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Abstract


The purpose of the study is to develop spatial models for surveillance of epidemics of dengue fever 
 
and dengue haemorrhagic fever (DF/DHF). Seasonal data of each sub-district in Ubon Ratchathani 
 
Province of Thailand related to the epidemics including rain, temperature, House Index (HI), 
 
Container Index (CI), and Breteau Index (BI) during 2001-2005 were used for analysis through 
 
mathematical equations. Epidemic probabilities related to temperature (Pt), rain (Pr), and larval
 
index (I) were analyzed seasonally. These parameters were used as dependent variables in the 
 
regression analysis for the case prediction (y). The predicted cases were further transformed to be 
 
probabilities of occurrence (P) by logistic regression. The Delphi technique was employed to classify 
 
the probability of occurrences at 3 levels of risk: high, moderate, and low. An error matrix was used 
 
to verify the levels of predicted risk by spatially comparing them with data of the actual risk 
 
classified by the conventional method. From 18 seasons in those years, it revealed that 60%overall 
 
accuracy was achieved. The model outputs can be used as basic data for short-term and long-term 
 
planning in resources management and surveillance network operation.


Keywords:	 DF/DHF, surveillance models 


School of Remote Sensing, Institute of Science, Suranaree University of Technology, Thailand. E-mail: 
 
	 sunyas mailto:sunyas@sut.ac.th

* 	 Corresponding author


Suranaree J. Sci. Technol. 19(3):203-214


Introduction


Dengue fever is a long known disease with
 
high epidemic potential. The global burden of 
 
dengue has grown dramatically in recent
 
decades due to unprecedented population 
 
growth, rapid and unplanned urbanization in 
 
tropical Asian countries, improved transportation, 
 
and globalization with modern transportation 
 
and an increase in air travel (Ungchusak and 
 
Kunasol, 1988; Gubler, 1998).


	 In 1998, Thailand experienced an 
 
exceptionally intense epidemic of DHF with 
 
112,488 cases (23.3% increase from 1997) 
 
and 415 deaths (64.0% increase) (Chareonsook 
 
et al., 1999), which was the second largest 
 
epidemic outbreak of dengue since 1987. 
 
Epidemics occur with a periodicity of between 
 
2 and 4 years. These are of significant concern 
 
for the public health authorities. The trend of 
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dengue has been increasing, especially in 
 
2001 when there were 224.43 reported cases 
 
of dengue per 100000 of the population, the 
 
second highest rate during the past 40 years 
 
(1960-2001) (Barbazan et al., 2002). In 2005,
 
the fatality ratio of dengue cases was 0.2% 
 
and the morbidity rate was 72.2 per 100,000 
 
of the population, respectively, which was an 
 
increase of 18.1% when compared with the 
 
previous year.

	 Annually recorded epidemics in Ubon 
 
Ratchathani province, where the disease has 
 
been endemic since 1987, show a cumulative 
 
total of 35069 cases and 155 deaths (UOPH, 
 
2006) as displayed in Figure 1. During the 
 
1998 outbreak of DF/DHF, about 35% mortality 
 
was reported among children admitted to 
 
hospital, while a total of 4905 cases were 
 
hospitalized and 25 deaths recorded (UOPH, 
 
2006). This epidemic peaked in August when 
 
an Aedes aegypti larval House Index (HI) of 
 
30.50% was recorded. Since then, regular 
 
monitoring of the larval density of Aedes 
 
aegypti and dengue cases has been of interest 
 
in studying the trends and preventing any 
 
recurrence of an outbreak. In 2003, there were 
 
3138 DF/DHF cases reported. The morbidity 
 
rate was observed at 173.82 per 100000 people. 
 
The DF/DHF incidences were recorded at the 
 
village level. The highest number of dengue 
 
incidences was recorded in the countryside 
 
with a morbidity rate > 50 per 100000 
 
people. It was found that the highest number 
 
of cases occurred during March and August of 
 

2001 to 2003. This indicated the seasonal 
 
dependence in the occurrence of DF/DHF 
 
cases, generally starting just before the rainy 
 
season and continuing until the end of the 
 
season as statistically recorded by Ubon 
 
Ratchathani Provincal Office of Public Health 
 
(UOPH) during 2000-2003.

	 To spatially monitor trends of dengue 
 
transmission for effective prevention and 
 
control, the objective of the study is to develop 
 
surveillance models of DF/DHF epidemics in 
 
Ubon Ratchathani. The developed models 
 
employed data on the larval index, climatic 
 
factors, and disease occurrence.


