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Abstract

The Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT)
are classical approaches to mathematically model signals and systems in the frequency and
spatial (or temporal) domains, respectively. Due to worldwide implementation of Digital
Signal Processing (DSP) during the last two decades, Discrete Fourier analysis has become one
of the most useful mathematical techniques for analyzing digital signals and systems.
Consequently, this article provides a tutorial for the Discrete Fourier Transform (DFT) on 1-
dimensional (1-D) signals employing MATLAB®. While the Discrete Fourier analysis provides
information for both spatial and frequency domains, this paper focuses on the frequency
domain of the discrete signal.

Keywords: Discrete Fourier Transform (DFT), Inverse Discrete Fourier Transform
(IDFT), Digital Signal Processing (DSP).
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1. Introduction

1.1 History of Fourier Analysis

Fourier analysis was created and published by a French mathematician, Jean Baptiste
Fourier, in 1822. Fourier analysis is composed of Fourier Series (FS) and Fourier
Transform (FT) elements. FS is used as a mathematical model to represent all periodic
signals in the frequency domain. Like FS, the FT can also be applied for periodic signals.
However, when examining non-periodic signals FS is not appropriate, and FT must be used.

Three main groups can be used to classify the majority of the signals. These are
analog or continuous-time signals, discrete-time signals, and digital or discrete signals. In
the first group both time and amplitude are continuous. In the second group only amplitude
is discrete and time remains continuous (e.g. sampling of analog signals). In the last group
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both time and amplitude are discrete. Fourier analysis is an essential approach to transform
all spatial domain signals into frequency domain signals by employing either FS or FT. In
an inverse manner, the frequency domain signals can be used to reconstruct the spatial
domain signal by utilizing the Inverse Fourier Transform (IFT).

1.2 Application of 1-D DFT

Fourier analysis is necessary in several applications areas as follows:

Telecommunication:

Various modulation techniques are employed to improve transmission performance
such as saving transmission bandwidth and power and reducing noise interference. For
examples, Amplitude Modulation (AM), Frequency Modulation (FM), and Phase
Modulation (PM), are utilized in analog signal and Amplitude-Shift Keying, On-Off
Keying, Quadrature Amplitude Modulation, Frequency-Shift Keying (FSK) and Phase-
Shift Keying (PSK) are utilized in digital signals [Haykin and Moher, 2003; Haykin and
Mobher, 2007].

Digital signal processing (DSP):

Analog/digital filters such as Butterworth filters, Chebyshev filters, Elliptic
continuous-time filters, and Finite Impulse Response (FIR) filters are employed to improve
noise performance of the signals [Ingle, V. K & Proakis, J. G., 2007; A.V. Oppenheim &
R.W. Schafer, 2009]. The first three are analog filters and the last one is the digital filter.

Circuit analysis:

Phasor analysis, frequency response analysis, and steady state response analysis are
employed for determining and analyzing the signals properly.

From the modern research prospective, although the DFT is one of the classical
mathematical tools for developing the research in both science and engineering for the last
two decades, the modern advance algorithm techniques, which have been proposed during
the last five years, are based on the framework of DFT. Various Advanced and Modern
Codes and Modulations are based on DFT such as Bose-Chaudhuri-Hocquenghem (BCH)
Codes [Vaezi, M. & Labeau, F., 2013], Orthogonal Frequency-Division Multiplexing
(OFDM) Modulations [Wu, T-S. & Chung, C-D., 2014; Li, F., Li, X. and Yu, J., 2015],
Quantized DFT Codes [Vaezi, M. & Labeau, F., 2014], Channel Estimation Techniques
[Xiong, X., Jiang, B., Gao, X. and You, X., 2014], Digital Signal Processing such as analog
and digital filters design/analysis [A.V. Oppenheim & R.W. Schafer, 2009], Filter
Implementation [Edussooriya, C.U.S., Bruton, L.T., Agathoklis, P. and Gunaratne, T.K.,
2013], Finite Impulse Response (FIR) filter [Edussooriya, C.U.S., Bruton, L.T., Agathoklis,
P. and Gunaratne, T.K., 2013; Kamwa, 1., Samantaray, S.R. and Joos, G., 2014], Signal
Modeling and Compressive Sensing (CS) [Hu, L., Zhou, J., Shi, Z. and Fu, Q., 2013; Ha, P.
H., Lee, W. and Patanavijit, V., 2014; Patanavijit, V. & Ha, P.H., 2013] and Signal
Registration [Patanavijit, V., 2011].

