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ABSTRACT: Let (G,‖ · ‖,+) be a normed group, where ‖ · ‖: G→ R. We study the equation

max{‖x + y‖,‖x − y‖}= ‖x‖+ ‖y‖ for all x , y ∈ G.

Without a commutativity assumption of the normed group G, we analyze the stability results and characterization of a
group-norm by the given equation.
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INTRODUCTION

Simon et al [4] gave the characterization f (g) =
|η(g)| for an additive function η: G → R such that
η(g1 + g2) = η(g1)+η(g2), which fulfills the equa-
tions

max{ f (g1− g2), f (g1+ g2)}= f (g1)+ f (g2), (1)

min{ f (g1− g2), f (g1+ g2)}= | f (g1)− f (g2)| (2)

for all g1, g2 ∈ G, assuming that the domain of f
is an abelian group G. However, according to the
stability results of Przebieracz [9], (2) is stable, and
she presented a general theorem that proves the
stability of (2), where f : R → R is considered as
a continuous function of real variables.

Gilanyi et al [5] took into account the general-
ized version of (1), that is

max{ f ((g1 g2)g2), f (g1)}= f (g1 g2)+ f (g2) (3)

for all g1, g2 ∈ G, and demonstrated its stability
for the real-valued function f : G → R under the
assumption of left identity, where G is considered as
a square-symmetric groupoid. Consequently, Volk-
mann [15] gave the generalization of (1) under the
condition that f (g1 g2 g3) = f (g1 g3 g2) holds for all
g1, g2, g3 ∈ G. Stability results in connection with
generalization of (1) can be found in [12], while
a generalized version of (1) without commutativity
condition can be seen in [14].

Furthermore, Redheffer in a joint paper with
Volkmann [10] gave the solution to a Pexiderized
version of (1),

f (x)+ g(y) =max{h(x − y), h(x + y)} (4)

for all x , y ∈ G, where f , g and h are mappings from
an abelian group (G,+) to R.

Since group-norms play an important role in es-
tablishing relation between norms and group struc-
tures; therefore, in the next section, it will be shown
that the proposed equation

‖x‖+ ‖y‖=max{‖x + y‖,‖x − y‖} (5)

for all x , y ∈ G, characterizes the group-norm.
Therefore, we established a reliable relation be-
tween normed-groups and functional equation (5)
through the characterization of a group-norm func-
tion from a normed group (G,‖·‖,+) to R¾0 defined
by ‖x‖ := |x | for all x ∈ G. A presentation of
our proposed definition in the form of group-norm
equivalent to (5) was investigated in [5] as

max{‖(g1 g2)g2‖,‖g1‖}= ‖g1 g2‖+ ‖g2‖ (6)

for all g1, g2 ∈ G.
The last section is devoted to the stability results

of (5), where (G,‖ · ‖,+) is a normed group. More-
over, we will analyze the stability of (5) for a real-
valued function defined on a normed group G. As a
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consequence of our main stability theorem of (5),
we obtain the stability results of (5) on a Tabor
weakly commutative group.

ANALYSIS OF (5)

Throughout this article, our normed group G will in
general be (G,‖ ·‖,+), and 0 is considered to be the
neutral element unless otherwise stated.

Definition 1 Let (G,+) be a group with the neutral
element 0, then we say its norm ‖ · ‖ : G → [0,∞)
is called a group-norm if, for any a, b ∈ G, it fulfills
the following properties:

(i) ‖a+ b‖¶ ‖a‖+ ‖b‖;

(ii) ‖a‖¾ 0, with ‖a‖= 0 if a = 0;

(iii) ‖− a‖= ‖a‖.

If (i) and (ii) are satisfied, then the norm ‖ · ‖
is known as a pre-norm; if only (i) holds, then we
say the norm ‖ · ‖ is a semi-norm. For instance, see
[2, 13]. A normed group is denoted by (G,‖ · ‖,+)
where ‖ · ‖ is a group-norm and (G,+) is a group.

Theorem 1 Suppose that (G,+) is a group. A map-
ping ‖·‖: G→R satisfies (5) if and only if (G,‖·‖,+)
is a normed group.

Proof : Suppose that (5) holds. Setting x = 0, we can
compute ‖0‖+ ‖0‖ = max{‖0‖,‖0‖} = ‖0‖, which
implies that ‖0‖= 0.