Materials and Methods

Study Area


	 Ubon Ratchathani province is located in
 
Northeastern Thailand. It covers an area of 
 
16112.61 km2. The province comprises 25 
 
districts, 219 sub-districts and 2469 villages. 
 
The province had a population of 1803754 at 
 
a density of 111.9/km2 in 2006. The climate of
 
this area during 1961-2001 had an average 
 
high temperature of 32.45°C and an average 
 
low temperature of 21.65°C. The rainy season 
 
in Ubon Ratchathani normally occurs from 
 
May to September. The average yearly rainfall 
 
was 1598.75 mm.


Spatial DF/DHF Prediction Models For-
 
mulation 


	 To obtain surveillance models of DF/
 

Figure 1.	 The number of DF/DHF cases, morbidity rate, and mean rainfall in Ubon Ratchathani, 
 
	 Thailand, (1986-2006)




205Suranaree J. Sci. Technol. Vol. 19 No. 3; July - September 2013


DHF epidemics, the flow of a series of models 
 
for spatial DF/DHF prediction was formulated 
 
as displayed in Figure 2. Effective planning 
 
and implementation of the prevention and 
 
control of DF/DHF epidemics can be performed 
 
when the levels of risk for districts are known 
 
in advance. Therefore, the final output of the 
 
series of models used in the study was the 
 
rating of risk areas as low, moderate, and high, 
 
which were converted from the probability of 
 
risk areas using the Delphi technique. The 
 
performance of the logistic regression model 
 
conveyed the probability of risk areas from 
 
the predicted DF/DHF cases. The epidemic 
 

cases presented in the districts were influenced 
 
by the larval index and probabilities related to 
 
rainfall and temperature of the given districts. 
 
Both probabilities exhibit the likeliness of 
 
mosquito bites. With known sample cases, the 
 
epidemic cases and those variables had a 
 
linear regression relationship that allowed 
 
cases to be predicted while the larval index, 
 
temperature, and rainfall were recorded 
 
monthly and presented in terms of epidemic 
 
seasons which were classified to be pre-high 
 
incidence (January-April), high incidence 
 
(May-August), and post- high incidence 
 
(September-December).


Figure 2.  Flow diagram of DF/DHF spatial epidemic models
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Prediction Model of DF/DHF Epidemic


	 Logistic regression is a part of a category 
 
of statistical models called generalized linear 
 
models (McCullagh, 1980). Logistic regression 
 
allows one to predict a discrete outcome, such 
 
as groups of membership from a set of 
 
variables that may be continuous (Kang, 1998). 
 
To apply it to DF/DHF epidemic prediction, 
 
the result of the analysis was the probability 
 
of predicted DF/DHF cases considered 
 
from epidemic–relevant variables-rainfall, 
 
temperature, and larval index, which are 
 
continuous spatially and temporally. The 
 
probability prediction model of a DF/DHF 
 
epidemic was performed by logistic regression 
 
analysis as expressed in Equation 1:



	 P =
 	 (1)




where P is the epidemic probability of DF/
 
DHF, and y is the predicted number of DF/
 
DHF cases (from Equation 2).


Risk Level Classification using the Delphi 
Technique


	 This Delphi technique permits obtaining 
 
a consensus from a group of experts regarding 
 
a certain phenomenon (Goodman, 1987; 
 
Hasson et al., 2000). The goal of this research 
 
in applying it was to reach a convergence of 
 
opinions to set the values, between 0 to 1, of 
 
the probability of predicted DF/DHF cases 
 
to be at 3 levels of risk: high, moderate, and low 
 
that they were comparable to the classification 
 
results using the conventional method.


Multilinear Regression Model of DF/DHF 
Incidence 


	 The multilinear regression represented 
 
the independent contributions of each independent 
 
variable to the prediction of the dependent 
 
variable (Abraham and Ledolter, 1983; Focks 
 
et al., 1995; Alpana and Haja, 2001; Bohra, 
 
2001). In the present study, climatic and 
 
surveillance independent variables such as 
 
rainfall, temperature, House Index (HI), 
 
Container Index (CI), and Breteau Index (BI)
 

were related to the dengue cases in Ubon 
 
Ratchathani province. The model shows the 
 
relationship of the DF/DHF incidence and 
 
climatic factors including the larval index as 
 
expressed in Equation 2.



	 y = a0+b1(I)+b2(Pr)+b3(Pr) 	 (2)



where y is the predicted number of DF/DHF 
 
cases, I is the larval index which is the 
 
weighted linear combination of HI, CI, and BI 
 
(Equation 3), Pr is the probability of the
 
rainfall effect, Pt  is the probability of the 
 
temperature effect, ao is the intercept of the 
 
y-axis, and b1, b2, and b3 are the coefficients 
 
for the larval index, rainfall, and temperature, 
 
respectively.