In this article, DFT is emphasized to represent the frequency domain of discrete-time
signals on 1-D [Haykin and Moher, 2003; Haykin and Moher, 2007; Ingle and Proakis,
2007; and Phillips et al., 2003; Schilling and Harris, 2005]. Moreover, this paper provides
an analysis of DFT application as opposed to basic theory. Therefore, several examples on
1-D signals are demonstrated. This segment has been organized as follows: section 2
presents a theoretical of 1-D DFT and examples, and section 3 provides a conclusion.

2. Discrete Fourier Transform (DFT)

This section is subdivided into four subsections: section 2.1 presents the theoretical
basic for DFT, section 2.2 and 2.3 provide synthetic cases for small and large sample
numbers (), respectively, and section 2.4 provides the real-world examples of signals.
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2.1 Theory

This section briefly presents DFT and IDFT of 1-D signals. The algorithm of Fast
Fourier Transform (FFT) [Duhamel and Vetterli, 1999; Phillips et al., 2003; Schilling and
Harris, 2005] is employed for DFT and IDFT. The DFT (Discrete Fourier Transform) can
be considered as an exceptional case of the DTFT (Discrete Time Fourier Transform),
which is theoretically defined as

X(f)=Ex(mem Lcpole (1)
n=0
The DTFT is a crucial mathematical tool, finding common application for discrete-time
signals and systems. However, the direct computation of X(f) requires an infinite number of
floating-point operators (FLOPS). In another point of view, f is a continuous variable
therefore X(f) is comprised of an infinite number of data. Consequently, the DTFT is not
practical for computer calculation.
For the discrete time signals x(n) with finite duration ( lim x(n) =0), the DTFT can be
n—>»0

approximated as:

N-l .
X=X x(n)e(_m”ﬂ-) 2)
n=0
Therefore, we can interpret the DFT (Discrete Fourier Transform) as the set of N discrete
values of DTFT X(f). The mathematical representation for both DFT and IDFT are provided

below
M —j2zkn/M
X (k)= Z‘o x(n)e 3)
M-1 4
X =~ 3 X(ePr @

where X(k) is a discrete function of the frequency variable, x(n) is a finite discrete-time
sequence, k and » are the integer numbers (0, 1, 2, ..., M-1), M is a number of the selected

samples to represent the discrete-time signal, and j =+/—1 (in engineering application i is
usually defined an electric current, thus to avoid confusion of notation this paper defines

j=~-1).

2.2 Synthetic Cases for Small Sample Number (n)

The examples for 1-D signals based on small sample number, #, are illustrated in this
section. Both mathematical and programmable calculations are provided in individual
detailed steps so the reader can understand the concepts of DFT and IDFT using both
methods.

Example 1: Unit step signal, x1(n) =[0,0,1,1] with n =4 samples.

Mathematical Calculation
This unit step signal, x1(n) = [O, 0, l,l] , can be separated into four individual values as

follows: x1(0) =[0] , x1(1)=[0], x1(2)=[1], x1(3)=[1] . In this example, M and k

parameters equal to 4. Therefore, from Eq. (3) substitutes M = 4, we obtain

Xl = (x10me271%)

n=0
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3 .
= 3 (¥l /=) (5)
n=0
Applying Euler’s relation given below,
e*% = cos @+ jsin O (6)

Thus, the exponential term in Eq. (5) becomes,
eI = cos(7/2) - jsin(z/2) =—j

Substituting this result into Eq. (5), we obtain
3

X1k =3 (xl(n)(— j)"”)

Now X1(4) on the above equation can be evaluated term by term as follows:
k=0; X1(0) = nZi:O(xl(n)(— i)')- éo(xl(n))

X1(0) = x1(0) + x1(1) + x1(2) + x1(3) = (0) + (0) + (1) + (1) = 2
k=1; X1(1) = go(xl(n)(—j)”)

X1(1) = x100)(= ) + x1(D(= )" + x12)(=j)* + x1(3)(- /)
X1(1) = (0)(1) + (0)(=) + (=D + (1))
XID)=040-1+j=-1+

