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Abstract 

This paper suggests that log-linear analysis can be used to predict the expected number of patients   
in hospital services. A log-linear risk rate model has been developed to analyze the time series of   
count data. In finding a risk rate model, parameters are estimated and goodness-of-fit is utilized to   
carefully extract the best model to fit the count data. The marginal effect is the basis function which   
can be used in the risk Rate analysis for flexibility. This study attempted to analyze the actual   
operations of a hospital and proposed modifications in the system to reduce waiting times for the   
patients, which should lead to an improved view of the quality of services provided. To develop a   
risk Rate model for the above situation, it is necessary to define a model for the expected number of   
patients for hospital services cases. Here, 2 underlying variables are of interest, “waiting time” and   
“hospital services”. “Waiting time” has been categorized into 7 groups. The variable “hospital   
services” contains 4 categories: Inpatient (IN), Referred (REF), Recurring (RCR), and Observation   
(OBS). As a result, significant levels of causal variables are not expected to be identical for each   
model. It was found that the IN category has a higher rate of increase in the average waiting time.   
The marginal allows better predictions of hospital services and rehabilitation decision making. 
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Introduction 
In the categorical data analysis literature   
(Heien et al., 2004), the survival models and/  
or the risk rate models are treated differently   
from standard logit models. In general, these   
models are termed as rate models or risk rate   
models. In its simplest form, a rate is defined   
as the number of individuals or observations   
possessing a particular characteristic divided   
by the total amount of exposure to the risk of   
having such a characteristic. The risk rate   
models can easily be connected to the standard   

Poisson models (Powers and Xie, 2000). Then   
the Poisson models are directly related to the   
exponential Models by making conversion of   
rates per unit interval with the waiting time   
until the first occurrence. Here w a risk rate   
model is used to determine the likelihood of   
the demand for hospital services in a queuing   
system in order to identify factors associated   
with increased health care utilization,   
particularly those factors related to hospital   
services. This is a difficult task for several   
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reasons.  
 The Admissions Department consists   
of 4 major areas: front desk, registration desk,   
waiting area, and financial consulting area   
(within the Business Department). When a   
patient enters the admissions area, they are   
asked by the front desk clerk to provide his or   
her name and the reason for the visit. The   
clerk also clarifies if the patient was pre-  
registered for this service or not. If the answer   
is yes, the clerk gets the patient’s documentation   
ready for the the admissions representative.   
Then the patient receives an assigned number   
and is asked to wait in the waiting area for the   
admissions representative to call the number.   
The admissions representative determines if   
the patient has ever received services at the   
hospital and, if so, pulls up the patient’s   
data from Meditech and verifies the patient’s   
personal information. If the patient is visiting   
the hospital for the first time, an admissions   
clerk creates the patient’s profile in the hospital’s   
information database system.  
 Law and Kelton (2001) proposed an   
algorithm of a successful computer simulation   
study. This algorithm includes the following   
key steps: 1) Problem formulation, 2) Data   
collection and the conceptual model design,  
3) The validation of the model, 4) The   
constructions of the computer representation   
of the model, 5) The verification of the model,  
6) The design of experiments needed to   
address theproblem, 7) Production runs using  
the computer model, 8) The statistical analysis   
of the data obtained from the production runs,   
and 9) The interpretation of the results.  
 First, even in the case of constant demand   
levels over the day, statistical fluctuations in   
individual patient waiting times and the   
variability in the time needed by a provider to   
service patients can create long delays even   
when overall average steady state capacity is   
greater than average demand. Second, the   
magnitude of delays is a log-linear function  
of the demand for hospital services and is thus   
impossible to predict without the use of a   
queueing model (Green and Nguyen, 2001).  
  

