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Abstract


This paper suggests that log-linear analysis can be used to predict the expected number of patients 
 
in hospital services. A log-linear risk rate model has been developed to analyze the time series of 
 
count data. In finding a risk rate model, parameters are estimated and goodness-of-fit is utilized to 
 
carefully extract the best model to fit the count data. The marginal effect is the basis function which 
 
can be used in the risk Rate analysis for flexibility. This study attempted to analyze the actual 
 
operations of a hospital and proposed modifications in the system to reduce waiting times for the 
 
patients, which should lead to an improved view of the quality of services provided. To develop a 
 
risk Rate model for the above situation, it is necessary to define a model for the expected number of 
 
patients for hospital services cases. Here, 2 underlying variables are of interest, “waiting time” and 
 
“hospital services”. “Waiting time” has been categorized into 7 groups. The variable “hospital 
 
services” contains 4 categories: Inpatient (IN), Referred (REF), Recurring (RCR), and Observation 
 
(OBS). As a result, significant levels of causal variables are not expected to be identical for each 
 
model. It was found that the IN category has a higher rate of increase in the average waiting time. 
 
The marginal allows better predictions of hospital services and rehabilitation decision making.
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Introduction

In the categorical data analysis literature 
 
(Heien et al., 2004), the survival models and/
 
or the risk rate models are treated differently 
 
from standard logit models. In general, these 
 
models are termed as rate models or risk rate 
 
models. In its simplest form, a rate is defined 
 
as the number of individuals or observations 
 
possessing a particular characteristic divided 
 
by the total amount of exposure to the risk of 
 
having such a characteristic. The risk rate 
 
models can easily be connected to the standard 
 

Poisson models (Powers and Xie, 2000). Then 
 
the Poisson models are directly related to the 
 
exponential Models by making conversion of 
 
rates per unit interval with the waiting time 
 
until the first occurrence. Here w a risk rate 
 
model is used to determine the likelihood of 
 
the demand for hospital services in a queuing 
 
system in order to identify factors associated 
 
with increased health care utilization, 
 
particularly those factors related to hospital 
 
services. This is a difficult task for several 
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reasons. 

	 The Admissions Department consists 
 
of 4 major areas: front desk, registration desk, 
 
waiting area, and financial consulting area 
 
(within the Business Department). When a 
 
patient enters the admissions area, they are 
 
asked by the front desk clerk to provide his or 
 
her name and the reason for the visit. The 
 
clerk also clarifies if the patient was pre-
 
registered for this service or not. If the answer 
 
is yes, the clerk gets the patient’s documentation 
 
ready for the the admissions representative. 
 
Then the patient receives an assigned number 
 
and is asked to wait in the waiting area for the 
 
admissions representative to call the number. 
 
The admissions representative determines if 
 
the patient has ever received services at the 
 
hospital and, if so, pulls up the patient’s 
 
data from Meditech and verifies the patient’s 
 
personal information. If the patient is visiting 
 
the hospital for the first time, an admissions 
 
clerk creates the patient’s profile in the hospital’s 
 
information database system. 

	 Law and Kelton (2001) proposed an 
 
algorithm of a successful computer simulation 
 
study. This algorithm includes the following 
 
key steps: 1) Problem formulation, 2) Data 
 
collection and the conceptual model design,
 
3) The validation of the model, 4) The 
 
constructions of the computer representation 
 
of the model, 5) The verification of the model,
 
6) The design of experiments needed to 
 
address theproblem, 7) Production runs using
 
the computer model, 8) The statistical analysis 
 
of the data obtained from the production runs, 
 
and 9) The interpretation of the results. 

	 First, even in the case of constant demand 
 
levels over the day, statistical fluctuations in 
 
individual patient waiting times and the 
 
variability in the time needed by a provider to 
 
service patients can create long delays even 
 
when overall average steady state capacity is 
 
greater than average demand. Second, the 
 
magnitude of delays is a log-linear function
 
of the demand for hospital services and is thus 
 
impossible to predict without the use of a 
 
queueing model (Green and Nguyen, 2001). 

 


Methodology of Risk Rate Model 


Risk Rate Model Analysis  


	 Let Yi be the number of patients of an 
 
event of interest for the ith subject and denote 
 
the independent variables by xi, i = 1,…,n. 
 