3

k=2 X1(2) = Z_:O(xl(n)(— j)z”)
X1(2) = x10)(= /)" + x1(1)(=)* + x12)(= )" + x13)(=)°
X12)=O0)DH+O)(-DH+DDH+M(-1H)=0+0+1-1=0
3

k=3; X1(3) = Z_:O(xl(n)(— j)3”)
X13) = x1(0)(=))° + x1(D(=) +x1(2)(=))° +x13)(=))’
X1(3) = (0)(1) + (0)(/) + M(=D + (D)(=))
X1(3)=0+0-1-j=~1-
Thus, X1(k) is X1(k) =[2,—1+ j,0,—1—j]. These values are in a rectangular co-ordinate

form. However, X1(k) can also be represented in a polar form as shown below,
X1(k)=24£0rad,1.41420.757zrad,0£0rad,1.414 2 —T5xrad

=2/0rad,1.41422.36rad,0rad,1.414£ -2 .36rad

All values of both rectangular co-ordinate and polar forms are contained in Table 1 below.
The magnitude (|X1(k)|) and phase spectrums are illustrated in Figures 1 (c) and (e),
respectively.

Programmable Calculation

A unit step signal, x1(n), with only 4 samples, is shown in Figure 1 (a). Figure 1 (b)
provides a program for this signal. From the given program, two samples of zero and one
are created as a unit step signal using zeros( ) and ones( ) functions, respectively. Placing
ones( ) function after zeros( ) function indicates that the first sample of ‘one’ takes place
next to the last sample of ‘zero’ and vice versa. A stem( ) function is employed to plot this
x1(n) signal in a discrete form. The functions of xlabel( ) and ylabel( ) are utilized to insert
x- and y-labels, respectively.

Tutorial of One Dimensional Discrete Fourier Transform (DFT): Theory, SDU Res. J. 8 (2): May-Aug 2015
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Figures 1 (c¢) and (d) provide a magnitude spectrum (|X1(k)|) and its corresponding
program, respectively. According to the program in Figure 1(d), a DFT of x1(n) signal
(X1(k)) is computed using a function of f#( ). A function of abs( ) is employed to determine
the absolute (magnitude) value of X1(k). Plotting and inserting x- and y-labels are
completed utilizing stem( ), xlabel( ), and ylabel( ), respectively.

Table 1 reveals all values of both the time domain (x1(#)) and the frequency domain
(X1(k)). A phase spectrum of X1(k) is demonstrated in Figure 1(e) using a program given in
Figure 1 (f). Phase spectrum of X1(k) is determined using a function of phase( ). The last
three functions mentioned in the previous paragraph are employed to complete the plot and

insert the labels.

Table 1 Values of x1(») in the spatial domain and X1(k) in the frequency domain.

n/k | x1(n) | X1(k) (co-ordinate) X1(k) (Polar)
1 0 2 2/0 rad
2 0 -1+ 1.414.22.36 rad
3 1 0 020 rad
4 1 -1-j 1.414 /-2.36 rad
1
0.8
0.6 >> x1 = [zeros(1l,2) ones(1,2)];
E % Create unit step signal x1(n)
04 >> stem(xl) % plot unit step signal
>> xlabel('n'); % Insert x-label
02 >> ylabel('xl(n)'); % Insert y-
label
Y 15 2 25 3 35 4
(a) (b)

Figure 1 (a) A unit step signal, x1(»), in the spatial domain and (b) MATLAB®™ program for

unit step signal, x1(n).
2

5

X1(k)]

=

.5

label

>> X1 = fft(xl); % Compute DFT of
x1(n) ( X1(k))
>> absX1l = abs(X1l); % Determine all

absolute values of X1 (k)
>> stem(absX1l) %
>> xlabel('k'); %
>> ylabel ("|X1(k)|'"); % Insert vy-

Plot [X1(k) |

Insert x-label

0
0

25

k
(c)

1 L5 2

3

35

4

(d)

Figure 1 (c) The magnitude spectrum, |X1(k)| and (d) a MATLAB" program for magnitude

spectrum, | X1(k)).
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=1 >> PX1 = phase(X1l); % Determine

= phase of X1 (k)

>> stem (PX1)% Plot phase of X1 (k)
| | >> xlabel ('k');% Insert x-label

>> ylabel ('Phase (X1 (k))"');% Insert
2 1 y-label

]

1 15 2 25 3 35 4

k
(e) ®

Figure 1 (¢) The phase spectrum of X1(k) and (f) a MATLAB" program for phase
spectrum of X1(k).
Example 2: Alternative +1 and -1 signal, x2(n) =[1,-1,1,-1,1,—1] with n =6 samples.