Methodology of Risk Rate Model  

Risk Rate Model Analysis   

 Let Yi be the number of patients of an   
event of interest for the ith subject and denote   
the independent variables by xi, i = 1,…,n.   
We assume that Yi follows a Poisson 
distribution, Yi ~ Poisson (λi), with density   

 f (yi   xi) =  λi
-λi e-λi 

yi ! 
 (1) 

 
 Let t1 , t2,…, tn be the waiting times of    
the nth individual, and assume the distribution   
function to be F(t) = Pr(T < t) with the   
probability density function f(t). The risk rate   
is denoted by μ(t), and can be viewed as the  
instantaneous probability of an event in the   
interval [t, t+Δt], given the event has not   
occurred before time t. Formally, the risk rate   
(Manski and McFadden, 1981), is defined by   
the following limit:  

 
μ(t) =  Pr[t < T < t + Δt | T < t] lim 1 (2) Δt Δt ➝ o  

 
 The density of an exponential distribution   
with parameter μ is given by 
 
f(t) =  μe-μt, t > 0. (3) 
 
 The distribution function equal 
 
F(t) = 1 _μe-μt, t > 0.  (4) 
 
 For this distribution, we have  
 

(5) 1 1 
 μ  μ2 E(x) = , σ2 (x) = , 

 
  
 The probability of an event not  
occurring up to time t is given by the function  
  
P(t) = Pr[T > t] = 1 F(t)e-μt (6) 
  
 Assuming the waiting times are   
exponentially distributed, the equation (6)   
may be written as:  
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 P(t) = e(-μti) (7) 
 
 The risk rate is defined by the ratio   
  

(8) μ(ti) = μ = = = f(t) f(t) μe-μt 

P(t) 1-F(t) e-μt  
 
 The general risk rate model may be  
written as: 

μ(x   βi) = e(β0+ β1x1+....+βn+ βnxn)T 
i   (9) 

 
where xT = [1, x1, x2, …, xn], and β0

,, β1,…,  
βn are unknown constants as the rate is   
determined by several regressors. This   
exponential risk rate model can be estimated   
using a risk rate models for counts. In a time   
interval of length t, the probability of y events   
is given by:    

Pr(y | μ, t) = (μt)y e(-μt) 

y! 
 (10) 

 
 
 Because the mean number of events   
in the time interval t is λ = μt, for the ith   

individual, the expected number of events in   
the time interval ti is 
  
 λi = μi ti  ,  (11) 

or   
 

T 
i λi = ti e (x     βi)  (12) 

  
 Taking the log of the Poisson means   
results in the log-linear regression model:   

 T 
i e (x     βi) λi 

ti 
=  (13) 

 
or 

 log βi = (     ) λi 
ti 

T 
i x  (14) 

 
 βi. T 

i namely, log(λi)–log(ti) = x  (15) 
  

Goodness-of-Fit  

 The log-likelihood function of the process   
cannot be the only index of fit because the   

likelihood ratio statistics are dependent on the   
size of the sample. Different values of the log-  
likelihood function result when competing   
models, namely models that differ in the   
number of parameters, are fitted to the same   
data. The number of parameters, in general,   
should be more than 1, and significantly less   
than the number of observations. To assess the   
model goodness-of-fit, we need to know how   
1 model fits relative to another. An indicator   
of a model goodness-of-fit that measures the   
extent to which the current model deviates   
from a more generalized model is given by   
the likelihood ratio statistics:  

G2 = –2log = –2(log Lc – log Lf), Lc 

Lf 
 (16) 

 
 
where log Lc is the log-likelihood of the   
current model, and Lf logis the log-likelihood   
of the more generalized model. The likelihood   
ratio statistics has a chi-square distribution   
with K2 – K1 degrees of freedom, where K2  

and K1 denote the number of parameters in the   
more generalized model and the current  
model, respectively (McCullagh and Nelder,   
1989). 