	 Dengue infection in Ubon Ratchathani 
 
province has been reported as a local endemic 
 
every year. The report showed that the 
 
maximum DF/DHF transmission started in the 
period of high rainfall (May-September) of
 
each year studied. There was a positive 
 
correlation between the number of dengue 
 
cases and rainfall (Strickman and Kittayapong, 
 
2002). This indicated the seasonal dependence 
 
in occurrence of DF/DHF cases, which 
 
generally starts just before the rainy season 
 
and continues until the end of the rainy season 
 
(Kittayapong and Strickman, 1993a).


Surveillance Data


	 The larval index (HI, CI, and BI) of 
 
Aedes aegypti density fluctuates according to 
 
seasonal climatic changes (Eamchan et al., 
 
1989; Kittayapong and Strickman, 1993b; Ali 
 
et al., 2003). It rises in seasons with higher 
 
rainfall (Muttitanon et al., 2004) which leads 
 
to an increasing number of potential breeding 
 
sites.

	 Spatially varying secondary data on HI, 
 
CI, and BI at the sub-district level reported by 
 
the UOPH were calculated each season. They 
 
were normalized to be the larval index (I) for 
 
each sub-district using the weighted linear 
 
combination method (Banai-Kashani, 1989; 
 
Saaty, 1997; Malczewski, 2000) as expressed 
 
in Equation 3.
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I =

w(HI)(xHI)w(CI) (xCI)+w(BI)(xBI)


(w(CI)+w(HI)+w(BI))

	

(3)


where I is the larval index, xHI, xCI and xBI are 
 
the seasonal indexes of HI, CI, and BI, and wHI, 
 
wCI, and wBI are the weights of Aedes aegypti 
 
density for HI, CI, and BI, respectively.

	 The weights of these indexes can be 
 
obtained depending on the varying HI, CI, and 
 
BI as shown in Table 1 (Brown, 1974; 1977; 
 
Day and Curtis, 1989; Jetten and Focks, 
 
1997). The higher the index means the higher 
 
the weight of transmission.


DF/DHF Data


	 In Figure 1, the DF/DHF cases of the 
 
province showed an increasing trend of 
 
continuous occurrence of DF/DHF from 2000 
 
to 2003. Data on a number of cases were 
 
recorded seasonally for each district and 
 
sub–district by the UOPH. They were used as 
 
sample cases for Equation 2 so that the model 
 
could be set up for prediction.


Influence Factors


	 Key major factors for analysis of the 
 
number of DF/DHF cases were rainfall and 
 
temperature (Jetten and Focks, 1997).

	 Rainfall is the key to the direct increase 
of Aedes aegypti density in each period. It is
 

related to the high abundance of mosquitoes 
 
(Day and Curtis, 1989) and most often leads 
 
to maximum feeding and outbreaks (Gratz, 
 
1993; Patz et al., 1996; Martens et al., 1997; 
 
Githeko et al., 2000). Temperature plays an
 
important role in the life cycle of mosquitoes 
 
and in the replication and transmission of 
 
diseases having an effect on matters such as 
 
population size, maturation period, feeding 
 
characteristics, and survival rate of Aedes 
 
mosquitoes (Watts et al., 1987; Jetten and Focks, 
 
1997; WHO, 1997; Gratz, 1999; Focks, 2003; 
 
Nakhapakorn, 2005).

	 Rainfall and temperature data from 19 
 
stations in the province were interpolated and 
 
averaged to represent each sub-district in each 
 
season during 2001-2005. Both data were 
 
further normalized to be in the forms of 
 
probability as follows:


	 Probability Related to Rainfall (Pr)


	 The probability related to the predicted 
 
number of DF/DHF cases based on rainfall
 
data can be achieved from the below 
 
expression.