Mathematical Calculation

The signal of x2(n) = [1,—1,1,—1,1,—1] can be separated into six individual values as
follows: x2(0) =[1], x2(1) =[-1] , x2(2) =[1] , x2(3) =[-1], x2(4) =[1], x2(5)=[-1]. M
and k parameters equal to 6, and thus, Eq. (3) becomes

X2(k) = i (x2(n)e_j2”k”/6)

n=0

= 3 (x2(me ) ©)
n=0

Thus, from Eq. (7), X2(k) can be evaluated utilizing Euler’s relation in Eq. (6), as shown
below:
5

k=0; X2(0) = i (xZ(n)eO) = (x2(m)

n=0 n=0
X2(0) = x2(0) + x2(1) + x2(2) + x2(3) + x2(4) + x2(5)
X20)=1-1+1-1+1-1=0

5

k=1; x2=3 (xz(n)e‘f(”/3)”)

=0
X2(1) = { x2(0)e’ + x2(1)e_'/(%/3) + x2(2)e_"i(27%/3)
+x2(3)e™" + x2(4)e TP 4 x2(5)e 1)
(1) +(=1)[cos(7/3) - jsin(z/3)]+ (1) [cos(27/3) - jsin(27/3)]
X2(1) = +(=1)[cos(r) - jsin(z) ]+ (1)[cos(47/3) - j sin(47/3)]
+(—l)[cos(57r/3)—jsin(572'/3)]

1+ (~1)[0.5— j0.866]+[~0.5— j0.866]+ (~1)(~1)
X2(1) = . ) =
+[-0.5— j(~0.866)] + (~1)[0.5— j(~0.866)]
k=2; X22)=% (xz(n)e‘f el 3)”)

n=0
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J(27/3) Jj(47/3)

x2(0)e + x2(1)e + x2(2)e”’
+x2(3)e 2™ 4 x2(4)e ) 4 x2(5)e(1073)
M)+ (=D[cos(27/3) - jsin(2 7/3)]+ (1) [cos(47/3) - jsin(47/3)]
X2(2)

X2(2) = {

+(=1)[cos(27) - jsin(27) ]+ (1)[ cos(87/3) — jsin(87/3) ]
+(=1)[cos(107/3) — jsin(107/3)]
1+ (~1)[~0.5 - j0.866]+[~0.5— j(~0.866)] + (~1)(1) _

2 { +[-0.5- j0.866]+ (~1)[0.5— j(~0.866)]

k=3; X2(3) = i (x2(n)e_j("”))
n=0

x2(0)e” + x2(1)e~/( +x2(2)e
+x2(3)e 3" + x2(4)e747) 4 x2(5)e
(D) + (=D cos(z) - jsin(z)]+ (1) [cos(27r) — jsin(27)]
X2(3)

X2(3) = {

+(=1)[cos(37) - jsin(37)]+ (1)[cos(47) — jsin(47)]
+H(=1)[cos(57) - jsin(57)]
X2(3):1+1+1+1+1+1:6

k=4 X2(4)= 3 (x2(n)e i3} )

n=0
x2(0)e0 +X2(1)€7j(4”/3 +x2(2)efj(87r/3)
+x2(3)e” ]4”+x2(4)e j(167/3) +x2(5)e—j(20;r/3)
(D(1)+ (=D [cos(4/3) - jsin(4x/3)] + (1) [cos(8/3) ~ jsin(8/3)]
X2(4)