We assume that Yi follows a Poisson 
distribution, Yi ~ Poisson (λi), with density 



	 f (yi   xi) =
  λi
-λi e-λi


yi !

	 (1)




	 Let t1 , t2,…, tn be the waiting times of  
 
the nth individual, and assume the distribution 
 
function to be F(t) = Pr(T < t) with the 
 
probability density function f(t). The risk rate 
 
is denoted by μ(t), and can be viewed as the
 
instantaneous probability of an event in the 
 
interval [t, t+Δt], given the event has not 
 
occurred before time t. Formally, the risk rate 
 
(Manski and McFadden, 1981), is defined by 
 
the following limit: 




μ(t) = 
 Pr[t < T < t + Δt | T < t]
lim
 1
 (2)
Δt
Δt ➝ o
 




	 The density of an exponential distribution 
 
with parameter μ is given by



f(t) =  μe-μt, t > 0.	 (3)



	 The distribution function equal



F(t) = 1 _μe-μt, t > 0. 	 (4)



	 For this distribution, we have 




(5)
1
 1

 μ
  μ2
E(x) =
 , σ2 (x) =
 ,




 

	 The probability of an event not
 
occurring up to time t is given by the function 

 

P(t) = Pr[T > t] = 1 F(t)e-μt	 (6)

 

	 Assuming the waiting times are 
 
exponentially distributed, the equation (6) 
 
may be written as: 
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	 P(t) = e(-μti)	 (7)



	 The risk rate is defined by the ratio  

 


(8)
μ(ti) =
 μ
=
 =
 =
f(t)
 f(t)
 μe-μt


P(t)
 1-F(t)
 e-μt
 



	 The general risk rate model may be  
written as: 

μ(x   βi) = e(β0+ β1x1+....+βn+ βnxn)T

i
  	 (9)




where xT = [1, x1, x2, …, xn], and β0

,, β1,…,
 
βn are unknown constants as the rate is 
 
determined by several regressors. This 
 
exponential risk rate model can be estimated 
 
using a risk rate models for counts. In a time 
 
interval of length t, the probability of y events 
 
is given by: 
 


Pr(y | μ, t) =
 (μt)y e(-μt)


y!

	 (10)






	 Because the mean number of events 
 
in the time interval t is λ = μt, for the ith 
 

individual, the expected number of events in 
 
the time interval ti is

 

	 λi = μi ti  ,		  (11)


or  

	

T

i
λi = ti e (x     βi)
 	 (12)


 

	 Taking the log of the Poisson means 
 
results in the log-linear regression model:  


	 T

i
e (x     βi)
λi


ti

=
 	 (13)




or


	 log
 βi
=
(     )
λi

ti


T

i
x
 	 (14)




	 βi.
T


i
namely, log(λi)–log(ti) = x
 	 (15)

 


Goodness-of-Fit 


	 The log-likelihood function of the process 
 
cannot be the only index of fit because the 
 

likelihood ratio statistics are dependent on the 
 
size of the sample. Different values of the log-
 
likelihood function result when competing 
 
models, namely models that differ in the 
 
number of parameters, are fitted to the same 
 
data. The number of parameters, in general, 
 
should be more than 1, and significantly less 
 
than the number of observations. To assess the 
 
model goodness-of-fit, we need to know how 
 
1 model fits relative to another. An indicator 
 
of a model goodness-of-fit that measures the 
 
extent to which the current model deviates 
 
from a more generalized model is given by 
 
the likelihood ratio statistics: 


G2 = –2log
 = –2(log Lc – log Lf),
Lc


Lf

	 (16)






where log Lc is the log-likelihood of the 
 
current model, and Lf logis the log-likelihood 
 
of the more generalized model. The likelihood 
 
ratio statistics has a chi-square distribution 
 
with K2 – K1 degrees of freedom, where K2
 

and K1 denote the number of parameters in the 
 
more generalized model and the current
 
model, respectively (McCullagh and Nelder, 
 
1989).


