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Abstract 

The purpose of the study is to develop spatial models for surveillance of epidemics of dengue fever   
and dengue haemorrhagic fever (DF/DHF). Seasonal data of each sub-district in Ubon Ratchathani   
Province of Thailand related to the epidemics including rain, temperature, House Index (HI),   
Container Index (CI), and Breteau Index (BI) during 2001-2005 were used for analysis through   
mathematical equations. Epidemic probabilities related to temperature (Pt), rain (Pr), and larval  
index (I) were analyzed seasonally. These parameters were used as dependent variables in the   
regression analysis for the case prediction (y). The predicted cases were further transformed to be   
probabilities of occurrence (P) by logistic regression. The Delphi technique was employed to classify   
the probability of occurrences at 3 levels of risk: high, moderate, and low. An error matrix was used   
to verify the levels of predicted risk by spatially comparing them with data of the actual risk   
classified by the conventional method. From 18 seasons in those years, it revealed that 60%overall   
accuracy was achieved. The model outputs can be used as basic data for short-term and long-term   
planning in resources management and surveillance network operation. 
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Introduction 

Dengue fever is a long known disease with  
high epidemic potential. The global burden of   
dengue has grown dramatically in recent  
decades due to unprecedented population   
growth, rapid and unplanned urbanization in   
tropical Asian countries, improved transportation,   
and globalization with modern transportation   
and an increase in air travel (Ungchusak and   
Kunasol, 1988; Gubler, 1998). 

 In 1998, Thailand experienced an   
exceptionally intense epidemic of DHF with   
112,488 cases (23.3% increase from 1997)   
and 415 deaths (64.0% increase) (Chareonsook   
et al., 1999), which was the second largest   
epidemic outbreak of dengue since 1987.   
Epidemics occur with a periodicity of between   
2 and 4 years. These are of significant concern   
for the public health authorities. The trend of   
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dengue has been increasing, especially in   
2001 when there were 224.43 reported cases   
of dengue per 100000 of the population, the   
second highest rate during the past 40 years   
(1960-2001) (Barbazan et al., 2002). In 2005,  
the fatality ratio of dengue cases was 0.2%   
and the morbidity rate was 72.2 per 100,000   
of the population, respectively, which was an   
increase of 18.1% when compared with the   
previous year. 
 Annually recorded epidemics in Ubon   
Ratchathani province, where the disease has   
been endemic since 1987, show a cumulative   
total of 35069 cases and 155 deaths (UOPH,   
2006) as displayed in Figure 1. During the   
1998 outbreak of DF/DHF, about 35% mortality   
was reported among children admitted to   
hospital, while a total of 4905 cases were   
hospitalized and 25 deaths recorded (UOPH,   
2006). This epidemic peaked in August when   
an Aedes aegypti larval House Index (HI) of   
30.50% was recorded. Since then, regular   
monitoring of the larval density of Aedes   
aegypti and dengue cases has been of interest   
in studying the trends and preventing any   
recurrence of an outbreak. In 2003, there were   
3138 DF/DHF cases reported. The morbidity   
rate was observed at 173.82 per 100000 people.   
The DF/DHF incidences were recorded at the   
village level. The highest number of dengue   
incidences was recorded in the countryside   
with a morbidity rate > 50 per 100000   
people. It was found that the highest number   
of cases occurred during March and August of   

2001 to 2003. This indicated the seasonal   
dependence in the occurrence of DF/DHF   
cases, generally starting just before the rainy   
season and continuing until the end of the   
season as statistically recorded by Ubon   
Ratchathani Provincal Office of Public Health   
(UOPH) during 2000-2003. 
 To spatially monitor trends of dengue   
transmission for effective prevention and   
control, the objective of the study is to develop   
surveillance models of DF/DHF epidemics in   
Ubon Ratchathani. The developed models   
employed data on the larval index, climatic   
factors, and disease occurrence. 