	 Pr = (Probability of bite)[P(trans)]
 	 (4)



	 According to the researches of Day and 
 
Curtis (1989) and Githeko et al. (2000), the
 

Table 1.	 Weight of Aedes aegypti density for each criterion index is displayed to show the priority of 
 
	 transmission



Weight

of transmission


Container index 

(CI)


House index

(HI)


Breteau index

(BI)


1
 0-2.99
 0-3.99
 0-4.99

2
 3-5.99
 4-7.99
 5-9.99

3
 6-9.99
 8-17.99
 10-19.99


4
 10-14.99
 18-28.99
 20-34.99


5
 15-20.99
 29-37.99
 35-49.99


6
 21-27.99
 38-49.99
 50-74.99


7
 28-31.99
 50-59.99
 75-99.99


8
 32-40.99
 60-76.99
 100-199.99


9
 > 41
 > 71
 > 200
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probability of bite is 0.59 in pre-high incidence 
 
(January to April), 0.68 in high incidence (May 
 
to August) and 0.42 in post-high incidence 
 
(September to December).

	 P(trans) is obtained using the Mamdani 
 
model (Borke and Fisher, 1998). It is the 
 
maximum of the product of a rainy day and 
 
amount of rainfall as expressed in Equation 5.



P(trans)  = max  x1 y1,x2 y2, x3 y3,.... xn yn
 	 (5)



where P(trans) is the probability related to
 
the transmission of Aedes aegypti. n is a 
 
numerical of the month, x is the rainy days in 
 
a season, and y is the amount of seasonal 
 
rainfall. 


	 Probability Related to Temperature (Pt)


	 Probability related to temperature (Pt) 
 
can be estimated using Equation 6. 



	 Pt  = (Probability of bite)[(wt)(xt)]
	 (6)



where wt is a weight of temperature in each 
 
season (Koopman et al., 1991; Boonmaging, 
 
2004) as listed in Table 2, and xt is an average 
 
temperature in each season. The same set of 
 
probability of bite from Equation 4 was 
 
applied to this relationship. Pt was later 
 
normalized to be between 0 and 1.


Models Verification


	 This procedure determines how well the 
 
risk areas classified by the model fit to the
 
conventional classification. Error matrix was 
 
applied for this purpose. 


	 Risk Level Classification by Conven-
 
	 tional Method


	 The conventional classification method 
 
of risk area based on the epidemic status or 
 
case availability in a different number of 
 
consecutive weeks is illustrated in Table 3 and 
 
the following descriptions:

	 Code area A: there are cases in every 
 
week within at least 4 consecutive weeks; B: 
 
there are cases in at least 2 weeks within 4 
 
consecutive weeks; C: within a week, there is 
 
a new case reoccurring in the area; D: there is 
 
a new case occurring in the area which has no 
 
case within the week before; E: there is a new 
 
case occurring in the area which has no case 
 
within 4 weeks before; F: there is a new case 
 
occurring in the area which has no case within 
 
6 months before.


	 Accuracy Assessment of Model Result 
 
	 Using Error Matrix 


	 The statistics of fit for various predicted 
 
results and conventional classification with 
 
the same period of time can be calculated using 
 
error matrix (Pumplin and Stump, 2001). The 
 
overall accuracy can be calculated according 
 
to the following equation:




	 Overall accuracy =
 100
D

( N )
 	 (7)




where D is the total number of sub-districts 
 
in all classes of risk areas (high, moderate, 
 
and low where the predicted results are 
 
consistent with the ones classed by the 
 
conventional method), and N is the total 
 

Table 2. 	 Weight of temperature



Temperature


January to April
 May to August
 September to December


probability 
of bite
 wt


probability 
of bite
 wt


probability 
of bite
 wt


>35oC, <28oC
 0.59
 1.5
 0.68
 1.5
 0.42
 1.5


30oC
 0.59
 4.0
 0.68
 4.0
 0.42
 4.0


28-29oC, 31-35oC
 0.59
 3.0
 0.68
 3.0
 0.42
 3.0




209Suranaree J. Sci. Technol. Vol. 19 No. 3; July - September 2013


number of sub-districts in the error matrix.

	 For this study, the models are verified 
 
and acceptable if the accuracy is ≥ 60%, or 
 
moderate to strong agreement.


Results and Discussion


Multilinear Regression and Logistic 
 
Regression Models


	 The multilinear regression model was 
 
performed on 18 seasonal data sets of the 
 
years 2001-2005 and their average to evaluate 
 
the correlation among the DF/DHF incidence 
 
rate, climatic variables (probability related to 
 
temperature (Pt) and rainfall (Pr)), and larval 
 
index (I). The seasonal regression equations 
 
were derived as shown in Table 4. The most-
 
fit equation is for the May-August season for 
which the coefficient of determination (R2) is 
 
0.72. 