Marginal Effects 


	 For risk rate models, the marginal 
 
effects can be thought of as the relative risk 
 
associated with a certain variable. The overall 
 
mean effect in (12) is 

 

 	 λ(xT β) = e	(xT β) 	 (17)



	 Then, the marginal effect due to the kth
 

factor can be considered as

 

	 		 (18)

 

where  is kth the mean of the factor values in 
the sample and  is the vector of the 
 
means of the factor values in the sample. An 
 
estimate of θk  can be computed as



	 θk = e(β) 	 	 (19)
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Model Results 


Estimation Results and Interpretation 


	 The following data was obtained from 
 
Lop Buri Hospital in Thailand. The Admissions 
 
Department is one of the most highly congested 
 
hospital services, and faces a great deal of 
 
pressure, compared with other components of 
 
the health care system. An admissions clerk 
 
determines the patient’s type (Inpatient (IN), 
 
Referred (REF), Recurring (RCR), and 
 
Observation (OBS)) and creates a new account 
 
using the hospital’s informational system. 
 
Admissions serve most outpatient and inpatient 
 
types, with an exception for all REF and some 
 
RCR, OBS, and IN. It is essential to assess the 
 
relationship between hospital services and the 
 
average waiting time in a queuing system. 
 
Using SAS and MATLAB to perform the 
 
iterations necessary for the maximum 
 
likelihood method, the following results have 
 
been obtained. 

	 To develop a risk rate model for the 
 
above situation (Horvath, 1999), it is necessary 
 
to define a model for the expected number 
 
of patients for hospital services cases, E(Yij), 
 
in terms of the variables of interest. Here, 2 
 
underlying variables are of interest, “waiting 
 
time” and “hospital services”. Since “waiting 
 
time” has been categorized into 7 groups, 6 
 

dummy variables are used to index them. The 
 
variable “hospital services”, which contains 4 
 
categories, requires only 3 dummy variables. 
 
Thus, 1 possible model for the expected 
 
number of patients for hospital services cases 
 
in the (i,j)th group can be written as: 

 




 

	 Using this model, the risks λIj in terms 
 
of the parameters αi and β can be written to 
 
obtain 

 

	 log λi0 = α + αI and log λi1 = α +αI +β,

since	log λi1 - log λi0 = (α + αI + β - α - αI) 

	 log λi1 - log λi0 = θk, so θk = e(β)


 

	 The data set in Table 1 was used to 
estimate the average waiting time and hospital 
 
services for medical and health services on the 
 
risk rate analysis with the hospital services 
 
variables characterized by the marginal effect 
 
(θk = e(β)). Two separate models were specified 
 
and estimated for each state since the various 
 
causal factors vary over time; as a result, 
 
significant levels of causal variables are not 
 
expected to be identical for each model. The 
 
model is to compare the average waiting time 
 
(t) and hospital services (h). A chi-square test 
 

Table 1.	 Contingency table of the hospital services 



Average waiting time


Hospital Services


Total
REF 

(h1) 


RCR 

(h2)  


OBS 

(h3) 


IN 

(h4) 


1-20	 (t1) 
 1
 3
 4

21-40	 (t2) 
 6
 7
 33
 46


41-60	 (t3) 
 10
 12
 9
 31
 62


61-80 	 (t4) 
 8
 1
 9


81-100      	 (t5) 
 33
 7
 5
 
 45


101-120    	 (t6) 
 30
 30


> 120        	 (t7) 
 4
 
 4


Total
 47 
 33 
 22 
 98 
 200
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relation log-linear model and risk rate model 
 
were also computed: 

 

Saturated log-linear model:  

 

	 log λ = μ+μiti+ μjhj+μijtihj 	 (20) 

 

Risk rate model: 

 

	 log λi = β0+β1x1i+β2x2i+

				    β3x3ij i=1,2,...,n;j=1,2,...,m	 (21)

 

where x1i, x2i, x3ij are dummy variables and the 
 
interaction variable x3ij = x1i * x2j is and the
 
variable x1 corresponds to the REF cases, x2 
 

corresponds to the RCR cases, x3 corresponds 
 
to the OBS cases, x4 corresponds to the IN 
 
cases, x5 corresponds to the group with 
 
an average waiting time of 1-20 min, x6 
 
corresponds to the group with an average 
 
waiting time of 21-40 min, x7 corresponds to 
the group with an average waiting time of
 
41-60 min, x8 corresponds to the group with 
 
an average waiting time of 61-80 min, x9 
 
corresponds to the group of with an average 
 
waiting time of 81-100 min, x10 corresponds 
 
to the group with an average waiting time of 
 
101-120 min, x11 corresponds to the group 
 
with an average waiting time > 120 min, and 
 
x12 = x1 x5, x13 = x2 x5, x14 = x3 x5,…, x39 = x4 x11.  
	 A saturated log-linear model rate 
 
was defined. The deviations between the 
 
maximized log-likelihood from each model 
 
were used to perform a series of chi-square 
 
tests in order to ascertain which model gives 
 
the best fit.  