X2(4) = {

+(—1)[cos(47) - jsin(47)]+(1)[cos(167/3) - jsin(167/3)]
+(=1)[eos(2077/3) - jsin(207/3)]

o = JTHED[Z0-5 7(=0.866)]+[-0.5 - 0.866]+ (= 1)(1) _

S5 +[-0.5- j(~0.866)]+ (-1)[-0.5- j0.866]

k=5; X2(5) = i(xz(n)e J(s7/3)n )

n=0
Y25 - { 22000 + x2(1)e 76 4 xz(z)e*f(“’f“)
+x2(3)e 7 + x2(4)e P07 4 x2(5)e(2571)
MD) +(=D[cos(57/3) - jsin(57/3)]+ (1) [cos(107/3) - jsin(107/3)]
X205 = +(—1)[cos(57r) - jsin(Sn')] + (l)[cos(2072'/3) - jsin(207r/3)]
+(=1)[cos(257/3) - jsin(257/3)]
1+ (= )[0.5— j(~0.866)]+ [~0.5 - j(~0.866)] + (~1)(~1)

2(5) =
X2(5) {_,_[_(),5—]0.866]4-(—1)[0'5_j0'866]
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Thus, X2(k) is X2(k) =[0,0,0,6,0,0]. These values are in a rectangular co-ordinate form.
However, X2(k) can also be represented in a polar form as shown below,
X2(k)=0£0rad,0£07rad,0£0rad,6£0rad,0£0xrad,0£0rad

All values of both rectangular co-ordinate and polar forms are contained in Table 2 below.
The magnitude ([X2(k)|) and phase spectrums are plotted as shown in Figures 2 (c) and (e),
respectively.

Programmable Calculation

Figure 2 (a) reveals an alternative +1 and -1 signal, x2(n), with 6 samples taken. A
program for constructing this signal is given in Figure 2 (b). X2(k) is a DFT of this signal
and its magnitude spectrum (|X2(k)|) is illustrated in Figure 2 (c). The program shown in
Figure 2 (d) is employed to compute X2(k) and plot this magnitude spectrum (| X2(k))).

Table 2 provides all the values of x2(#) and its corresponding DFT (X2(k)). A phase
spectrum of X2(k) is determined and plotted in Figure 2 (e) using the program provided in

Figure 2 ().
Table 2 Values of x2(») in the spatial domain and X2(k) in the frequency domain.
nk | x2(n) | X2(k) (co-ordinate) | X2(k) (Polar)
1 1 0 0£0 rad
2 -1 0 0£0 rad
3 1 0 0£0 rad
4 -1 6 620 rad
5 1 0 0£0 rad
6 -1 0 0£0 rad

0.5

>> x2 =[1 -1 1 -1 1 -1]; % Create
alternative +1 and -1 signal x2(n)
>> stem (x2)

0.5 >> xlabel('n');

>> ylabel ('x2(n)"'");

x2(n)

| 2 3 ‘ 5 6

(@) (b)
Figure 2 (a) An altenative +1 and -1 signals, x2(n), in the spatial domain and (b) a
MATLAB® program for alternative +1 and -1 signals, x2(n).
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>> X2 = fft(x2);

= >> absX2 = abs (X2);

2 >> stem(absX2)

>> xlabel ('k');

1 >> ylabel (" [X2 (k) |");

(c) (d) /
Figure 2 (c) The magnitude spectrum, [X2(k) and (d) a MATLAB® program for the
magnitude spectrum, [X2(k)|.

1

0.5
=
=y _
z >> PX2 = phase (X2);
E >> stem (PX2)
05 >> xlabel ('k');
>> ylabel ('Phase (X2 (k)) ')
Bl 2 3 4 5 6

k
© o
Figure 2 (e) The phase spectrum of X2(k) and (f) a MATLAB" program for the phase
spectrum of X2(k).

2.3 Synthetic Cases for Large Sample Number (»)
Two examples for 1-D signals, when 7 is large, are provided as follows:

Example 1: Unit step signal, x3(#), with » = 200 samples.

In Figure 3 (a), in the first range of n samples (7 =1-100), the values of x3(n) are zero
and in the rest of the samples (# = 101-200), the values of x3(n) are one. A program for
generating this unit step function is given in Figure 3 (b).

According to the given program, zeros( ) and ones( ) functions are used to create the
unit step signal. A pair of numbers inside the parenthesis (i.e. (1,100)) of both functions,
indicates how many samples of zeros and/or ones are taken (i.e. in this example, it is 100
samples). Thus, the first line of the program creates 100 samples of both zeros and ones,
consecutively. A function of stem( ) is employed to plot a signal in a discrete form. The x-
and y- labels are inserted by employing the functions of x/abel( ) and ylabel( ), respectively.

