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Abstract


The problem of determining a piecewise linear model for 2-dimensional data is commonly 
 
encountered by researchers in countless fields of scientific study. Examples of the problem or 
 
challenge are that of 2-dimensional digital curves, reliability, and applied mathematics. 
 
Nevertheless, in solving the problem, researchers are typically constrained by the lack of prior 
 
knowledge of the shape of the curve. Therefore, fitting a piecewise linear curve into a given set of 
 
data points is a useful technique. Moreover, any 2-dimensional continuous curve can be 
 
approximated arbitrarily by a piecewise linear function. In fitting a piecewise linear model, the 
 
number of segments and knot locations may be unknown. Several techniques can be employed, such 
 
as genetic algorithms as well as the least square error function, but not all techniques can guarantee 
 
convergence to a near optimal. In this paper, a method which employs the particle swarm 
 
optimization as the primary model fitting tool is introduced. The aim is to approximate a curve by 
 
optimizing the number of segments as well as their knot locations with fixed initial and final points. 
 
The experimental results which reveal the performance of the proposed algorithm are also 
 
presented.


Keywords: Optimization, particle swarm optimization, piecewise linear approximation


Introduction

One problem that invariably arises in 
 
determining the functional relationship 
 
between certain input and output variables is 
 
fitting a piecewise linear curve into a given 
 
set of data points. Reportedly, fitting a piecewise 
 
linear curve into a given set of data points is 
 
of great use when prior knowledge of the 
 
shape of the curve to be fitted does not exist 
 
(Kundu and Ubahya, 2001). As a result, the 
 


 
problem has received considerable attention 
 
from, and been studied by, researchers 
 
of various application fields, including 
 
engineering, chemometrics, and material 
 
science (Dunham, 1986; Pittman and Murthy,
 
2000). Alternatively, the same problem can be 
 
viewed as approximating any 2-dimensional 
 
continuous curve with a piecewise linear 
 
curve. Examples of study areas in which the 
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aforementioned problem is encountered are 
 
that of shape analysis (Dunham, 1986) and an 
 
approximation of the expected cost function 
 
during generator outages (Siriruk and 
 
Valenzuela, 2011).

	 A large number of techniques have been
 
proposed to address the problem involving the 
 
creation of the piecewise linear curve. 
 
However, not all the techniques can guarantee 
 
convergence to a near optimal. Cantoni (1971) 
 
proposed an algorithm which determines the 
 
slopes and breakpoints that minimize the 
 
integral of the weighted squared error over the 
 
approximation interval. Later, Pittman and 
 
Murthy (2000) introduced a method by which 
 
genetic algorithms are employed to optimize 
 
the number and location of the pieces. Kundu 
 
and Ubhaya (2001) proposed an algorithm to 
 
optimize a piecewise linear continuous fit to a 
 
given set of data points by minimizing a 
 
weighted least square error. 

	 Particle swarm optimization (PSO), 
 
which was first introduced in 1995, is a 
 
simple algorithm that seems to be effective 
 
for optimizing a wide range of functions 
 
(Kennedy and Eberhart, 1995). In this work, a 
 
new method which employs the PSO as the 
 
primary model fitting tool is introduced. In 
 
the case of piecewise linear functions, it is 
 
intended to optimize the number of segments 
 
as well as their knot locations in the model.


The Problem Statement


A set of data pointsis assumed:


 

D = {xi,yi):1 ≤ i ≤ N}, (xi,yi) , 1 ≤ N ≤ ∞


 
where the values (xi, yi) have a relationship 
 
with an unknown function f such that 
 
yi = f (xi). It is also assumed that x1 < x2 <...
 
< xN. The objective is to fit a model (x) into 
 
a given set of data points. The following 
additional assumptions apply to the model 
 

(x).

	 •	 (x) is an h*-piecewise linear
 
		  function, where h* is a positive 
 
		  integer representing the number of
 
		  segments.


	 •	 Let {L1, L2, …, Lh*} denote 
 
		  approximated slopes of the curve 
 
		  (x), where the successive line 
 
		  segments L1, L2, …, Lh* of the curve 
 
		  are listed from left to right.

	 •	 Let aj and aj+1 be the left and right 
 
		  end points of Lj (knot locations),
 
		  where aj = (uj, vj) , 0 ≤ j ≤ h* + 1, with 
 
		  u0 = x1 and uh*+ 1 = xN.



	 The objective of this paper is to employ 
 
PSO to fit the function with the unknown 
 
shape of the curve by minimizing the sum of 
 
squared errors (SSE) between the original 
 
data points and the data points generated by
 

(x).


Algorithm Description

This section describes how PSO can be used 
 
to fit optimal piecewise linear function. One 
 
iteration of an algorithm consists of choosing 
 
knot locations using PSO, constructing model 
 

(x), and calculating the evaluation function. 
 
