) - c18   L2L3(L1 + R    )
+ k1c15   2L2(L1 - R    -) - 2c15   L2(L1 - R    )
- c18k1   2L2(L1 + R    ) + 4c15Kk1    2L2(L1 - R    )
+ 2c15k1

2
  K  2L2(L1 - R    ) + 2c18k1

2 K   2L2(L1 + R    )

where ci constants are constants of integration,
not included here for the sake of brevity.

Limiting Case

For a Newtonian fluid k1 = 0, the solution
of Equations (13) and (19) using boundary and
interface conditions (20) are

                        h                h                     ------- y          ------ y
                      k               ku2(y) = c'9e

     
 +c'10e

        
  + mbρKGRC

    (c7y +c8) + mbρKGRT(c5y + c6)      
(27)

                        1                    1                     ------ y           - ------ y
                      k                   ku1(y) = c'15e

       
+c'16e

       
   + KGRC

    (c3y + c4) + KGRT(c1y + c2)           
(28)

where c'i constants are constants of integration,
not included here for the sake of brevity.

Results and Discussion
An analytical solution for the problem of heat
and mass fully-developed natural-convective
flow of micropolar and viscous fluids through
a porous medium in a vertical channel is
investigated. The analytical solutions are
evaluated numerically for different values of
governing parameters and the results are
presented through a graph by assuming that, at
the second wall, the temperature is alike to the
mean temperature, i.e. Tw

*
2  T0

*  , so that  m1, n1
 1 and  m2, n2  0.

θ1
 = c1y + c2 (21)

φ1
 = c3y + c4 (22)

θ2
 = c5y + c6 (23)

φ2
 = c7y + c8 (24)

               1                    hκc1 
 = - ---------- , c2 

 =   ---------- ,          1+ hκ             1+ hκ
              hκ                  hκc5 

 = - ---------- , c6 
 =   ----------                 1+ hκ             1+ hκ

Region I
                1                   1Ω(y) = - --- c1 KGRT - --- c3 KGRC
                           2                  2

              L1 - R                    L1 - R                      -    ⎯⎯⎯ y             ⎯⎯⎯ y                            2L2                                      2L2+ c11e                     + c12e

              L1 + R                    L1 + R                      -    ⎯⎯⎯ y             ⎯⎯⎯ y                            2L2                                      2L2+ c13e                     + c14e (25)

                                                     L1 - R                                                     ⎯⎯⎯ y                 1                                      2L2u1(y) = ⎯⎯ L4y + L5 + L6e              8L2k1

                          L1 - R                     -   ⎯⎯⎯ y                             2L2+ L7e                    

Region II

                       h                   h                    ------ y            ------- y
                      K                    Ku2(y) = c9e

        
  + c10e

         
  + mbρKGRC   (26)

(c7y + c8) + mbρKGRT (c5y + c6)

R = 4 + 4k1 - 16Kk1 - 32Kk1
2  + k1

2 -
12Kk1

3 +16K2k1
2 +16K2k1

3 +4K2k1
4

where L1 =2 + k1 + 4Kk1 + 2Kk1
2

L2 =K(2 + k1)(1+k1)
L3 =8+8k1 - 32Kk1 - 64Kk1

2 + 2k1
2 - 24Kk1

3

+ 32K2k1
2  + 32K2k1

3 + 8K2k1
4

L4 =24k1
2 GRCK2c3 + 8k1

3 GRCK2c3

+ 24k1
2 GRTK2c1 + 8k1

3 GRTK2c1

+ 16k1GRTK2c1 + 16k1GRCK2c3

L5 =24k1
2 GRTK2c2 + 8k1

3 GRTK2c2

+ 24k1
2 GRCK2c4 + 8k1

3 GRCK2c4

+ 16k1GRTK2c2 + 16k1GRCK2c4
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The effect of the mixed convection
parameter or the Grashof to Reynolds numbers
ratio GRT and GRC on the linear velocity and
micro-rotation velocity are shown in Figures 2
and 5, respectively. An increase in the mixed
convection parameter means an increase of the
buoyancy force which supports the motion. It is
also observed from Figure 2 that if the micropolar
fluid is replaced by the clear viscous fluid, the
effect of the mixed convection parameter GRT
and GRC is still retained. But the magnitude of
promotion is large for a viscous–viscous fluids
system compared with a micropolar–viscous
fluids system. Figures 3 and 5 show the effect
of the mixed convection parameter on micro-
rotation velocity. It is observed from the figure
that an increase of buoyancy force reduces the
magnitude of micro-rotation velocity.

Figures 6 and 7 display the effect of the
viscosity ratio m = μ1/μ2 on the linear velocity
and micro-rotation velocity, respectively. As the
viscosity ratio m increases, the linear velocity
increases, but the magnitude of promotion is large
for k1 = 0 (Newtonian fluid) compared with k1 = 1
(micro-polar fluid). The effect of the viscosity
ratio m is found to reduce the micro-rotational
velocity.