	 The correlation coefficients of the 
 
seasons fell in the range of 0.63-0.7 which 
 
was acceptable to be able to state that those 
 
variables had a high linear relationship. 
 
However, in the case where the input data 
 
covered more years, the cyclic pattern might 
 
be expected and the relationship should be 
 
reconsidered.

	 The spatial DF/DHF predictions were 
 
finally input through logistic regression 
 

analysis (Equation 1) and resulted in the 
 
seasonal epidemic probability or risk of DF/
 
DHF of each sub–district for those years. To 
 
compare the risks resulting from the models 
 
with the ones from the conventional 
 
classification, they were classified into 3 
 
classes i.e. high, moderate, and low using 
 
Delphi’s technique. The result showed that the 
 
range of epidemic probability of the low, 
 
moderate, and high risks is 0.00-<0.40, 0.40-<
 
0.70, and 0.70-1.00, respectively.


Conventional and Predicted Risk Levels of 
Sub-districts


	 Risk areas of each sub–district resulting 
 
from the conventional classification and the 
 
predicted models of each season during 2001-
 
2006 are displayed as maps in Figure 3. The
 
risk trending resulting from both methods are 
 
displayed as a comparison graph for each risk
 
level and each season in Figure 4.

	 For moderate and low risk areas, only 
 
the season of May to August shows obviously 
 
different trending from 2005 to 2006. The 
 
trending of the rest (seasons and years) is well 
 
consistent with each other.

	 According to Figure 5, the predicted
 
moderate risk areas show an obviously smaller 
 
number than in the conventional one while for 
 
the high risk areas the predicted one shows a 
 

Table 4. 	 The seasonal multi linear regression equations



Season
 Seasonal multi linear regression equation
 Correlation 

coefficient


Coefficient of 
determination (R2)


Jan to Apr
 y  = -15.87 + 2.66I - 0.125Pt - 0.01768Pr
 0.69
 0.70


May to Aug
 y  = -49.41 + 7.73I - 0.273Pt - 0.00051Pr
 0.70
 0.72


Sep to Dec
 y  = -14.77 + 2.21I + 0.008Pt - 0.0018Pr
 0.63
 0.65


Table 3.	 Conventional classification of DF/DHF risk area



Code area based on epidemic status


A    B    C    D
 E
 F


High risk area
 Moderate risk area Low risk area


(A+B+C+D)
 (E)
 (F)
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somewhat bigger number of areas in each 
 
season. When the high and moderate areas 
 
were grouped together as shown in Figure 4,
 
it shows a higher correlation between the 
 
conventional and the predicted results, particularly 
 
in the second and the third seasons of the 
 
years. Not only are the numbers of risk areas 
 
of these 2 levels very close but also those areas 
 
(districts) are in the same set. It confirms the 
 
spatial precision of the prediction. Therefore, 
 
this can imply that the lower limit of epidemic 
 
probability of the high risk areas achieved 
 

from Delphi’s technique is so low that many 
 
conventionally moderate risk districts are 
 
switched to be predicted as high risk areas.

	 Considering the high risk areas, it is 
 
found that the number of risk areas in the first 
 
season have an influence in increasing the 
 
number in the second season which in turn did 
 
the same in the third season. Even though the 
 
number of risk areas in the second and the 
 
third seasons are almost the same, it shows a 
 
significant influence because the second 
 
season is the peak of the epidemic and normally 
 

Figure 3. Risk areas resulting from conventional classification and predicted models
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there is a tendency to have more cases than in 
 
the third season.

	 The low risk areas of the conventional 
 
and the prediction models show little difference 
 
in terms of the number of areas. However, to 
 
confirm the precision of the spatial predictions, 
 
they fall into almost the same set of districts.