The process continues until the stopping 
 
conditions are met.

	 If a starting point (x1,y1) is not the origin 
 
(0, 0), it is necessary to shift the starting point 
 
to the origin and thereby shift other data 
 
points in accordance with the shifted starting 
 
point. The following pseudo-code describes 
 
an algorithm to move the starting point:


 
	 FOR 	 i	 =	 1 to N

			   xi	 =	 xi - x1


			   yi	 =	 yi - f(x1)

	 END FOR


 
	 Notice that the new data range for x and
 
y is [0, xN -x1] and [0, f(xN)-f(x1)], respectively. 
 
Once the starting point is at the origin, then a 
 
set of knot locations (a1, a2,…, ah*+1) is
 
selected in order to calculate the approximated 
 
slope for each segment. However, it is assumed 
 
that a1 = x1 and ah*+1 = xN. Thus, using PSO 
 
described below, there are simply chosen knot 
 
locations from a2 to ah*, where a1 < a2 <...
 
<ah*+1.
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Particle Swarm Optimization


	 PSO is an iterative process which 
 
evaluates the solutions represented by the 
 
particle locations and adjusts the particle 
 
velocities based on prior knowledge. Each 
 
particle i maintains its current position, 
 
Ai = (ai,1,ai,2,…,ai,h*+1), which is a set of 
 
knot locations. Each particle also maintains
 
the velocity, Vi = (vi,1,vi ,2,…,vi,h*+1), and the
 
best position that each particle has found so 
 
far, Pi = (pi,1,pi,2,…,pi,h*+1). A population 
 
size of μ particles is initialized by randomly
 
generating the vectors A and V. The 
 
evaluation function is then used to evaluate 
 
the fitness of each particle. When the particle 
 
is moved, the new location and velocity are 
 
calculated based on Ai,Vi, Pi, and the best 
 
P vector from the neighborhood which is 
 
represented by Pg = (Pg,1,Pg,2,…,Pg,h*+1). 
 
The new velocity vectors are calculated using 
 
(1):


 
	 vi,d	 =	 K[vi,d +φ1 • rnd() • (pi,d - ai,d)

			   +φ2 • rnd() • [pi,d - ai,d]•	 (1)

	 for d	 =	 1,2,…,h*+1

 
where





	 Note that the values of φ1 and φ2 are
 
set equally to 2.05, which are generally 
 
accepted values (Carlisle and Dozier, 2001). 
 
The new Ai vector is then calculated as below:



	 ai,d	 =	 ai,d + vi,d.	 (2)


 
	 After computation, the new Ai vector 
must be sorted in the ascending order 
 
(ai1 < ai2 <...< aih*+1).


Constructing 


	 Once the knot locations are selected, the 
 
process of fitting piecewise linear curve into a 
 
set of data points can begin. The main steps of 
 
constructing (x) are described below.

	 1)	The first breakpoint is set at the first 
 
		  knot location (a1).

	 2)	A new breakpoint is obtained by
 
		  moving to the next knot location.

	 3)	All data points between the current 
 
		  breakpoint and the previous breakpoint
 
		  are used to calculate the approximated 
 
		  slope using linear regression.

	 4)	Steps 2) and 3) are repeated starting 
 
		  from the last breakpoint found so far.

	 5)	The new model (x) is obtained once 
 
		  the last knot location has been
 
		  reached.


Figure 1. An outline of the evaluation function
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	 All slopes in the new model connect to 
each other as depicted in Figure 1. A set of 
approximated slopes, {L1,L2,…,Lh*}, is 
 
obtained after applying the above procedure. 
 
The new model (x) can be written as


 
	 (xi) = (xi-1)+Lk • (xi-xi-1)

	 for  an ≤ xi ≤ an + 1 and i ≠ 1	 (3)


 
where n = 1,…, h*-1 and (x1) = f(x1). Note
 
that the value of xi in (3) is not the value that 
 
is shifted to the origin but the initial xi value 
 
(i.e., prior to shifting).


The Evaluation Function


	 As mentioned earlier, the objective is to 
 
find the new model (x) that can minimize 
 
the SSE and can be computed as below:


 
	 SSE =  [f(xi)- (xi)2].	 (4)


 
	 Therefore, the algorithm input is a set 
 
of knot locations (a1,a2,…,ah*+1); and after 
 

computing for slope and implementing (x), 
 
the algorithm output is the SSE computed 
 
by (4).

	 The process of choosing knot locations,
 
constructing model (x), and calculating 
 
evaluation function continues until the 
 
stopping conditions are met. Then the P 
 
vector with the lowest fitness value is chosen.