Marginal Effects  

 For risk rate models, the marginal   
effects can be thought of as the relative risk   
associated with a certain variable. The overall   
mean effect in (12) is  
  
  λ(xT β) = e (xT β)  (17) 
 
 Then, the marginal effect due to the kth  

factor can be considered as 
  
   (18) 
  
where  is kth the mean of the factor values in 
the sample and  is the vector of the   
means of the factor values in the sample. An   
estimate of θk  can be computed as 
 
 θk = e(β)   (19) 
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Model Results  

Estimation Results and Interpretation  

 The following data was obtained from   
Lop Buri Hospital in Thailand. The Admissions   
Department is one of the most highly congested   
hospital services, and faces a great deal of   
pressure, compared with other components of   
the health care system. An admissions clerk   
determines the patient’s type (Inpatient (IN),   
Referred (REF), Recurring (RCR), and   
Observation (OBS)) and creates a new account   
using the hospital’s informational system.   
Admissions serve most outpatient and inpatient   
types, with an exception for all REF and some   
RCR, OBS, and IN. It is essential to assess the   
relationship between hospital services and the   
average waiting time in a queuing system.   
Using SAS and MATLAB to perform the   
iterations necessary for the maximum   
likelihood method, the following results have   
been obtained.  
 To develop a risk rate model for the   
above situation (Horvath, 1999), it is necessary   
to define a model for the expected number   
of patients for hospital services cases, E(Yij),   
in terms of the variables of interest. Here, 2   
underlying variables are of interest, “waiting   
time” and “hospital services”. Since “waiting   
time” has been categorized into 7 groups, 6   

dummy variables are used to index them. The   
variable “hospital services”, which contains 4   
categories, requires only 3 dummy variables.   
Thus, 1 possible model for the expected   
number of patients for hospital services cases   
in the (i,j)th group can be written as:  
  

 
  
 Using this model, the risks λIj in terms   
of the parameters αi and β can be written to   
obtain  
  
 log λi0 = α + αI and log λi1 = α +αI +β, 
since log λi1 - log λi0 = (α + αI + β - α - αI)  
 log λi1 - log λi0 = θk, so θk = e(β) 

  
 The data set in Table 1 was used to 
estimate the average waiting time and hospital   
services for medical and health services on the   
risk rate analysis with the hospital services   
variables characterized by the marginal effect   
(θk = e(β)). Two separate models were specified   
and estimated for each state since the various   
causal factors vary over time; as a result,   
significant levels of causal variables are not   
expected to be identical for each model. The   
model is to compare the average waiting time   
(t) and hospital services (h). A chi-square test   

Table 1. Contingency table of the hospital services   

Average waiting time 

Hospital Services 

Total REF  
(h1)  

RCR  
(h2)   

OBS  
(h3)  

IN  
(h4)  

1-20 (t1)  1 3 4 
21-40 (t2)  6 7 33 46 

41-60 (t3)  10 12 9 31 62 

61-80  (t4)  8 1 9 

81-100       (t5)  33 7 5  45 

101-120     (t6)  30 30 

> 120         (t7)  4  4 

Total 47  33  22  98  200 
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relation log-linear model and risk rate model   
were also computed:  
  
Saturated log-linear model:   
  
 log λ = μ+μiti+ μjhj+μijtihj  (20)  
  
Risk rate model:  
  
 log λi = β0+β1x1i+β2x2i+ 
    β3x3ij i=1,2,...,n;j=1,2,...,m (21) 
  
where x1i, x2i, x3ij are dummy variables and the   
interaction variable x3ij = x1i * x2j is and the  
variable x1 corresponds to the REF cases, x2   

corresponds to the RCR cases, x3 corresponds   
to the OBS cases, x4 corresponds to the IN   
cases, x5 corresponds to the group with   
an average waiting time of 1-20 min, x6   
corresponds to the group with an average   
waiting time of 21-40 min, x7 corresponds to 
the group with an average waiting time of  
41-60 min, x8 corresponds to the group with   
an average waiting time of 61-80 min, x9   
corresponds to the group of with an average   
waiting time of 81-100 min, x10 corresponds   
to the group with an average waiting time of   
101-120 min, x11 corresponds to the group   
with an average waiting time > 120 min, and   
x12 = x1 x5, x13 = x2 x5, x14 = x3 x5,…, x39 = x4 x11.  
 A saturated log-linear model rate   
was defined. The deviations between the   
maximized log-likelihood from each model   
were used to perform a series of chi-square   
tests in order to ascertain which model gives   
the best fit.   
 So, the saturated log-linear model is  