Accuracy Assessment of the Predicted 
 
Model


	 The concluded accuracy assessment of 
 
the comparison of the risk areas between the 
 
conventional and predicted results of each 
 
season using the error matrix is expressed in 
 
Table 5. It shows that almost all the seasons
 
during 2001-2005 have an overall accuracy 
 
above 60%. Only the accuracy of the last 
 
season in 2005 and the seasons in 2006 are 
 
lower, between 49.32-59.82%. This matter 
 
can be explained. According to the historical 
 
records of the UOPH, the epidemic circle will 
 
always occur in every third year. Plus there 
 
were constant increasing numbers of epidemic 
 
cases in Ubon Ratchathani during 2001-2003, 
 
and the UOPH therefore strengthened the 
 
control program in years 2005-2006. This 
 
resulted in reducing the intensity of epidemic 
 
cases in the areas and negatively affected the 
 
accuracy of the prediction results in the years 
 
as mentioned above. For example, in Dech 
 
Udom district the actual cases were reduced 
 
from 32 from January to April and 61 from 
 
May to August 2005 to be 13 and 23 for the 
 
same seasons in the year 2006. Without this 
 
strengthened control program, the prediction 
 
result should be more accurate.


Conclusions and Recommendations


The study offers spatial regression and logistic
 
regression models for seasonally predicting 
the number of DF/DHF cases and the probability 
 
of risk in sub–districts of the Ubon Ratchathani 
 
Province of Thailand during 2001-2005. The 
 
larval index, temperature, and rainfall data 
 
analyzed in the regression model have revealed
 
that the period of May-August is the most 
 
suitable season in Ubon Ratchathani Province 
 
for predicting the number of cases with a 0.72 
 

coefficient of determination.

	 The classified seasonal probability of
 
risk of each sub-district resulting from logistic 
 
regression was spatially compared to the 
 
conventional classification using the error matrix. 
 

Figure 4.	 Graphs showing trends of high risk 
 
	 area, moderate risk area, and low risk 
 
	 area resulting from prediction models 
 
	 and conventional classification of each
 
	 season in years 2001-2006


Figure 5. 	 Comparison on the trending of the 
 
	 number of high and moderate risk
 
	 areas between conventional and pre-
 
	 dicted results of each season during 
 
	 2001-2006
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This accuracy assessment has conclusively 
 
revealed that almost all seasons during 2001-
 
2005 have an overall accuracy above 60%. 
 
The period of May-August provides the 
 
highest overall accuracy while the period of 
 
September-December provides the lowest. 
 
However, if the grouped high and moderate 
 
risk areas were considered, the correlation 
 
between the conventional and the predicted 
 
results was obviously higher.

	 The resulting seasonal risk map of 
 
DF/DHF for each sub–district is useful 
 
information for the UOPH in both the short 
 
and long terms to enable proper allocating of 
 
resources for epidemic prevention and control 
 
activities particularly with regard to the 
 
recurrence of the same risk level in the next 
 
season and the same season of the next year. 
 
For example, the sub-districts predicted to be 
 
high and moderate risk areas should be 
 
subject to the routine prevention and control 
 
program of the UOPH such as using smoke, 
 
the elimination of water holding containers, 
 
and warnings through public relations for 
 
cooperation in the prevention of mosquito 
 
breeding and protection from mosquito bites, 
 
etc. All details of activities have been set up 
 
clearly as a standard implementation guideline 
 
for public health officers.

	 It is important to maintain the current 
 
status of input data of the spatial models in 
 
order to detect early DF/DHF epidemics more 
 
accurately. Meanwhile, past activities should 
 
be systematically recorded in order that the 
 

trend and the cycle of epidemics can be 
 
effectively observed.

	 In fact, to study the DF/DHF epidemic 
 
effectively, other factors should be considered 
 
such as the immunity of people and serotype 
 
changing of the dengue virus in that area. 
 
These data are generally required for an area 
 
having very intensive, continuous, and vital 
 
cases of the epidemic. To this date, the 
 
epidemic cases at that level have never existed 
 
in Ubon Ratchathani Province. Therefore, 
 
data related to these factors have never been 
 
recorded and reported.


Acknowledgements


The authors wish to acknowledge the 
 
Suranaree University of Technology for a part 
 
of the funding of this research and the Office 
 
of Disease Prevention and Control 5th Nakhon 
 
Ratchasima, for providing unpublished data 
 
needed.


References


Abraham, B. and Ledolter, J. (1983). Statistical Methods 
 
for Forecasting. 3rd edition. John Wiley and 
 
Sons, Hoboken, NJ, USA, 562p.


Ali, M., Wagatsuma, Y., Emch, M., and Breiman, R.F. 
 
(2003). Use of a geographic information system 
 
for defining spatial risk for dengue transmission 
 
in Bangladesh: role of Aedes albopictus in an 
 
urban outbreak. Am. J. Trop. Med. Hyg., 69:
 
634-640.