Materials and Methods 
Study Area 

 Ubon Ratchathani province is located in  
Northeastern Thailand. It covers an area of   
16112.61 km2. The province comprises 25   
districts, 219 sub-districts and 2469 villages.   
The province had a population of 1803754 at   
a density of 111.9/km2 in 2006. The climate of  
this area during 1961-2001 had an average   
high temperature of 32.45°C and an average   
low temperature of 21.65°C. The rainy season   
in Ubon Ratchathani normally occurs from   
May to September. The average yearly rainfall   
was 1598.75 mm. 

Spatial DF/DHF Prediction Models For-  
mulation  

 To obtain surveillance models of DF/  

Figure 1. The number of DF/DHF cases, morbidity rate, and mean rainfall in Ubon Ratchathani,   
 Thailand, (1986-2006) 



205Suranaree J. Sci. Technol. Vol. 19 No. 3; July - September 2013 

DHF epidemics, the flow of a series of models   
for spatial DF/DHF prediction was formulated   
as displayed in Figure 2. Effective planning   
and implementation of the prevention and   
control of DF/DHF epidemics can be performed   
when the levels of risk for districts are known   
in advance. Therefore, the final output of the   
series of models used in the study was the   
rating of risk areas as low, moderate, and high,   
which were converted from the probability of   
risk areas using the Delphi technique. The   
performance of the logistic regression model   
conveyed the probability of risk areas from   
the predicted DF/DHF cases. The epidemic   

cases presented in the districts were influenced   
by the larval index and probabilities related to   
rainfall and temperature of the given districts.   
Both probabilities exhibit the likeliness of   
mosquito bites. With known sample cases, the   
epidemic cases and those variables had a   
linear regression relationship that allowed   
cases to be predicted while the larval index,   
temperature, and rainfall were recorded   
monthly and presented in terms of epidemic   
seasons which were classified to be pre-high   
incidence (January-April), high incidence   
(May-August), and post- high incidence   
(September-December). 

Figure 2.  Flow diagram of DF/DHF spatial epidemic models 
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Prediction Model of DF/DHF Epidemic 

 Logistic regression is a part of a category   
of statistical models called generalized linear   
models (McCullagh, 1980). Logistic regression   
allows one to predict a discrete outcome, such   
as groups of membership from a set of   
variables that may be continuous (Kang, 1998).   
To apply it to DF/DHF epidemic prediction,   
the result of the analysis was the probability   
of predicted DF/DHF cases considered   
from epidemic–relevant variables-rainfall,   
temperature, and larval index, which are   
continuous spatially and temporally. The   
probability prediction model of a DF/DHF   
epidemic was performed by logistic regression   
analysis as expressed in Equation 1:  

 P =  (1) 

 
where P is the epidemic probability of DF/  
DHF, and y is the predicted number of DF/  
DHF cases (from Equation 2). 

Risk Level Classification using the Delphi 
Technique 

 This Delphi technique permits obtaining   
a consensus from a group of experts regarding   
a certain phenomenon (Goodman, 1987;   
Hasson et al., 2000). The goal of this research   
in applying it was to reach a convergence of   
opinions to set the values, between 0 to 1, of   
the probability of predicted DF/DHF cases   
to be at 3 levels of risk: high, moderate, and low   
that they were comparable to the classification   
results using the conventional method. 

