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Abstract 

The problem of determining a piecewise linear model for 2-dimensional data is commonly   
encountered by researchers in countless fields of scientific study. Examples of the problem or   
challenge are that of 2-dimensional digital curves, reliability, and applied mathematics.   
Nevertheless, in solving the problem, researchers are typically constrained by the lack of prior   
knowledge of the shape of the curve. Therefore, fitting a piecewise linear curve into a given set of   
data points is a useful technique. Moreover, any 2-dimensional continuous curve can be   
approximated arbitrarily by a piecewise linear function. In fitting a piecewise linear model, the   
number of segments and knot locations may be unknown. Several techniques can be employed, such   
as genetic algorithms as well as the least square error function, but not all techniques can guarantee   
convergence to a near optimal. In this paper, a method which employs the particle swarm   
optimization as the primary model fitting tool is introduced. The aim is to approximate a curve by   
optimizing the number of segments as well as their knot locations with fixed initial and final points.   
The experimental results which reveal the performance of the proposed algorithm are also   
presented. 
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Introduction 
One problem that invariably arises in   
determining the functional relationship   
between certain input and output variables is   
fitting a piecewise linear curve into a given   
set of data points. Reportedly, fitting a piecewise   
linear curve into a given set of data points is   
of great use when prior knowledge of the   
shape of the curve to be fitted does not exist   
(Kundu and Ubahya, 2001). As a result, the   

  
problem has received considerable attention   
from, and been studied by, researchers   
of various application fields, including   
engineering, chemometrics, and material   
science (Dunham, 1986; Pittman and Murthy,  
2000). Alternatively, the same problem can be   
viewed as approximating any 2-dimensional   
continuous curve with a piecewise linear   
curve. Examples of study areas in which the   
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aforementioned problem is encountered are   
that of shape analysis (Dunham, 1986) and an   
approximation of the expected cost function   
during generator outages (Siriruk and   
Valenzuela, 2011). 
 A large number of techniques have been  
proposed to address the problem involving the   
creation of the piecewise linear curve.   
However, not all the techniques can guarantee   
convergence to a near optimal. Cantoni (1971)   
proposed an algorithm which determines the   
slopes and breakpoints that minimize the   
integral of the weighted squared error over the   
approximation interval. Later, Pittman and   
Murthy (2000) introduced a method by which   
genetic algorithms are employed to optimize   
the number and location of the pieces. Kundu   
and Ubhaya (2001) proposed an algorithm to   
optimize a piecewise linear continuous fit to a   
given set of data points by minimizing a   
weighted least square error.  
 Particle swarm optimization (PSO),   
which was first introduced in 1995, is a   
simple algorithm that seems to be effective   
for optimizing a wide range of functions   
(Kennedy and Eberhart, 1995). In this work, a   
new method which employs the PSO as the   
primary model fitting tool is introduced. In   
the case of piecewise linear functions, it is   
intended to optimize the number of segments   
as well as their knot locations in the model. 

The Problem Statement 

A set of data pointsis assumed: 
  

D = {xi,yi):1 ≤ i ≤ N}, (xi,yi) , 1 ≤ N ≤ ∞ 
  
where the values (xi, yi) have a relationship   
with an unknown function f such that   
yi = f (xi). It is also assumed that x1 < x2 <...  
< xN. The objective is to fit a model (x) into   
a given set of data points. The following 
additional assumptions apply to the model   

(x). 
 • (x) is an h*-piecewise linear  
  function, where h* is a positive   
  integer representing the number of  
  segments. 

 • Let {L1, L2, …, Lh*} denote   
  approximated slopes of the curve   
  (x), where the successive line   
  segments L1, L2, …, Lh* of the curve   
  are listed from left to right. 
 • Let aj and aj+1 be the left and right   
  end points of Lj (knot locations),  
  where aj = (uj, vj) , 0 ≤ j ≤ h* + 1, with   
  u0 = x1 and uh*+ 1 = xN. 
 
 The objective of this paper is to employ   
PSO to fit the function with the unknown   
shape of the curve by minimizing the sum of   
squared errors (SSE) between the original   
data points and the data points generated by  

(x). 