 (22) 
  
 The main effects model of factors t and   
h is  

 
(23) 

  
 The main effects model of factor t is  

 (24) 
 

 The main effects model of factor h is  

 (25) 
  
Risk rate model:  
 So, the saturated log-linear model is  

 
(26) 

  
 The main effects model of factors t and   
h is  

 (27) 

 
 The main effects model of factor t is  

 (28) 
 
 The main effects model of factor h is  

 (29) 
 
 
The following results were obtained.  
 The saturated log-linear model yields   
  
log(λ) = -14.8949+16.2841h1-0.6423h2 - 
  1.1326h3+16.1394t1+18.406t2+ 
  18.8536t3+17.6167t4+18.10t5+ 
  18.2963t6-32h1t1-16h2t1- 
  0.0365h3t1-32h1t2-0.0718h2t2- 
  0.282h3t2-15.9804h1t3-0.5691h2t3- 
  0.4642h3t3-32h1t4-16h3t4-16h1t5+ 
  32h1t6-16h2t6-16h3t6, (30)  
  
log-likelihood = 383.3958,  df = 26  
  
 The main effects model of factors h   
and t yields  
 
log(λ) = 0.9728+0.04h1-0.962h2-1.559h3-
  0.0957t1+2.588t2+2.9627t3+
  1.6526t4+2.5138t5+2.4172t5, (31) 
  
log-likelihood = 375.2952, chi-square =   
10.857, df = 17  
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 The main effects model of factor t 
yields  
  
log(λ) = 0.05539-0.1605t1+2.481t2+2.7188t3 

  +1.2t4+12.4825t5+2.8036t6,   (32)  
 
log-likelihood = 341.413, chi-square = 80.413,   
df = 20  
  
 The main effects model of factor h   
yields  
  
log(λ)  =  3.2908-0.4153h1-1.1057h3- 
  1.6614h3,  (33)  
  
log-likelihood = 307.565, chi-square = 125.923,   
df = 23  

Goodness-of-Fit  

 Using these results, the competing   
models using the likelihood-ratio statistics as   
described in section 2.2 were tested in order to   
determine the goodness-of-fit. To perform the   
tests, the saturated model in (30) was tested   
against the main factors model in (31), and   
then the main factors model was tested against   
its nested counterparts. The results of the chi-  
square tests, performed with α = 0.05, are as   
follows: 
 The main factors model in (31) compared   
with the saturated model (with all the   
interactions) in (30) is an adequate fit model.   
The model in (31) has an adequate fit   
compared with all the models. The main   
factors of the welfare model in (33) compared   
with all the models in (31). The model in (33)   
has an adequate fit compared with the welfare   
model. Thus, it was decided to choose the   
main factors model in (33) as the adequate   
model for this data set.  
 The main effects model is  
  
log(λ) = β0+β1x1+β2x2+β3x3+β4x4

log(λ) = 3.2908-0.4153h1-1.105h2-1.6614h3 (34) 
  
 Tables 2 and 3 show that the parameter 
estimates of hospital services are significant at 
the 5% level. The results indicate that better 

predictions of health services can be made. As 
for the hospital services class, the categories 
are REF, RCR, OBS, and IN. The marginal 
effects are computed as described in Section 
2.3. The marginal effect for the first factor, the 
REF group, is calculated as 1= exp( 1) =   
0.66014. This means, the target population   
of the REF group is 0.66014 times. The  
marginal effect for the second factor, the RCR  
group, is calculated as 2= exp( 2) = 0.33098.   
This means the target population of the RCR   
group is 0.33098 times. The marginal effect 
for the third factor, the OBS, is calculated as   

3= exp ( 3) = 0.18987. This means the target   
population of the OBS group is 0.18987 times.   
The marginal effect for the fourth factor,   
the IN group, is calculated as 4= exp( 4) = 1.   
This means the target population of the IN   
group is 1 times. 