Multilinear Regression Model of DF/DHF 
Incidence  

 The multilinear regression represented   
the independent contributions of each independent   
variable to the prediction of the dependent   
variable (Abraham and Ledolter, 1983; Focks   
et al., 1995; Alpana and Haja, 2001; Bohra,   
2001). In the present study, climatic and   
surveillance independent variables such as   
rainfall, temperature, House Index (HI),   
Container Index (CI), and Breteau Index (BI)  

were related to the dengue cases in Ubon   
Ratchathani province. The model shows the   
relationship of the DF/DHF incidence and   
climatic factors including the larval index as   
expressed in Equation 2. 
 
 y = a0+b1(I)+b2(Pr)+b3(Pr)  (2) 
 
where y is the predicted number of DF/DHF   
cases, I is the larval index which is the   
weighted linear combination of HI, CI, and BI   
(Equation 3), Pr is the probability of the  
rainfall effect, Pt is the probability of the   
temperature effect, ao is the intercept of the   
y-axis, and b1, b2, and b3 are the coefficients   
for the larval index, rainfall, and temperature,   
respectively. 
 Dengue infection in Ubon Ratchathani   
province has been reported as a local endemic   
every year. The report showed that the   
maximum DF/DHF transmission started in the 
period of high rainfall (May-September) of  
each year studied. There was a positive   
correlation between the number of dengue   
cases and rainfall (Strickman and Kittayapong,   
2002). This indicated the seasonal dependence   
in occurrence of DF/DHF cases, which   
generally starts just before the rainy season   
and continues until the end of the rainy season   
(Kittayapong and Strickman, 1993a). 

Surveillance Data 

 The larval index (HI, CI, and BI) of   
Aedes aegypti density fluctuates according to   
seasonal climatic changes (Eamchan et al.,   
1989; Kittayapong and Strickman, 1993b; Ali   
et al., 2003). It rises in seasons with higher   
rainfall (Muttitanon et al., 2004) which leads   
to an increasing number of potential breeding   
sites. 
 Spatially varying secondary data on HI,   
CI, and BI at the sub-district level reported by   
the UOPH were calculated each season. They   
were normalized to be the larval index (I) for   
each sub-district using the weighted linear   
combination method (Banai-Kashani, 1989;   
Saaty, 1997; Malczewski, 2000) as expressed   
in Equation 3. 
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I = 
w(HI)(xHI)w(CI) (xCI)+w(BI)(xBI) 

(w(CI)+w(HI)+w(BI)) 
 

(3) 

where I is the larval index, xHI, xCI and xBI are   
the seasonal indexes of HI, CI, and BI, and wHI,   
wCI, and wBI are the weights of Aedes aegypti   
density for HI, CI, and BI, respectively. 
 The weights of these indexes can be   
obtained depending on the varying HI, CI, and   
BI as shown in Table 1 (Brown, 1974; 1977;   
Day and Curtis, 1989; Jetten and Focks,   
1997). The higher the index means the higher   
the weight of transmission. 

DF/DHF Data 

 In Figure 1, the DF/DHF cases of the   
province showed an increasing trend of   
continuous occurrence of DF/DHF from 2000   
to 2003. Data on a number of cases were   
recorded seasonally for each district and   
sub–district by the UOPH. They were used as   
sample cases for Equation 2 so that the model   
could be set up for prediction. 

Influence Factors 

 Key major factors for analysis of the   
number of DF/DHF cases were rainfall and   
temperature (Jetten and Focks, 1997). 
 Rainfall is the key to the direct increase 
of Aedes aegypti density in each period. It is  

related to the high abundance of mosquitoes   
(Day and Curtis, 1989) and most often leads   
to maximum feeding and outbreaks (Gratz,   
1993; Patz et al., 1996; Martens et al., 1997;   
Githeko et al., 2000). Temperature plays an  
important role in the life cycle of mosquitoes   
and in the replication and transmission of   
diseases having an effect on matters such as   
population size, maturation period, feeding   
characteristics, and survival rate of Aedes   
mosquitoes (Watts et al., 1987; Jetten and Focks,   
1997; WHO, 1997; Gratz, 1999; Focks, 2003;   
Nakhapakorn, 2005). 
 Rainfall and temperature data from 19   
stations in the province were interpolated and   
averaged to represent each sub-district in each   
season during 2001-2005. Both data were   
further normalized to be in the forms of   
probability as follows: 

 Probability Related to Rainfall (Pr) 

 The probability related to the predicted   
number of DF/DHF cases based on rainfall  
data can be achieved from the below   
expression. 
 
