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Abstract

Some solutions for one class of nonlinear fourth-order partial differential equations
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where α, β, , , v and  are arbitrary constants are presented in the paper. This equation may be 
 
thought of as a fourth-order analogue of a generalization of the Camassa-Holm equation, in which 
 
there has been considerable interest recently. Furthermore, this equation is a Boussinesq-type 
 
equation which arises as a model of vibrations of harmonic mass-spring chain. The idea of travelling 
 
wave solutions and linearization criteria for fourth-order ordinary differential equations by point 
 
transformations is applied to this problem.
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Introduction

Almost all important governing equations in 
physics take the form of nonlinear differential 
 
equations, and, in general, are very difficult to 
solve explicitly. While solving problems 
 
related to nonlinear ordinary differential 
 
equations it is often expedient to simplify 
 
equations by a suitable change of variables.

	 Many methods of solving differential 
 
equations use a change of variables that 
 
transforms a given differential equation into 
 
another equation with known properties. 
 

Since the class of linear equations is considered 
 
to be the simplest class of equations, there is 
 
the problem of transforming a given differential 
 
equation into a linear equation. This problem, 
 
is called a linearization problem. The reduction 
 
of an ordinary differential equation to a linear 
 
ordinary differential equation besides 
 
simplification allows constructing an exact 
 
solution of the original equation.

	 One of the most interesting nonlinear 
 
problems but also difficult to solve is the
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problem of nonlinear fourth-order partial 
 
differential equations




	 


	 	
(1)


where α, β, , , v and  are arbitrary constants. 
 
The main difficulty in solving this problem 
 
comes from the terms of nonlinear partial 
 
differential equations and the large number of 
 
order. Because of this difficulty, there have 
 
been only a few attempts to solve this
 
problem.

	 In 1999, Clarkson and Priestley (Clarkson 
 
and Priestly, 1999) studied symmetry 
 
reductions of (1). An interesting aspect of 
 
their results is that the class of reductions 
 
given by the nonclassical method, which are 
 
not obtainable using the classical Lie method, 
 
were much more plentiful and richer than the 
 
analogous results given in (Clarkson et al., 
 
1997). 

	 In 2008, Ibragimov, Meleshko and 
 
Suksern (Ibragimov et al., 2008) found the 
 
explicit form of the criteria for linearization of 
 
fourth-order ordinary differential equations
 
by point transformations. Moreover, the 
 
procedure for the construction of the 
 
linearizing transformation was presented. So
 
that the idea for solving the problem of 
 
nonlinear fourth-order partial differential 
 
Equations (1) was happened. 

	 The way to solve this problem is organized 
 
as follows. Firstly, substituting the form of 
 
travelling wave solutions into the nonlinear 
 
fourth-order partial differential equations. 
 
Then, applying the criteria for linearization in 
 
(Ibragimov et al., 2008). After that, finding 
 
the exactsolutions of linear equations.


Linearization Criteria for Fourth-
 
Order Ordinary Differential Equations
 
by Point Transformations

The important tool for this research is the 
 
linearization criteria for fourth-order ordinary 
 
differential equations by point transformations. 
 
Based on (Ibragimov et al., 2008), we have 
 
the following theorems.


Theorem 1	 Any fourth-order ordinary 
 
differential Equation  
 
can be reduced by a point transformation  
 
can be reduced by a point transformation 



	 ,	 (2)



to the linear equation



	 	 (2)



where t and u are the independent and 
 
dependent variables, respectively, if it belongs 
 
to the class of equations




	(4)


or



	











                         (5)



where

Aj = Aj (x, y), Bj = Bj (x, y), Cj = Cj(x, y), 
 
Dj = Dj(x, y), r = r(x, y), Fj = Fj(x, y), 
 
Hj = Hj(x, y), Jj = Jj (x, y) and Kj = Kj (x, y)  
 
are arbitrary functions of  x, y.



	 Since this research deals with the first 
 
class, let us emphasize the first class for other 
 
theorems that we need to use.