	 So, the saturated log-linear model is 


	 (22)

 

	 The main effects model of factors t and 
 
h is 


	
(23)


 

	 The main effects model of factor t is 


	 (24)




	 The main effects model of factor h is 


	 (25)

 

Risk rate model: 

	 So, the saturated log-linear model is 


	
(26)


 

	 The main effects model of factors t and 
 
h is 


	 (27)




	 The main effects model of factor t is 


	 (28)



	 The main effects model of factor h is 


	 (29)





The following results were obtained. 

	 The saturated log-linear model yields  

 

log(λ)	 =	-14.8949+16.2841h1-0.6423h2 -

		  1.1326h3+16.1394t1+18.406t2+

		  18.8536t3+17.6167t4+18.10t5+

		  18.2963t6-32h1t1-16h2t1-

		  0.0365h3t1-32h1t2-0.0718h2t2-

		  0.282h3t2-15.9804h1t3-0.5691h2t3-

		  0.4642h3t3-32h1t4-16h3t4-16h1t5+

		  32h1t6-16h2t6-16h3t6,	 (30) 

 

log-likelihood = 383.3958,  df = 26 

 

	 The main effects model of factors h 
 
and t yields 

 
log(λ)	 =	0.9728+0.04h1-0.962h2-1.559h3-
		  0.0957t1+2.588t2+2.9627t3+
		  1.6526t4+2.5138t5+2.4172t5,	 (31) 
 

log-likelihood = 375.2952, chi-square = 
 
10.857, df = 17 
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	 The main effects model of factor t 
yields 

 

log(λ)	 =	0.05539-0.1605t1+2.481t2+2.7188t3


		  +1.2t4+12.4825t5+2.8036t6, 	  (32) 



log-likelihood = 341.413, chi-square = 80.413, 
 
df = 20 

 

	 The main effects model of factor h 
 
yields 

 

log(λ) 	 = 	3.2908-0.4153h1-1.1057h3-

		  1.6614h3, 	 (33) 

 

log-likelihood = 307.565, chi-square = 125.923, 
 
df = 23 


Goodness-of-Fit 


	 Using these results, the competing 
 
models using the likelihood-ratio statistics as 
 
described in section 2.2 were tested in order to 
 
determine the goodness-of-fit. To perform the 
 
tests, the saturated model in (30) was tested 
 
against the main factors model in (31), and 
 
then the main factors model was tested against 
 
its nested counterparts. The results of the chi-
 
square tests, performed with α = 0.05, are as 
 
follows:

	 The main factors model in (31) compared 
 
with the saturated model (with all the 
 
interactions) in (30) is an adequate fit model. 
 
The model in (31) has an adequate fit 
 
compared with all the models. The main 
 
factors of the welfare model in (33) compared 
 
with all the models in (31). The model in (33) 
 
has an adequate fit compared with the welfare 
 
model. Thus, it was decided to choose the 
 
main factors model in (33) as the adequate 
 
model for this data set. 

	 The main effects model is 

 

log(λ)	 =	 β0+β1x1+β2x2+β3x3+β4x4

log(λ)	 = 3.2908-0.4153h1-1.105h2-1.6614h3	(34) 
 

	 Tables 2 and 3 show that the parameter 
estimates of hospital services are significant at 
the 5% level. The results indicate that better 

predictions of health services can be made. As 
for the hospital services class, the categories 
are REF, RCR, OBS, and IN. The marginal 
effects are computed as described in Section 
2.3. The marginal effect for the first factor, the 
REF group, is calculated as 1= exp( 1) = 
 
0.66014. This means, the target population 
 
of the REF group is 0.66014 times. The
 
marginal effect for the second factor, the RCR
 
group, is calculated as 2= exp( 2) = 0.33098. 
 