 Pr = (Probability of bite)[P(trans)]  (4) 
 
 According to the researches of Day and   
Curtis (1989) and Githeko et al. (2000), the  

Table 1. Weight of Aedes aegypti density for each criterion index is displayed to show the priority of   
 transmission  

Weight 
of transmission 

Container index  
(CI) 

House index 
(HI) 

Breteau index 
(BI) 

1 0-2.99 0-3.99 0-4.99 
2 3-5.99 4-7.99 5-9.99 
3 6-9.99 8-17.99 10-19.99 

4 10-14.99 18-28.99 20-34.99 

5 15-20.99 29-37.99 35-49.99 

6 21-27.99 38-49.99 50-74.99 

7 28-31.99 50-59.99 75-99.99 

8 32-40.99 60-76.99 100-199.99 

9 > 41 > 71 > 200 
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probability of bite is 0.59 in pre-high incidence   
(January to April), 0.68 in high incidence (May   
to August) and 0.42 in post-high incidence   
(September to December). 
 P(trans) is obtained using the Mamdani   
model (Borke and Fisher, 1998). It is the   
maximum of the product of a rainy day and   
amount of rainfall as expressed in Equation 5. 
 
P(trans)  = max  x1 y1,x2 y2, x3 y3,.... xn yn  (5) 
 
where P(trans) is the probability related to  
the transmission of Aedes aegypti. n is a   
numerical of the month, x is the rainy days in   
a season, and y is the amount of seasonal   
rainfall.  

 Probability Related to Temperature (Pt) 

 Probability related to temperature (Pt)   
can be estimated using Equation 6.  
 
 Pt  = (Probability of bite)[(wt)(xt)]  (6) 
 
where wt is a weight of temperature in each   
season (Koopman et al., 1991; Boonmaging,   
2004) as listed in Table 2, and xt is an average   
temperature in each season. The same set of   
probability of bite from Equation 4 was   
applied to this relationship. Pt was later   
normalized to be between 0 and 1. 

Models Verification 

 This procedure determines how well the   
risk areas classified by the model fit to the  
conventional classification. Error matrix was   
applied for this purpose.  

 Risk Level Classification by Conven-  
 tional Method 

 The conventional classification method   
of risk area based on the epidemic status or   
case availability in a different number of   
consecutive weeks is illustrated in Table 3 and   
the following descriptions: 
 Code area A: there are cases in every   
week within at least 4 consecutive weeks; B:   
there are cases in at least 2 weeks within 4   
consecutive weeks; C: within a week, there is   
a new case reoccurring in the area; D: there is   
a new case occurring in the area which has no   
case within the week before; E: there is a new   
case occurring in the area which has no case   
within 4 weeks before; F: there is a new case   
occurring in the area which has no case within   
6 months before. 

 Accuracy Assessment of Model Result   
 Using Error Matrix  

 The statistics of fit for various predicted   
results and conventional classification with   
the same period of time can be calculated using   
error matrix (Pumplin and Stump, 2001). The   
overall accuracy can be calculated according   
to the following equation: 
 

 Overall accuracy = 100 D 
( N )  (7) 

 
where D is the total number of sub-districts   
in all classes of risk areas (high, moderate,   
and low where the predicted results are   
consistent with the ones classed by the   
conventional method), and N is the total   

Table 2.  Weight of temperature  

Temperature 

January to April May to August September to December 

probability 
of bite wt 

probability 
of bite wt 

probability 
of bite wt 

>35oC, <28oC 0.59 1.5 0.68 1.5 0.42 1.5 

30oC 0.59 4.0 0.68 4.0 0.42 4.0 

28-29oC, 31-35oC 0.59 3.0 0.68 3.0 0.42 3.0 
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number of sub-districts in the error matrix. 
 For this study, the models are verified   
and acceptable if the accuracy is ≥ 60%, or   
moderate to strong agreement. 