Algorithm Description 
This section describes how PSO can be used   
to fit optimal piecewise linear function. One   
iteration of an algorithm consists of choosing   
knot locations using PSO, constructing model   

(x), and calculating the evaluation function.   
The process continues until the stopping   
conditions are met. 
 If a starting point (x1,y1) is not the origin   
(0, 0), it is necessary to shift the starting point   
to the origin and thereby shift other data   
points in accordance with the shifted starting   
point. The following pseudo-code describes   
an algorithm to move the starting point: 
  
 FOR  i = 1 to N 
   xi = xi - x1 

   yi = yi - f(x1) 
 END FOR 
  
 Notice that the new data range for x and  
y is [0, xN -x1] and [0, f(xN)-f(x1)], respectively.   
Once the starting point is at the origin, then a   
set of knot locations (a1, a2,…, ah*+1) is  
selected in order to calculate the approximated   
slope for each segment. However, it is assumed   
that a1 = x1 and ah*+1 = xN. Thus, using PSO   
described below, there are simply chosen knot   
locations from a2 to ah*, where a1 < a2 <...  
<ah*+1. 
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Particle Swarm Optimization 

 PSO is an iterative process which   
evaluates the solutions represented by the   
particle locations and adjusts the particle   
velocities based on prior knowledge. Each   
particle i maintains its current position,   
Ai = (ai,1,ai,2,…,ai,h*+1), which is a set of   
knot locations. Each particle also maintains  
the velocity, Vi = (vi,1,vi ,2,…,vi,h*+1), and the  
best position that each particle has found so   
far, Pi = (pi,1,pi,2,…,pi,h*+1). A population   
size of μ particles is initialized by randomly  
generating the vectors A and V. The   
evaluation function is then used to evaluate   
the fitness of each particle. When the particle   
is moved, the new location and velocity are   
calculated based on Ai,Vi, Pi, and the best   
P vector from the neighborhood which is   
represented by Pg = (Pg,1,Pg,2,…,Pg,h*+1).   
The new velocity vectors are calculated using   
(1): 
  
 vi,d = K[vi,d +φ1 • rnd() • (pi,d - ai,d) 
   +φ2 • rnd() • [pi,d - ai,d]• (1) 
 for d = 1,2,…,h*+1   
where 

 

 Note that the values of φ1 and φ2 are  
set equally to 2.05, which are generally   
accepted values (Carlisle and Dozier, 2001).   
The new Ai vector is then calculated as below: 
 
 ai,d = ai,d + vi,d. (2) 
  
 After computation, the new Ai vector 
must be sorted in the ascending order   
(ai1 < ai2 <...< aih*+1). 

Constructing  

 Once the knot locations are selected, the   
process of fitting piecewise linear curve into a   
set of data points can begin. The main steps of   
constructing (x) are described below. 
 1) The first breakpoint is set at the first   
  knot location (a1). 
 2) A new breakpoint is obtained by  
  moving to the next knot location. 
 3) All data points between the current   
  breakpoint and the previous breakpoint  
  are used to calculate the approximated   
  slope using linear regression. 
 4) Steps 2) and 3) are repeated starting   
  from the last breakpoint found so far. 
 5) The new model (x) is obtained once   
  the last knot location has been  
  reached. 

Figure 1. An outline of the evaluation function 
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 All slopes in the new model connect to 
each other as depicted in Figure 1. A set of 
approximated slopes, {L1,L2,…,Lh*}, is   
obtained after applying the above procedure.   
The new model (x) can be written as 
  
 (xi) = (xi-1)+Lk • (xi-xi-1) 
 for  an ≤ xi ≤ an + 1 and i ≠ 1 (3) 
  
where n = 1,…, h*-1 and (x1) = f(x1). Note  
that the value of xi in (3) is not the value that   
is shifted to the origin but the initial xi value   
(i.e., prior to shifting). 

The Evaluation Function 

 As mentioned earlier, the objective is to   
find the new model (x) that can minimize   
the SSE and can be computed as below: 
  
 SSE =  [f(xi)- (xi)2]. (4) 
  
 Therefore, the algorithm input is a set   
of knot locations (a1,a2,…,ah*+1); and after   

computing for slope and implementing (x),   
the algorithm output is the SSE computed   
by (4). 
 The process of choosing knot locations,  
constructing model (x), and calculating   
evaluation function continues until the   
stopping conditions are met. Then the P   
vector with the lowest fitness value is chosen. 

