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Abstract 
Some solutions for one class of nonlinear fourth-order partial differential equations 

  22
 

 
where α, β, , , v and  are arbitrary constants are presented in the paper. This equation may be   
thought of as a fourth-order analogue of a generalization of the Camassa-Holm equation, in which   
there has been considerable interest recently. Furthermore, this equation is a Boussinesq-type   
equation which arises as a model of vibrations of harmonic mass-spring chain. The idea of travelling   
wave solutions and linearization criteria for fourth-order ordinary differential equations by point   
transformations is applied to this problem. 
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Introduction 
Almost all important governing equations in 
physics take the form of nonlinear differential   
equations, and, in general, are very difficult to 
solve explicitly. While solving problems   
related to nonlinear ordinary differential   
equations it is often expedient to simplify   
equations by a suitable change of variables. 
 Many methods of solving differential   
equations use a change of variables that   
transforms a given differential equation into   
another equation with known properties.   

Since the class of linear equations is considered   
to be the simplest class of equations, there is   
the problem of transforming a given differential   
equation into a linear equation. This problem,   
is called a linearization problem. The reduction   
of an ordinary differential equation to a linear   
ordinary differential equation besides   
simplification allows constructing an exact   
solution of the original equation. 
 One of the most interesting nonlinear   
problems but also difficult to solve is the  
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problem of nonlinear fourth-order partial   
differential equations 
 

  

  
(1) 

where α, β, , , v and  are arbitrary constants.   
The main difficulty in solving this problem   
comes from the terms of nonlinear partial   
differential equations and the large number of   
order. Because of this difficulty, there have   
been only a few attempts to solve this  
problem. 
 In 1999, Clarkson and Priestley (Clarkson   
and Priestly, 1999) studied symmetry   
reductions of (1). An interesting aspect of   
their results is that the class of reductions   
given by the nonclassical method, which are   
not obtainable using the classical Lie method,   
were much more plentiful and richer than the   
analogous results given in (Clarkson et al.,   
1997).  
 In 2008, Ibragimov, Meleshko and   
Suksern (Ibragimov et al., 2008) found the   
explicit form of the criteria for linearization of   
fourth-order ordinary differential equations  
by point transformations. Moreover, the   
procedure for the construction of the   
linearizing transformation was presented. So  
that the idea for solving the problem of   
nonlinear fourth-order partial differential   
Equations (1) was happened.  
 The way to solve this problem is organized   
as follows. Firstly, substituting the form of   
travelling wave solutions into the nonlinear   
fourth-order partial differential equations.   
Then, applying the criteria for linearization in   
(Ibragimov et al., 2008). After that, finding   
the exactsolutions of linear equations. 

Linearization Criteria for Fourth-  
Order Ordinary Differential Equations  
by Point Transformations 
The important tool for this research is the   
linearization criteria for fourth-order ordinary   
differential equations by point transformations.   
Based on (Ibragimov et al., 2008), we have   
the following theorems. 

Theorem 1 Any fourth-order ordinary   
differential Equation    
can be reduced by a point transformation    
can be reduced by a point transformation  
 
 , (2) 
 
to the linear equation 
 
  (2) 
 
where t and u are the independent and   
dependent variables, respectively, if it belongs   
to the class of equations 
 

 (4) 

or 
 
  
 
 
 

 

                         (5) 
 
where 
Aj = Aj (x, y), Bj = Bj (x, y), Cj = Cj(x, y),   
Dj = Dj(x, y), r = r(x, y), Fj = Fj(x, y),   
Hj = Hj(x, y), Jj = Jj (x, y) and Kj = Kj (x, y)    
are arbitrary functions of  x, y. 
 
 Since this research deals with the first   
class, let us emphasize the first class for other   
theorems that we need to use. 
 