Results and Discussion 

Multilinear Regression and Logistic   
Regression Models 

 The multilinear regression model was   
performed on 18 seasonal data sets of the   
years 2001-2005 and their average to evaluate   
the correlation among the DF/DHF incidence   
rate, climatic variables (probability related to   
temperature (Pt) and rainfall (Pr)), and larval   
index (I). The seasonal regression equations   
were derived as shown in Table 4. The most-  
fit equation is for the May-August season for 
which the coefficient of determination (R2) is   
0.72.  
 The correlation coefficients of the   
seasons fell in the range of 0.63-0.7 which   
was acceptable to be able to state that those   
variables had a high linear relationship.   
However, in the case where the input data   
covered more years, the cyclic pattern might   
be expected and the relationship should be   
reconsidered. 
 The spatial DF/DHF predictions were   
finally input through logistic regression   

analysis (Equation 1) and resulted in the   
seasonal epidemic probability or risk of DF/  
DHF of each sub–district for those years. To   
compare the risks resulting from the models   
with the ones from the conventional   
classification, they were classified into 3   
classes i.e. high, moderate, and low using   
Delphi’s technique. The result showed that the   
range of epidemic probability of the low,   
moderate, and high risks is 0.00-<0.40, 0.40-<  
0.70, and 0.70-1.00, respectively. 

Conventional and Predicted Risk Levels of 
Sub-districts 

 Risk areas of each sub–district resulting   
from the conventional classification and the   
predicted models of each season during 2001-  
2006 are displayed as maps in Figure 3. The  
risk trending resulting from both methods are   
displayed as a comparison graph for each risk  
level and each season in Figure 4. 
 For moderate and low risk areas, only   
the season of May to August shows obviously   
different trending from 2005 to 2006. The   
trending of the rest (seasons and years) is well   
consistent with each other. 
 According to Figure 5, the predicted  
moderate risk areas show an obviously smaller   
number than in the conventional one while for   
the high risk areas the predicted one shows a   

Table 4.  The seasonal multi linear regression equations  

Season Seasonal multi linear regression equation Correlation  
coefficient 

Coefficient of 
determination (R2) 

Jan to Apr y  = -15.87 + 2.66I - 0.125Pt - 0.01768Pr 0.69 0.70 

May to Aug y  = -49.41 + 7.73I - 0.273Pt - 0.00051Pr 0.70 0.72 

Sep to Dec y  = -14.77 + 2.21I + 0.008Pt - 0.0018Pr 0.63 0.65 

Table 3. Conventional classification of DF/DHF risk area  

Code area based on epidemic status 

A    B    C    D E F 

High risk area Moderate risk area Low risk area 

(A+B+C+D) (E) (F) 
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somewhat bigger number of areas in each   
season. When the high and moderate areas   
were grouped together as shown in Figure 4,  
it shows a higher correlation between the   
conventional and the predicted results, particularly   
in the second and the third seasons of the   
years. Not only are the numbers of risk areas   
of these 2 levels very close but also those areas   
(districts) are in the same set. It confirms the   
spatial precision of the prediction. Therefore,   
this can imply that the lower limit of epidemic   
probability of the high risk areas achieved   

from Delphi’s technique is so low that many   
conventionally moderate risk districts are   
switched to be predicted as high risk areas. 
 Considering the high risk areas, it is   
found that the number of risk areas in the first   
season have an influence in increasing the   
number in the second season which in turn did   
the same in the third season. Even though the   
number of risk areas in the second and the   
third seasons are almost the same, it shows a   
significant influence because the second   
season is the peak of the epidemic and normally   

Figure 3. Risk areas resulting from conventional classification and predicted models 
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there is a tendency to have more cases than in   
the third season. 
 The low risk areas of the conventional   
and the prediction models show little difference   
in terms of the number of areas. However, to   
confirm the precision of the spatial predictions,   
they fall into almost the same set of districts. 