Figure 3 (c) demonstrates the magnitude spectrum (|X3(k)|) of unit step signal x3(n). A
program for creating this |X3(k)| is revealed in Figure 3 (d). ff#( ) function is used to
compute a DFT of unit step signal (X3(k)). The magnitude spectrum of x3(#n) (|[X3(k)|) is
found by determining the absolute values of X3(k) and dividing these data by a maximum
value of X3(k) (normalizing data). The functions of abs( ) and max((max( )) are used to
determine the absolute and the maximum values of X3(k), respectively. All data, x- and y-
labels are plotted and inserted using the functions of stem( ), xlabel( ), and ylabel( ),
respectively.

SDU Res. J. 8 (2): May-Aug 2015
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0.8

o >> x3 = [zeros(1,100) ones(1,100)];
QM % Create unit step signal x3(n)
>> stem (x3)
0 >> xlabel('n');
’ >> ylabel ('x3(n)"'");
0 50 100 150 200

(a) (b)
Figure 3 (a) A unit step signal, x3(n), in the spatial domain and (b) a MATLAB" program
for unit step signal, x3(n).

Phase of X3(k) can be generated by using a program in Figure 3 (f). According to the
program, phase of X3(k) is found by utilizing the function of phase( ). Phase plot and labels
are completed by employing the last three functions as mentioned in previous paragraph.
Figure 3(e) shows this phase plot.

1 ; " >> X3 = fft(x3);
>> absX3 = abs(X3); % Determine all

08 absolute values of X3 (k)

| ‘ >> X3max = max (max (absX3)) ;%
EM' 1 Calculate max. value of |X3 (k)|
= >> magx3 = (absX3/X3max) ; %
=4 1 normalize all values of |X3 (k)|

>> stem (magX3)
>> xlabel ('k'");
>> ylabel (" [X3(k)1");

k

(c) (d)
Figure 3 (c) The magnitude spectrum, [X3(k)| and (d) a MATLAB® program for |X3(k)|.

4
4

[

<

>> PX3 = phase (X3);
>> stem (PX3)
>> xlabel('k');

. Phase(X3(k))

5

>> ylabel ('Phase (X3 (k))"');
% 5 100 150 200
k
(e) (®
Figure 3 (e) The phase spectrum of X3(k) and (f) a MATLAB® program for phase spectrum

of X3(k).
Example 2: Sine signal, x4(n), with » = 100 samples.

A sine signal, x4(n), in spatial domain is demonstrated in Figure 4 (a). A function of
sin( ) is employed to create this sine wave, which has 40 samples taken in each cycle.

Tutorial of One Dimensional Discrete Fourier Transform (DFT): Theory, SDU Res. J. 8 (2): May-Aug 2015
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Figure 4 (b) illustrates a program for constructing this sine signal. A range and step of
sample number (») is defined in the first line of the program. X4(k) is a DFT of x4(n) and its
magnitude spectrum (|X4(k)|) is revealed in Figure 4(c) by utilizing the program shown in
Figure 4 (d). A phase spectrum of X4(k) is given in Figure 4 (e) by employing the program

shown in Figure 4 (f).
I—— i
ost )l il il >> n = 0:0.005:0.5; % Define range
i f f f and step of sample number (n)
>> x4 = sin(0.2*pi*50*n); % Create

x4(n)

sine wave x4 (n)
¢ >> stem(x4)
05 il Tl >> xlabel('n'");
il >> ylabel ('x4(n)"');

W

0 0 4 6 8 100 120

1

n
(a) (b)
Figure 4 (a) A sine signal, x4(n), in spatial domain and (b) a MATLAB" program for sine
signal, x4(n).
1% 9
08
>> X4 = fft(x4);
_06 >> absX4 = abs (X4);
= : >> X4max = max (max (absX4));
=041 I >> magX4 = (absX4/X4max) ;
i | >> stem(magX4)
P i I >> xlabel ('k");
v) >> ylabel ('[|X4 (k) "),

0 20 40 60 80 100 120

k
(c) (d)
Figure 4 (c) The magnitude spectrum, |X4(k)|, of sine signal, x4(n) and (d) a MATLAB"
program for |[X4(k)|.