Theorem 2	 Equation (4) is linearizable if 
and only if its coefficients obey the following 
 
conditions:



	 A0y – Alx = 0, 	 (6)



	 4B0 – 3A1 = 0,	 (7)



 	 12Aly + 3A1

2 _ 8C2 = 0,	 (8)
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	 12Alx + 3A0A1 

_ 4C1 = 0,	 (9)

		
 
	 32C0y + 12A0x A1 

_ 16Clx+3A0
2 A1 


	
_ 4A0Cl = 0,	 (10)	




	 4C2y + AlC2 

_ 24D4 = 0, 	 (11)



	 4Cly + AlC1 

_ 12D3 = 0, 	 (12)



	 16Clx _ 12A0x A1 

_ 3A0
2 A1 + 4A0Cl 


	 + 8AlC0
 _ 32D2 = 0,	 (13)




	 192D2x + 36A0x A0 A1 

_ 48A0x C1 


	
_ 48C0xAl + 288Dly  +

 9A0
3Al 


	 _ 12A0
2 Cl  

_ 36A0A1 C0 
_ 48A0 D2 


	
_ 32C0C1 = 0,	 (14)


 	 384Dlxy + [3((3A0A1 
_ 4C1 )A0

2


	 +16(2A1D1 + C0 C1 ) _ 16(A1C0
_ D2 )A0)A0


	 _ 32(4(C1D1 
_ 2C2 D0 + C0 D2)


	 +(3A1D0
_ C0

2
 )A1)_96Dly A0 + 384D0y A1 


	 + 1536D0yy 
_ 16(3A0A1 

_ 4C1)C0x+ 12

	 ((3A0A1 

_ 4C1 )A0 
_ 4(A1C0 

_ 4D2)) A0x] = 0

	 	 (15)	

 

Theorem 3	 Provided that the conditions
 
(6)-(15) are satisfied, the linearizing 
 
transformation (2) is defined by a fourth-order 
 
ordinary differential equation for the function 
 

(x), namely by the Riccati equation




	 	 (16)


for




	 		  (17)




and by the following integrable system of 
 
partial differential equations for the function 
 
ψ (x, y)



	 	 (18)

and







  	 (19)




where χ is given by Equation (17) and Ω is 
the  following expression




	 Ω	=	A0
3 – 4A0C0 + 8D1–8C0x+ 


			   6A0xA0 + 4A0xx.	 (20)



Finally, the coefficients α and β of the 
 
resulting linear Equation (3) are




	 		 (21)


     (22)


Method and Result

Let us consider the nonlinear fourth-order 
partial differential Equation (1)
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α, β, γ, μ, v




where  v and  are arbitrary constants.

	 Of particular interest among solutions 
 
of Equation (1) are traveling wave solutions:



	 u(x, t) = H(x-Dt),



where D is a constant phase velocity and the 
 
argument x-Dt is a phase of the wave. 
 
Substituting the representation of a solution 
 
into Equation (1), one finds

  


	
4 2222





	
4 2222

	 (23)




	 This is an equation of the form (4) with 
 
coefficients

 


 



	 Substituting these coefficients into the 
linearization conditions (6)-(15), one obtains 
 
the following results.



	 Case 1 :  v = 0

	 •	 If v = 0, then Equation (23) is 
 
linearizable if and only if 



	  0.




The solution of Equation (23) is

 


	 				

	  	 (24)



where C1 and C2  are arbitrary constants.



	 Case 2 : v    0 

	 •	 If  v  0,  = 0, and   = 0, then Equation 
 
(23) is linearizable if and only if




	   = 0,  = D2.



	 Next, to find the linear form and the 
 
solutions of Equation (23). From theorem 3, 
 
we found that Equation (23) is mapped by the 
 
transformations



	  = x – Dt,  = H



to the linear Equation



	 (4) =  0.



Hence, the solution of Equation (1) is



	 



	 	 (25)



where C0, C1, C2 and C3 are arbitrary 
constants.

	 •	 If   v  0,  = 0, and   = 3v,  then 
 
Equation (23) is linearizable if and only if



	   = 4v,  = D2.

 

	 By using theorem 3, we obtained that 
 
Equation (23) is mapped by the transformations

 


	 

to the linear equation



	 (4) =  0.



	 So that we obtain the implicit solution 
 
of Equation (1) in the form




	 


	 	 (26)




where C0, C1, C2 and C3 are arbitrary 
 
constants.


Discussion and Conclusions

In the present work, we found some solutions 
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for nonlinear fourth-order partial differential 
 
Equation (1), which are in the form of 
 
Equations (24), (25), and (26), respectively. 
 
An interesting aspect of the results in this 
 
paper is that the class of exact solutions of the 
 
original nonlinear problems are found.
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