Numerical Examples 

Methodology 

 In an effort to standardize the results of   
each dataset, a standard set of parameters is   
used. The population size can be described as: 
 
 μ = {2,4,8,16,32,64,128} 
 
 All of the datasets use this parameter,   
but there is variation for each dataset. The   
algorithm continues until it exceeds the   
number of function evaluations as shown in   
Tables 1 and 2. 

Table 1. Experimental dataset 1  

Dataset 1 

Generating function Parameters 

 

N : 791 
h* : 3 
# Function  
Evaluations:  
20,000  
Noise : Nor (0,1) 

3.88x + 10.44 -3.0 ≤ x ≤ - 1.29 
-1.74x + 3.14 -1.29 ≤ x ≤ 3.70 
3.77x - 17.25 3.70 ≤ x ≤ 4.90 

Table 2. Experimental dataset 2  

Dataset 2 

Generating function Parameters 

 

N : 321  
h* : {4,5,6}  
#Function 

Evaluations:  

4,000  

Noise: -  

For  j = 1,2,…,7,  

For  j = 8,  
f8(x)   = xc8  
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Data 
 The proposed algorithm is applied to a   
couple of datasets in order to test its   
efficiency. 
 Dataset 1 
 Dataset 1 is borrowed from Pittman and   
Murthy (2000) in which it is generated from   
piecewise linear functions with unequally   
spaced knots of which the middle piece is   
considerably longer than either of the end   
pieces. This dataset uses normally distributed   
noise (ε). In other words, the function   
of dataset 1 can be expressed as y = f(x) + ε.   
Thus, the shape of this curve cannot be   
predicted. The parameters and generating   
function of dataset 1 are described in Table 1. 
 Dataset 2 
 Dataset 2 is borrowed from Siriruk and  
Valenzuela (2011). It is a recursive function   
which acts as a piecewise linear function with   
a large number of slopes. However, dataset 2   
does not consider random noise. Unlike   
dataset 1, dataset 2 yields an exact set of data   
points. Therefore, the PSO algorithm can be   
tested to approximate the curve that does not   
include variation but does have a large   
number of slopes. The parameters and the   
generating function of dataset 2 are described   
in Table 2, the latter of which uses the data in   
Table 3. 

Results 
For dataset 1, the algorithm made 20000   
function evaluations on each run. Therefore,   
there were 10000 iterations with a population   
size of 2. For a swarm size of 4, there were   
only 5000 iterations. The PSO algorithm   

found the best solution when μ = 16. This   
population size returned 445.6074 SSE with   
20000 function evaluations. The picture of the  
fitting curve is depicted in Figure 2. 
 For dataset 2, the overall best solution  
was found when the population size was μ = 4   
and the number of segments h* = 6 (Table 4).   
With 4000 function evaluations, the SSE was   
found to be 78.33. At the swarm size μ = 128   
with the number of segments h* = 6, the   
algorithm could not find better solutions. This   
indicated that the population size had an effect   
on the results. With a smaller population size,   
the algorithm will have more iterations than a   
larger population size. This indicates that each   
particle will have more time to adapt and   
search for better solutions. 
 When the number of segments h* was   
was set to be 4 and 5, higher values of the   
SSE are obtained. This means that the function   
in dataset 2 did not fit well with these settings.   
The execution time of different values of   
h* = 4,5,6 and μ = {2,4,8,16,32,64,128} was   
indistinguishable. All of the settings took less   
than 2 seconds to complete. 
 From Figure 3, it is clear that PSO   
provided a reasonable curve when the number 
of slopes (h*) was 6. The number of slopes can  
efficiently be reduced to 6 with a small SSE   
remaining. In addition, the curve given by   
PSO is not much different from the original   
curve. 

Conclusions 
In this paper, particle swarm optimization has 
been employed to fit a function with the  
unknown shape of the curve by minimizing 

Table 3. Data for generating function in dataset 22  

j 1 2 3 4 5 6 7 8 

rj 0.99 0.99 0.9 0.98 0.96 0.98 0.98 - 

qj 0.01 0.01 0.1 0.02 0.04 0.02 0.02 - 

cj 1 1 8 14 14.8 14.8 14.8 100 

 50 50 20 76 100 12 12 ∞ 
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the sum of squared errors. The proposed   
method has shown a good fit on a function for   
which there was no prior knowledge of the   
shape of the curve. Moreover, this algorithm   
performs well on approximating any 2-  
dimensional continuous curve with a piecewise   
linear curve with accuracy mostly intact. 
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