4

3

[~

—_

?aﬁ >> PX4 = phase(X4);
=1 | >> stem (PX4)
2 I >> xlabel ('k');
_sﬁ@ﬁﬁ” >> ylabel ('Phase (X4 (k))");
o e @ m owm m
k
(e) ()
Figure 4 (¢) The phase spectrum of X4(k) and (f) a MATLAB" program for the phase
spectrum of X4(k).

2.4 Real Cases for 1-D Signals
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This section provides a real-world application of 1-D signals. Two demonstrations are
provided as follows:

Example 1: Data a 60" row of Lena image, x5(), n = 128 samples.

Data at the 60" row of a Lena standard gray image of size 128x128 pixels, x5(n) is
selected as an example. Figure 5 (a) depicts a Lena image with pointed data at the 60" row
as a representative of an actual case of 1-D signal of 128 data points. White lines above and
below the 60™ row represent data from 59™ and 61 rows, respectively. These two rows of
data are set to 255, which correspond to the maximum value or the brightest point of the
image. A minimum value for the image pixel is 0, which corresponds to the darkest point in
the image. Thus, all data from these two rows appear as white lines in order to distinguish
the data from the 60" row from the other rows.

Figure 5 (b) illustrates a program to generate Figure 5 (a). An imread( ) function is
used to read a real size 512x512 pixels of the Lena image (Lena standard gray.tif) and
assign to a parameter “Imagel”. This image is then resized to 128x128 pixels employing a
function of imresize( ). However, two parameters (inside the parenthesis) are required for
this function. The first paramater indicates the input image, which needs to be resized (in
this case it is the parameter “Imagel”). The second parameter is the desired size (i.e.
128x128 pixels). This resized image is assigned to a parameter “A1”. The commands of
aal(61, ) =255 and aal(59, :) =255 are used to set all data from the 59™ and 61° rows to
255 (or the brightest points). A parameter “aal” in front of the parenthesis of both
commands is a dummy variable and can be arbitrarily assigned any new name. The image
is now ready to view by using a function of imshow( ).

Dataat —
the 60" row

>> Imagel = imread ('Lena_ standard gray.tif'); $%Read all data of
Lena image real size (512x512)

>> Al = imresize (Imagel, [128 128]);%Resize Lena picture to
128x128 and assign this resize image to a dummy variable Al

>> aal = Al; Assign aa equals to data in A

>> aal(6l,:) 255; % Set all data at the 61 row to 255

>> aal(59,:) 255; % Set all data at the 59" row to 255

>> imshow(aal) %Show Lena picture, which has all data the 59N
and 61°° rows set to 255

I oe

(b)
Figure 5 (a) The Lena image with pointed data at the 60™ row, x5(n), in the spatial domain
and (b) a MATLAB® program for creating the Lena image.

Figure 5 (c) shows a plot of the original data (spatial domain) from the 60" row for the
real case 1-D signals. From this figure, all values of the data are within the range of 0-255
(minimum and maximum values of image pixel). Figure 5 (d) provides a program to select
the data from the 60" row and plot them. A command on the first line of this program is
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used to select a data of row 60th. The other rows of Lena image can also be used by simply
changing the row number in the provided program.

A magnitude spectrum (|X5(k)|) of this 1-D signal is given in Figure 5 (e). A program
for creating this magnitude spectrum is shown in Figure 5 (f). A phase spectrum of X5(k) is
demonstrated in Figure 5 (g) by employing the program given in Figure 5 (h). All functions
of fft( ), abs( ), stem( ), phase( ), xlabel( ), and ylabel( ) are applied here again to obtain
both magnitude and phase spectrums.

200

(n),

>> x5 = A1(60,:); %Set B equals to
all data of row 60th of Lena, x5(n)
>> stem(x5)

>> xlabel('n');

>> ylabel ('Amplitude of x5(n)"'");

=
=

Amplitude of x5

o
2

0 20 40 60 80 100 120 140

(c) (d)
Figure 5 (c) Orignal data of Lena image by taking only data at the 60" row, x5(n) and (d) a
MATLAB" program for x5(n).

140007

12000

10000

= 8000 >> X5 = fft(x5);

= 6n0 >> absX5 = abs (X5);
>> stem(absX5)

>> xlabel('k'");

2000/ >> ylabel (" [X5(k) ")

[t BT

4000

% w w0 w1

k

(e) ()
Figure 5 (¢) The magnitude spectrum of Lena at the 60" row, |X5(k)| and (f) a MATLAB"
program for magnitude spectrum, | X5(k)|.