Accuracy Assessment of the Predicted   
Model 

 The concluded accuracy assessment of   
the comparison of the risk areas between the   
conventional and predicted results of each   
season using the error matrix is expressed in   
Table 5. It shows that almost all the seasons  
during 2001-2005 have an overall accuracy   
above 60%. Only the accuracy of the last   
season in 2005 and the seasons in 2006 are   
lower, between 49.32-59.82%. This matter   
can be explained. According to the historical   
records of the UOPH, the epidemic circle will   
always occur in every third year. Plus there   
were constant increasing numbers of epidemic   
cases in Ubon Ratchathani during 2001-2003,   
and the UOPH therefore strengthened the   
control program in years 2005-2006. This   
resulted in reducing the intensity of epidemic   
cases in the areas and negatively affected the   
accuracy of the prediction results in the years   
as mentioned above. For example, in Dech   
Udom district the actual cases were reduced   
from 32 from January to April and 61 from   
May to August 2005 to be 13 and 23 for the   
same seasons in the year 2006. Without this   
strengthened control program, the prediction   
result should be more accurate. 

Conclusions and Recommendations 

The study offers spatial regression and logistic  
regression models for seasonally predicting 
the number of DF/DHF cases and the probability   
of risk in sub–districts of the Ubon Ratchathani   
Province of Thailand during 2001-2005. The   
larval index, temperature, and rainfall data   
analyzed in the regression model have revealed  
that the period of May-August is the most   
suitable season in Ubon Ratchathani Province   
for predicting the number of cases with a 0.72   

coefficient of determination. 
 The classified seasonal probability of  
risk of each sub-district resulting from logistic   
regression was spatially compared to the   
conventional classification using the error matrix.   

Figure 4. Graphs showing trends of high risk   
 area, moderate risk area, and low risk   
 area resulting from prediction models   
 and conventional classification of each  
 season in years 2001-2006 

Figure 5.  Comparison on the trending of the   
 number of high and moderate risk  
 areas between conventional and pre-  
 dicted results of each season during   
 2001-2006 
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This accuracy assessment has conclusively   
revealed that almost all seasons during 2001-  
2005 have an overall accuracy above 60%.   
The period of May-August provides the   
highest overall accuracy while the period of   
September-December provides the lowest.   
However, if the grouped high and moderate   
risk areas were considered, the correlation   
between the conventional and the predicted   
results was obviously higher. 
 The resulting seasonal risk map of   
DF/DHF for each sub–district is useful   
information for the UOPH in both the short   
and long terms to enable proper allocating of   
resources for epidemic prevention and control   
activities particularly with regard to the   
recurrence of the same risk level in the next   
season and the same season of the next year.   
For example, the sub-districts predicted to be   
high and moderate risk areas should be   
subject to the routine prevention and control   
program of the UOPH such as using smoke,   
the elimination of water holding containers,   
and warnings through public relations for   
cooperation in the prevention of mosquito   
breeding and protection from mosquito bites,   
etc. All details of activities have been set up   
clearly as a standard implementation guideline   
for public health officers. 
 It is important to maintain the current   
status of input data of the spatial models in   
order to detect early DF/DHF epidemics more   
accurately. Meanwhile, past activities should   
be systematically recorded in order that the   

trend and the cycle of epidemics can be   
effectively observed. 
 In fact, to study the DF/DHF epidemic   
effectively, other factors should be considered   
such as the immunity of people and serotype   
changing of the dengue virus in that area.   
These data are generally required for an area   
having very intensive, continuous, and vital   
cases of the epidemic. To this date, the   
epidemic cases at that level have never existed   
in Ubon Ratchathani Province. Therefore,   
data related to these factors have never been   
recorded and reported. 
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