Numerical Examples


Methodology


	 In an effort to standardize the results of 
 
each dataset, a standard set of parameters is 
 
used. The population size can be described as:



	 μ = {2,4,8,16,32,64,128}



	 All of the datasets use this parameter, 
 
but there is variation for each dataset. The 
 
algorithm continues until it exceeds the 
 
number of function evaluations as shown in 
 
Tables 1 and 2.


Table 1.	 Experimental dataset 1



Dataset 1


Generating function
 Parameters





N : 791

h* : 3

# Function 

Evaluations: 

20,000
 
Noise : Nor (0,1)


3.88x + 10.44	 -3.0 ≤ x ≤ - 1.29

-1.74x + 3.14	 -1.29 ≤ x ≤ 3.70

3.77x - 17.25	 3.70 ≤ x ≤ 4.90


Table 2.	 Experimental dataset 2



Dataset 2


Generating function
 Parameters





N : 321
 
h* : {4,5,6}
 
#Function


Evaluations: 


4,000
 

Noise: - 


For  j = 1,2,…,7, 


For  j = 8, 

f8(x)   = xc8 
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Data

	 The proposed algorithm is applied to a 
 
couple of datasets in order to test its 
 
efficiency.

	 Dataset 1

	 Dataset 1 is borrowed from Pittman and 
 
Murthy (2000) in which it is generated from 
 
piecewise linear functions with unequally 
 
spaced knots of which the middle piece is 
 
considerably longer than either of the end 
 
pieces. This dataset uses normally distributed 
 
noise (ε). In other words, the function 
 
of dataset 1 can be expressed as y = f(x) + ε. 
 
Thus, the shape of this curve cannot be 
 
predicted. The parameters and generating 
 
function of dataset 1 are described in Table 1.

	 Dataset 2

	 Dataset 2 is borrowed from Siriruk and
 
Valenzuela (2011). It is a recursive function 
 
which acts as a piecewise linear function with 
 
a large number of slopes. However, dataset 2 
 
does not consider random noise. Unlike 
 
dataset 1, dataset 2 yields an exact set of data 
 
points. Therefore, the PSO algorithm can be 
 
tested to approximate the curve that does not 
 
include variation but does have a large 
 
number of slopes. The parameters and the 
 
generating function of dataset 2 are described 
 
in Table 2, the latter of which uses the data in 
 
Table 3.


Results

For dataset 1, the algorithm made 20000 
 
function evaluations on each run. Therefore, 
 
there were 10000 iterations with a population 
 
size of 2. For a swarm size of 4, there were 
 
only 5000 iterations. The PSO algorithm 
 

found the best solution when μ = 16. This 
 
population size returned 445.6074 SSE with 
 
20000 function evaluations. The picture of the
 
fitting curve is depicted in Figure 2.

	 For dataset 2, the overall best solution
 
was found when the population size was μ = 4 
 
and the number of segments h* = 6 (Table 4). 
 
With 4000 function evaluations, the SSE was 
 
found to be 78.33. At the swarm size μ = 128 
 
with the number of segments h* = 6, the 
 
algorithm could not find better solutions. This 
 
indicated that the population size had an effect 
 
on the results. With a smaller population size, 
 
the algorithm will have more iterations than a 
 
larger population size. This indicates that each 
 
particle will have more time to adapt and 
 
search for better solutions.

	 When the number of segments h* was 
 
was set to be 4 and 5, higher values of the 
 
SSE are obtained. This means that the function 
 
in dataset 2 did not fit well with these settings. 
 
The execution time of different values of 
 
h* = 4,5,6 and μ = {2,4,8,16,32,64,128} was 
 
indistinguishable. All of the settings took less 
 
than 2 seconds to complete.

	 From Figure 3, it is clear that PSO 
 
provided a reasonable curve when the number 
of slopes (h*) was 6. The number of slopes can
 
efficiently be reduced to 6 with a small SSE 
 
remaining. In addition, the curve given by 
 
PSO is not much different from the original 
 
curve.


Conclusions

In this paper, particle swarm optimization has 
been employed to fit a function with the
 
unknown shape of the curve by minimizing 

Table 3.	 Data for generating function in dataset 22



j
 1
 2
 3
 4
 5
 6
 7
 8


rj
 0.99
 0.99
 0.9
 0.98
 0.96
 0.98
 0.98
 -


qj
 0.01
 0.01
 0.1
 0.02
 0.04
 0.02
 0.02
 -


cj
 1
 1
 8
 14
 14.8
 14.8
 14.8
 100



 50
 50
 20
 76
 100
 12
 12
 ∞
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the sum of squared errors. The proposed 
 
method has shown a good fit on a function for 
 
which there was no prior knowledge of the 
 
shape of the curve. Moreover, this algorithm 
 
performs well on approximating any 2-
 
dimensional continuous curve with a piecewise 
 
linear curve with accuracy mostly intact.
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