Alpana, B. and Haja, A. (2001). Application of GIS in 
 

Table 5.	 Comparison percentage of overall accuracy resulted from predicted models in year 2001-2006



Time period

Year


January to April

(%)


May to August

(%)


September to December

(%)


2001
 63.92
 71.68
 65.75


2002
 66.67
 73.97
 67.12


2003
 72.60
 73.52
 71.69


2004
 72.60
 73.97
 63.92


2005
 70.32
 64.38
 57.59


2006
 51.14
 59.82
 49.32






213Suranaree J. Sci. Technol. Vol. 19 No. 3; July - September 2013


modeling of dengue risk on socio-cultural data: 
 
case of Jalor, Rajasthan, India. Available from:  
 
http://www.geog.ucl.ac.uk/~pdensham/SDSS/
 
s_t_paper.html. Accessed date: March 22, 2006.


Banai-Kashani, R.A. (1989). New method for site 
 
suitability analysis: the analytic hierarchy 
 
process. Environ. Manage., 13:685-693.


Barbazan, P., Yoksan, S., and Gonzalez, J.P. (2002). 
 
Dengue hemorrhagic fever epidemiology in 
 
Thailand: description and forecasting of epidemics. 
 
Microbes Infect., 4(7):699-705.


Bohra, A. (2001). Prediction modeling of dengue risk 
 
based on socio cultural and environmental 
 
factors using GIS: case of Jalor town, Rajasthan, 
 
India, [PhD thesis]. School of Advanced 
 
Technologies, Asian Institute of Technology. 
 
Pathumthani, Thailand, p.16-31.


Boonmaging, S. (2004). Urban ecology and dengue 
 
hemorrhogic fever a community study in Bangkok, 
 
[M.S. thesis]. University of Mahidol, Nakhon 
 
Pathom, Thailand, p.4-15. 


Borke, M.M. and Fisher, D.G. (1998). Solution 
 
algorithms for fuzzy Relational equations with 
 
max-product composition. Fuzzy Set. Syst., 
 
94:61-69.


Brown, A.W.A. (1974). World wide surveillance of 
 
Aedes aegypti. Proceedings of Annual Conference 
 
California Mosquito Control Association;  
 
January 20-23; NY, USA, p. 20-25.


Brown, A.W.A. (1977). Yellow fever, dengue and 
 
dengue haemorrhagic fever. In: Howe, G.M. 
 
(ed). A World Geography of Human Diseases. 
 
Academic Press, London, UK, p. 271-316. 


Chareonsook, O., Foy, H.M., Teeraratkul, A., and 
 
Silarug, N. (1999). Changing epidemiology of 
 
dengue hemorrhagic fever in Thailand. Epidemiol. 
 
Infect., 122(1):161-66.


Day, J. and Curtis, A. (1989). Influence of rainfall on 
 
culexnigripalpus (Ditera: Culicidae) blood-feeding 
 
behavior in Indian River County, Florida. Ann.
 
Entomol. Soc. Am., 82:32-37.


Eamchan, P., Nisalak, A., and Foy, H.J. and 
 
Charoensook, O.A. (1989). Epidemiology and 
 
control of dengue virus infections in Thai villages 
 
in 1987. Am. J. Trop. Med. Hyg., 41(1):95-101.


Focks, D.A. (2003). A review of entomological 
 
sampling methods and Indicators for dengue 
 
vectors. WHO, Geneva. Available from: http://
 
www.who.int/tdr/ publications/publications/pdf/
 
dengue_review.pdf. Accessed date: March 24, 
 
2006.


Focks, D.A., Daniels, E., and Haile, D.G. (1995). A 
 
simulation model of the epidemiology of urban 
 
dengue fever: literature analysis, model deve-
 
lopment, preliminary validation, and samples of 
 
simulation results. Am. J. Trop. Med. Hyg., 
 
53(5):489-506.


Githeko, A., Lindsay, S., Confalonieri, U., and Patz, J. 
 

(2000). Climate change and vector–borne 
 
diseases: a regional analysis. B. World Health 
 
Organ., 78:1136-1145.


Goodman, C. (1987). The Delphi technique: a critique. 
 
J. Adv. Nurs., 12:729-734.


Gratz, N.G. (1993). Lessons of aedes aegypti control 
 
in Thailand. Med. Vet. Entomol., 7(1):1-10. 


Gratz, N.G. (1999). Emerging and resurging vector-
 
borne disease. Annu. Rev. Entomol., 44:51-75.