A
40

20

N
=

>> PX5 = phase (X5);

>> stem (PX5)

>> xlabel ('k");

>> ylabel ('Phase (X5(k))");

. Phase(X5(k))

—
=
=

[
=

-300 20 40 60 80 100 120 140

k
) (h)

Figure 5 (g) The phase spectrum of Lena data at the 60" row, X5(k) and (h) a MATLAB®

program for phase spectrum of X5(k).
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Example 2: Data from the 33" row of a Resolution chart image, x6(r), n = 128 samples.

In this example a Resolution chart of size 128x128 pixels, x6(n), is used as an
example: data from the 33" row is selected. Figure 6 (a) illustrates Resolution chart with
pointed data at the 33" row as a representation of 1-D signal. However, the actual size of
this image is 256x256 pixels. Thus, this image must be resized. Moreover, data from the
32" and 34™ rows are set to 255 (the brightest point) in order to distinguish a data from the
33" row from the other two. Figure 6 (b) reveals a program for generating the image in
Figure 6 (a). All functions in the previous example are reapplied here. The data at the 33™
row, x6(n), is plotted as shown in Figure 6 (c¢) using the program given in Figure 6(d).

A DFT of this data (X6(k)) is determined and its magnitude spectrum (|X6(k)|) is
plotted as demonstrated in Figure 6 (e). The program provided in Figure 6 (f) is employed
to complete this task. A phase spectrum of X6(k) is demonstrated in Figure 6 (g) by
employing the program shown in Figure 6 (h).

0 i >> Image2 = imread ('Resolution
Dataat — == 11 EII= chart.tif');
the 33" row . _"| I|I||I: >> A2 = imresize (Image2, [128
= H et BT 128]);
4=l =w= NZ >> aa2 = A2;
] —D >> aa2(34,:) = 255;
s =11 = >> aa2(32,:) = 255;
- >> imshow (aa?2)
(a) (b)

Figure 6 (a) The Resolution chart with pointed data at the 33" row, x6(n), in the spatial
domain and (b) a MATLAB® program for creating Resolution chart in Figure 6 (a).

300

250 R, TP il i Q oy

[
=
=

b
=

>> x6 = A2(33,:);

>> stem(x6)

>> xlabel('n');

>> ylabel ('Amplitude of x6(n)"');

=
=1

Amplitude of x6(n)

3
=

e"

0T A 60 8 100 120 140

(c) (d)
Figure 6 (c) Orignal data of a Resolution chart generated from the data at the 33" row, x6(n)
and (d) a MATLAB® program for x6(n)
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_g >> X6 = fft(x6);

i >> absX6 = abs (X6);
>> stem (absX6)

>> xlabel ('k');

>> ylabel ("|X6(k) ")

o O

20 40 60 80 100 120 140

k
(e) ()
Figure 6 (¢) The magnitude spectrum of the Resolution chart data from the 33" row, |X6(k)|
and (f) a MATLAB® program for magnitude spectrum, |X6(k)|.

==

20

>> PX6 = phase (X6);

>> stem (PX6)

>> xlabel ('k');

>> ylabel ('Phase (X6(k))"');

. Phase(X6(k))

020 40 60 80 100 120 140

k
@) (h)
Figure 6 (g) The phase spectrum of the Resolution chart data from the 33" row, X6(k) and
(h) a MATLAB® program for phase spectrum of X6(k).

3. Conclusion

The main objectives of this article were to provide the reader the 1-D DFT theoretical
concept and an implementation using the MATLAB" program. Therefore, several examples
on both 1-D synthetic and real-world cases were demonstrated. Numerous figures of spatial
and frequency domains were provided — accompanied by their cognate MATLAB"
programs in an easy to follow format.

Moreover, the authors also apply DFT in the research areas of the Compressive
Sensing (CS) [Ha, P. H., Lee, W. and Patanavijit, V., 2014; Patanavijit, V. & Ha, P.H.,
2013] for signal modeling in frequency domain and the signal registration [Patanavijit, V.,
2011] for reconstructing the higher resolution signal by using phase information.
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