Conclusions  
This study attempted to analyze the actual   
operations of a hospital and proposed   
modifications in the system to reduce waiting   
times for the patients, which should lead to   
an improved view of the quality of service   
provided.  
 As a result, significant levels of causal   
variables are not expected to be identical for   
each model. The model compares the average   
waiting time (t) and hospital services (h). A   
chi-square test relation log-linear model and   
risk rate model were also computed.   

Saturated log-linear model:   

 The saturated log-linear model yields   
  
log(λ) = -14.8949+16.2841h1-0.6423h2 - 
  1.1326h3+16.1394t1+18.406t2+ 
  18.8536t3+17.6167t4+18.10t5+ 
  18.2963t6-32h1t1 -16h2t1-0.0365h3t1- 
  32h1t2-0.0718h2t2-0.282 h3t2- 
  15.9804h1t3-0.5691h2t3-0.4642h3t3- 
  32h1t4-16h3t4-16h1t5+32h1t6-16h2t6- 
  16h3t6,    (1)  
log-likelihood = 383.3958, df = 26  
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 The main effects model of factors of the   
hospital services (h) and waiting time (t)   
yields  
  
log(λ) = 0.9728+0.04h1-0.962h2-1.559h3- 
  0.0957t1+ + 2.588t2+2.9627t3+ 
  1.6526t4+2.5138t5+2.4172t6,  (2)  
  
log-likelihood = 375.2952, chi-square = 10.857,   
df = 17    
 The main effects model of factor of   
waiting time (t) yields  
  
log(λ) = 0.05539-0.1605t1+2.481t2+2.7188t3+ 
  1.2t4 +12.4825t5+2.8036t6,    (3)  
  
log-likelihood = 341.413, Chi-square = 80.413,   
df = 20  
  
 The main effects model of the factor of   
hospital services (h) yields  
  
log(λ) = 3.2908-0.4153h1-1.1057h2-1.6614h3,  
      (4)    
log-likelihood = 307.565, chi-square =   
125.923, df = 23  
  

 Using these results, the competing models   
were tested using the likelihood ratio statistics   
as described in order to determine the  goodness-  
of- fit. The results of the chi-square tests,   
performed with α = 0.05, are as follows:  
 The main effects model of hospital   
services (h):   
  
log(λ) = 3.2908-0.4153h1-1.105h2-1.6614h3 

      (5) 
 
 It was found that the IN category has a   
higher rate of increase in the average waiting   
time. The marginal effect ( k) is a basis  
function that can be used in the risk rate   
analysis for flexibility. In this paper, an easily   
implemented estimation procedure for the   
coefficients of hospital services in the queuing   
system has been described. The estimation   
approach is based on using a series of prediction   
probabilities. Furthermore, the methodology   
for determining the prediction probabilities   
from the waiting time model is developed.   
Finally, testing for statistical significance was   
carried out and the risk rate function was   
found to be increasing. 

Table 2. Test goodness-of-fit model of hospital services  

Test  G2   df  

(31) vs (30)  -2[(375.2952)-(383.3958)]=16.2012    9  
(32) vs (31)  -2[(341.4130)-(375.2952)]=67.7644     3  

(33) vs (31) -2[(307.5654)-(375.2952)]=135.4596    3    

Table 3.  Mean marginal effect of hospital services   

Variable  Marginal effect 

Referred (REF) (x1)  e-0.4153 = 0.66014 
Recurring (RCR)  (x2)  e-1.1057 = 0.33098 

Observation (OBS) (x3)   e-1.6614 = 0.18987 

Inpatient (IN) (x4)   e0 = 1  
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