This means the target population of the RCR 
 
group is 0.33098 times. The marginal effect 
for the third factor, the OBS, is calculated as 
 

3= exp ( 3) = 0.18987. This means the target 
 
population of the OBS group is 0.18987 times. 
 
The marginal effect for the fourth factor, 
 
the IN group, is calculated as 4= exp( 4) = 1. 
 
This means the target population of the IN 
 
group is 1 times.


Conclusions 

This study attempted to analyze the actual 
 
operations of a hospital and proposed 
 
modifications in the system to reduce waiting 
 
times for the patients, which should lead to 
 
an improved view of the quality of service 
 
provided. 

	 As a result, significant levels of causal 
 
variables are not expected to be identical for 
 
each model. The model compares the average 
 
waiting time (t) and hospital services (h). A 
 
chi-square test relation log-linear model and 
 
risk rate model were also computed.  


Saturated log-linear model:  


	 The saturated log-linear model yields  

 

log(λ)	 =	-14.8949+16.2841h1-0.6423h2 -

		  1.1326h3+16.1394t1+18.406t2+

		  18.8536t3+17.6167t4+18.10t5+

		  18.2963t6-32h1t1 -16h2t1-0.0365h3t1-

		  32h1t2-0.0718h2t2-0.282 h3t2-

		  15.9804h1t3-0.5691h2t3-0.4642h3t3-

		  32h1t4-16h3t4-16h1t5+32h1t6-16h2t6-

		  16h3t6, 		  (1) 

log-likelihood = 383.3958, df = 26 
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	 The main effects model of factors of the 
 
hospital services (h) and waiting time (t) 
 
yields 

 

log(λ)	 =	0.9728+0.04h1-0.962h2-1.559h3-

		  0.0957t1+ + 2.588t2+2.9627t3+

		  1.6526t4+2.5138t5+2.4172t6, 	 (2) 

 

log-likelihood = 375.2952, chi-square = 10.857, 
 
df = 17 
 

	 The main effects model of factor of 
 
waiting time (t) yields 

 

log(λ)	 =	0.05539-0.1605t1+2.481t2+2.7188t3+

		  1.2t4 +12.4825t5+2.8036t6,   	 (3) 

 

log-likelihood = 341.413, Chi-square = 80.413, 
 
df = 20 

 

	 The main effects model of the factor of 
 
hospital services (h) yields 

 

log(λ)	 =	3.2908-0.4153h1-1.1057h2-1.6614h3, 

						      (4) 
 

log-likelihood = 307.565, chi-square = 
 
125.923, df = 23 

 


	 Using these results, the competing models 
 
were tested using the likelihood ratio statistics 
 
as described in order to determine the  goodness-
 
of- fit. The results of the chi-square tests, 
 
performed with α = 0.05, are as follows: 

	 The main effects model of hospital 
 
services (h):  

 

log(λ)	 =	3.2908-0.4153h1-1.105h2-1.6614h3


						      (5)



	 It was found that the IN category has a 
 
higher rate of increase in the average waiting 
 
time. The marginal effect ( k) is a basis
 
function that can be used in the risk rate 
 
analysis for flexibility. In this paper, an easily 
 
implemented estimation procedure for the 
 
coefficients of hospital services in the queuing 
 
system has been described. The estimation 
 
approach is based on using a series of prediction 
 
probabilities. Furthermore, the methodology 
 
for determining the prediction probabilities 
 
from the waiting time model is developed. 
 
Finally, testing for statistical significance was 
 
carried out and the risk rate function was 
 
found to be increasing.


Table 2.	 Test goodness-of-fit model of hospital services



Test 
 G2 
  df 


(31) vs (30) 
 -2[(375.2952)-(383.3958)]=16.2012 
   9 

(32) vs (31) 
 -2[(341.4130)-(375.2952)]=67.7644  
   3 


(33) vs (31)
 -2[(307.5654)-(375.2952)]=135.4596 
   3   


Table 3. 	 Mean marginal effect of hospital services 



Variable 
 Marginal effect


Referred (REF)	 (x1) 
 e-0.4153 = 0.66014

Recurring (RCR) 	 (x2) 
 e-1.1057 = 0.33098


Observation (OBS)	 (x3)  
 e-1.6614 = 0.18987


Inpatient (IN)	 (x4)  
 e0 = 1 
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