Gubler, D.J. (1998). The global pandemic of dengue/
 
dengue haemorrhagic fever: current status and 
 
prospects for the future. Ann. Acad. Med. Singap., 
 
27:227-234. 


Hasson, F., Keeney, S., and McKenna, H. (2000). 
 
Research guidelines for the Delphi survey 
 
technique. J. Adv. Nurs., 32:1008-1015.


Jetten, T.H. and Focks, D.   (1997). Potential changes 
 
in the distribution of dengue transmission under 
 
climate warming. Am. J. Trop. Med. Hyg., 57(3):
 
285-297.


Kang, F.V. (1998). Estimating generalized ordered 
 
logic models. Stata Technical Bulletin, 44:27-30.


Kittayapong, P. and Strickman, D. (1993a). Distri-
 
bution of container-inhabiting Aedes larvae 
 
(Diptera: Culicidae) at a dengue focus in 
 
Thailand. J. Med. Entomol., 30:601-606.


Kittayapong, P. and Strickman, D. (1993b). Three 
 
simple devices for preventing development of 
 
Aedes aegypti larvae in water jars. Am. J. Trop. 
 
Med. Hyg., 49:158-165.


Koopman, J.S., Prevots, D.R., Marin, M.A.V., Dantes, 
 
H.G., Aquino, M.L.Z., Longini, J.I.M., and 
 
Amer, J.S. (1991). Determinants and predictors 
 
of dengue infection in Mexico. Am. J. 
 
Epidemiol., 133:1168-1178.


Malczewski, J. (2000). On the use of weighted linear 
 
combination method in GIS: common and best 
 
practice approaches. Transaction in GIS, 4:5-22.


Martens, W.J.M., Jetten, T.H., and Focks, D.A. (1997). 
 
Sensitivity of malaria, schistosomiasis and 
 
dengue to global warming. Climatic Change, 
 
35:145-156.


McCullagh, P. (1980). Regression models for ordinal 
 
data (with discussion). J. R. Stat. Soc. B, 42:
 
109-112.


Muttitanon, W., Kongthong, P., Kongkanon, C., 
 
Yoksan, S., Nitatpattana, N., Gonzales, J.P., and 
 
Barbazan, P. (2004). Spatial and temporal 
 
dynamics of Dengue Hemorrhagic Fever 
 
epidemics, Nakhon Pathom province, Thailand. 
 
Dengue Bulletin, 28:35-43.


Nakhapakorn, K. (2005). An information value analysis 
 
of physical and climatic factors affecting dengue 
 
fever and dengue haemorrhagic fever incidence. 
 
Int. J. Health Geogr., 4:13.


Patz, J.A., Epstein, P.R., Burke, T.A., and Balbus, J.M. 
 
(1996). Global climate change and emerging 
 
infectious diseases. J. Amer. Med. Assoc., 275
 



Spatial Models for DF/DHF
214

(3): 217-223.

Pumplin, J. and Stump, D.R. (2001). Multivariate 

fitting and the error matrix in global analysis of 
data. Department of Physics and Astronomy, 
Michigan State University, East Lansing, MI,  
USA, p.7-12.


Saaty, T.L. (1997). The Analytic Hierarchy Process. 
 
McGraw-Hill, NY, USA, 287p.


Strickman, D. and Kittayapong, P. (2002). Dengue and 
 
its vectors in Thailand: introduction to the study 
 
and seasonal distribution of Aedes larvae. Am. 
 
J. Trop. Med. Hyg., 67:247-259.


Ubon Ratchathani Provincal Office of Public Health, 
 
(UOPH). (2006). Department of Communicable 
 
Disease Control, Ubon Ratchathani, Thailand. 


Ungchusak, K. and Kunasol, P. (1988). Dengue 
 
haemorrhagic fever in Thailand, Southeast. 
 
Asian J. Trop. Med. Public Health, 19(3):487-490. 

Watts, D.M., Burke, D.S., Harrison, B.A., Whitmire, 
 
R.E., and Nisalak, A. (1987). Effect of 
 
temperature on the vector efficiency of Aedes 
 
aegypti for dengue virus. Am. J. Trop. Med. 
 
Hyg., 36:143-152.


World Health Organization, (1997). Dengue hae-
 
morrhagic fever: Diagnosis, treatment, prevention 
 
and control. Geneva 2nd ed. World Health 
 
Organization, Geneva, Switzerland, p.14-30.