The effect of the channel width ratio h on
the linear velocity and micro-rotation velocity is
shown in Figures 8 and 9, respectively. As the
width ratio h increases, both the linear velocity
and the micro-rotation velocity increase for
viscous–viscous k1 = 0 and micropolar–viscous
k1 = 1 fluids systems. The effect of the width
ratio h is also found to promote the temperature
and mass fields as seen in Figures 15 and 17,
respectively.

The effect of the permeability parameter K
on the linear velocity and micro-rotational
velocity is presented through Figures 10 and 11,
respectively. It is clear from Figure 10 that an
increase in the permeability parameter promotes
the linear velocity. It is also observed that if the
micropolar fluid is replaced by the clear viscous
fluid, the effect of the permeability parameter is
still maintained, but the magnitude of promotion
is large for the viscous-viscous fluids system
compared with the micropolar-viscous fluids
system. Figure 11 shows the effect of the
permeability parameter on micro-rotation
velocity. It is observed from the figure that an
increase of the permeability parameter reduces
the magnitude of micro-rotation velocity.

Figure 2. Velocity distribution for different
values of GRT

Figure 3. Micro-rotational velocity distribution
for different values of GRT
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The effect of the conductivity ratio κ on
the linear velocity and micro-rotational velocity
are presented through Figures 12 and 13,
respectively. The effect of the conductivity ratio
is predicted to increase the linear velocity for the
micropolar-viscous and viscous-viscous (Figure
12) fluids systems, but the effect of the
conductivity ratio κ is found to reduce the
micro-rotational velocity as seen in Figure 13.

The effects of the conductivity ratio κ on
the temperature and mass fields are shown in
Figures 14 and 16, respectively. The effect of the
conductivity ratio κ is predicted to increase both
the temperature and mass fields, i.e. the larger
the conductivity of the micropolar fluid
compared with the viscous fluid, the larger the
flow nature.

Figure 4. Velocity distribution for different
values of GRC

Figure 5. Micro-rotational velocity distribution
for different values of GRC

Figure 7. Micro-rotation velocity distribution for
different values of viscosity ratio m

Figure 6. Velocity distribution for different
values of viscosity ratio m
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Conclusions
There was considered the fully-developed
laminar natural-convective flow through a
porous medium in a vertical channel in which 1
region is filled with a micropolar fluid and the
other region with a viscous fluid. It is found that
the effects of the Grashof to Reynolds number
ratio, channel width ratio, conductivity ratio, and
permeability parameter are to promote the linear

velocity, whereas the micropolar fluid material
parameter suppressed the velocity. Further, the
Grashof to Reynolds number ratio, channel width
ratio, conductivity ratio, micropolar fluid
material parameter, and permeability parameter
repressed the micro-rotational velocity. The effect
of the width and conductivity ratio parameters
promotes the temperature and mass fields.

Figure 11. Micro-rotational velocity distribution
for different values of permeability
parameter K

Figure 9. Micro-rotational velocity distribution
for different values of width ratio h

Figure 10. Velocity distribution for different
values of permeability parameter K

Figure 8. Velocity distribution for different
values of width ratio h
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Nomenclature

b thermal expansion coefficient ratio, β2/β1
C concentration
g acceleration due to gravity
GrT Grashof number for heat transfer
Grc Grashof number for mass trasnfer
GRT Grashof to Reynolds numbers ratio for heat

transfer, GrT/Re
GRC Grashof to Reynolds numbers ratio for

mass transfer, GrC/Re

h channel width ratio, h1 / h2
h1 Height of Region-I
h2 Height of Region-II
j  micro-inertia density
κ ratio of thermal conductivities, κ1/κ2
κ1 thermal conductivity of the fluid in

Region-I
κ2 thermal conductivity of the fluid in

Region-II

Figure 15. Temperature profiles for different
values of width ratio h

Figure 14. Temperature profiles for different
values of conductivity ratio κκκκκ

Figure 12. Velocity profiles for different values
of conductivity ratio κκκκκ

Figure 13. Micro-rotational velocity profiles for
different values of conductivity ratio κκκκκ
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K permeability parameter
k 1 micropolar fluid material parameter
m ratio of viscosities, μ1/μ2
Re Reynolds number
T0 average temperature
T temperature
T1,T2 temperature of the boundaries
U0 average velocity
U velocity
x*, y* space coordinates

Greek letters

β coefficient of thermal expansion
γ spin gradient viscosity
Ω micro-rotational velocity
μ viscosity
ρ1 density of Region-I
ρ2 density of Region-II
ρ ratio of densities, ρ1/ρ2
ΔΤ difference in temperature
θι dimensionless temperature
φι dimensionless mass

Subscript

1, 2 reference quantities for Region-I and
Region-II, respectively

w condition at the wall
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