Theorem 2 Equation (4) is linearizable if 
and only if its coefficients obey the following   
conditions: 
 
 A0y – Alx = 0,  (6) 
 
 4B0 – 3A1 = 0, (7) 
 
  12Aly + 3A1

2 _ 8C2 = 0, (8) 



155Suranaree J. Sci. Technol. Vol. 18 No. 2; April - June 2011  
 
 12Alx + 3A0A1 

_ 4C1 = 0, (9) 
   
 32C0y + 12A0x A1 

_ 16Clx+3A0
2 A1  

 
_ 4A0Cl = 0, (10)  

 
 4C2y + AlC2 

_ 24D4 = 0,  (11) 
 
 4Cly + AlC1 

_ 12D3 = 0,  (12) 
 
 16Clx _ 12A0x A1 

_ 3A0
2 A1 + 4A0Cl  

 + 8AlC0
 _ 32D2 = 0, (13) 

 
 192D2x + 36A0x A0 A1 

_ 48A0x C1  

 
_ 48C0xAl + 288Dly  +

 9A0
3Al  

 _ 12A0
2 Cl  

_ 36A0A1 C0 
_ 48A0 D2  

 
_ 32C0C1 = 0, (14) 

  384Dlxy + [3((3A0A1 
_ 4C1 )A0

2 

 +16(2A1D1 + C0 C1 ) _ 16(A1C0
_ D2 )A0)A0 

 _ 32(4(C1D1 
_ 2C2 D0 + C0 D2) 

 +(3A1D0
_ C0

2
 )A1)_96Dly A0 + 384D0y A1  

 + 1536D0yy 
_ 16(3A0A1 

_ 4C1)C0x+ 12 
 ((3A0A1 

_ 4C1 )A0 
_ 4(A1C0 

_ 4D2)) A0x] = 0 
  (15)  
  
Theorem 3 Provided that the conditions  
(6)-(15) are satisfied, the linearizing   
transformation (2) is defined by a fourth-order   
ordinary differential equation for the function   

(x), namely by the Riccati equation 
 

  (16) 

for 
 

   (17) 

 
and by the following integrable system of   
partial differential equations for the function   
ψ (x, y) 
 
  (18) 
and 
 

 

   (19) 

 
where χ is given by Equation (17) and Ω is 
the  following expression 
 

 Ω	= A0
3 – 4A0C0 + 8D1–8C0x+  

   6A0xA0 + 4A0xx.	 (20) 
 
Finally, the coefficients α	 and β of the   
resulting linear Equation (3) are 
 

   (21) 

     (22) 

Method and Result 
Let us consider the nonlinear fourth-order 
partial differential Equation (1) 
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α, β, γ, μ, v 

 
where  v and  are arbitrary constants. 
 Of particular interest among solutions   
of Equation (1) are traveling wave solutions: 
 
 u(x, t) = H(x-Dt), 
 
where D is a constant phase velocity and the   
argument x-Dt is a phase of the wave.   
Substituting the representation of a solution   
into Equation (1), one finds 
   

 
4 2222

  

 
4 2222

 (23) 

 
 This is an equation of the form (4) with   
coefficients 
  

  
 
 Substituting these coefficients into the 
linearization conditions (6)-(15), one obtains   
the following results. 
 
 Case 1 :  v = 0 
 •	 If v = 0, then Equation (23) is   
linearizable if and only if  
 
  0. 

 
The solution of Equation (23) is 
  

     

   (24) 
 
where C1 and C2  are arbitrary constants. 
 
 Case 2 : v    0  
 •	 If		v  0,  = 0, and   = 0, then Equation   
(23) is linearizable if and only if 
 

   = 0,  = D2. 
 
 Next, to find the linear form and the   
solutions of Equation (23). From theorem 3,   
we found that Equation (23) is mapped by the   
transformations 
 
  = x – Dt,  = H 
 
to the linear Equation 
 
 (4) =  0. 
 
Hence, the solution of Equation (1) is 
 
  
 
  (25) 
 
where C0, C1, C2 and C3 are arbitrary 
constants. 
	 •	 If	 	 v  0,  = 0, and   = 3v,  then   
Equation (23) is linearizable if and only if 
 
   = 4v,  = D2. 
  
 By using theorem 3, we obtained that   
Equation (23) is mapped by the transformations 
  

  
to the linear equation 
 
 (4) =  0. 
 
 So that we obtain the implicit solution   
of Equation (1) in the form 
 

  

  (26) 

 
where C0, C1, C2 and C3 are arbitrary   
constants. 

Discussion and Conclusions 
In the present work, we found some solutions   
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for nonlinear fourth-order partial differential   
Equation (1), which are in the form of   
Equations (24), (25), and (26), respectively.   
An interesting aspect of the results in this   
paper is that the class of exact solutions of the   
original nonlinear problems are found. 
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