Also given condition yields that ‖x‖ + ‖x‖ =
max{‖x+x‖,‖x−x‖}=max{‖2x‖,‖0‖}¾ 0, which
gives that 2‖x‖ ¾ 0, so ‖x‖ ¾ 0. Since ‖x‖ ¾ 0
and ‖x‖ = 0 whenever x = 0, then we can see
‖2x‖¾ 0= ‖0‖, so we have ‖2x‖¾ ‖x − x‖, then

2‖x‖= ‖x‖+ ‖x‖=max{‖x − x‖,‖2x‖}= ‖2x‖,

therefore 2‖x‖= ‖2x‖.
Moreover, setting y = −x in (5) implies

that ‖x‖ + ‖ − x‖ = max{‖x + x‖,‖x − x‖} =
max{‖0‖,‖2x‖} = ‖2x‖ = 2‖x‖, which gives that
‖−x‖= ‖x‖. Furthermore, we can observe from (5)
that ‖x − y‖ ¶ ‖x‖+ ‖y‖ or ‖x + y‖ ¶ ‖x‖+ ‖y‖;
hence, in either case, the triangle inequality holds.
Hence (G,‖ · ‖,+) is a normed group. Conversely,
let G be a normed group defined by the group-norm
‖ · ‖. Obviously, ‖x‖+‖y‖=max{‖x − y‖,‖x + y‖}
for any x , y ∈ G. 2

Corollary 1 For a normed group (G,‖·‖,+), a group-
norm ‖ · ‖: G→ R fulfilling (5) is a conjugation and
abelian group-norm.

Proof : Let x , y ∈ G, then the proof of conjugation
group-norm consists of the following simple com-
putation:

‖y‖+ ‖− y + x + y‖
=max{‖y − y + x + y‖,‖y − y − x + y‖}
=max{‖x + y‖,‖− x + y‖}
=max{‖− y − x‖,‖− y + x‖‖}
=max{‖− y + x‖,‖− y − x‖}
= ‖− y‖+ ‖x‖
= ‖y‖+ ‖x‖,

Therefore, ‖−y+x+y‖= ‖x‖. Writing y+x instead
of x , we can obtain that

‖y + x‖= ‖− y + y + x + y‖= ‖x + y‖,

which implies that ‖x + y‖= ‖y+ x‖ for any x , y ∈
G. Thus, the group-norm is abelian. 2

Theorem 2 Let (G,‖ · ‖,+) be a normed group then
min{‖x − y‖,‖x + y‖} ¶ | ‖x‖ − ‖y‖ | holds for all
x , y ∈ G.

Proof : Since (G,‖·‖,+) is a normed group, a group-
norm ‖ · ‖: G → R satisfies (5). Making use of the
conjugation group-norm, we first compute that

2‖x‖= ‖x‖+ ‖x‖
= ‖x‖+ ‖− y + x + y‖
=max{‖x − y + x + y‖,‖x − y − x + y‖}
¾ ‖x − y + x + y‖.

Then we can obtain the required result by the fol-
lowing simple calculation:

max{‖x − y‖,‖x + y‖}+min{‖x − y‖,‖x + y‖}

= ‖x − y‖+ ‖x + y‖
‖x‖+ ‖y‖+min{‖x − y‖,‖x + y‖}= ‖x − y‖+ ‖x + y‖

min{‖x − y‖,‖x + y‖}= ‖x − y‖+ ‖x + y‖−‖x‖−‖y‖

=max{‖x − y + x + y‖,‖x − y − y − x‖}−‖x‖−‖y‖
=max{‖x − y + x + y‖,‖x −2y − x‖}−‖x‖−‖y‖
¶max{2‖x‖,‖−2y‖}−‖x‖−‖y‖
=max{2‖x‖, 2‖y‖}−‖x‖−‖y‖
= 2max{‖x‖,‖y‖}−‖x‖−‖y‖¶ | ‖x‖−‖y‖ |.

2
By adding a certain condition for Theorem 2, we
can extend the proof to remove the inequality. The
following definition will play a key role in the proof
of Theorem 3.
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Definition 2 ([7]) For a normed group (G,‖ · ‖,+),
we say a mapping ‖·‖: G→R satisfies condition (C)
if

‖u+ z+ v‖= ‖u+ v+ z‖ for any u, z, v ∈ G.

Obviously, any normed group (G,‖ · ‖,+) fulfills the
proposed condition (C) whenever the group G is
abelian.

Theorem 3 Suppose that (G,+) is a group and a
mapping ‖ · ‖: G→ R fulfills the given condition (C),
then (G,‖ · ‖,+) is a normed group if and only if the
group-norm is 2-homogeneous, and also

min{‖x − y‖,‖x + y‖}= | ‖x‖−‖y‖ | (7)

holds for all x , y ∈ G.

Proof : If (G,‖ · ‖,+) is a normed group, then it is
obvious that ‖0‖ = 0 holds and also ‖x‖ ¾ 0 for
any x ∈ G. Also we can obtain that ‖x‖ + ‖y‖ =
max{‖x− y‖,‖x+ y‖}; therefore, setting x = y = 0,
we can compute that ‖2x‖= 2‖x‖, i.e., group-norm
is 2-homogeneous. The following simple computa-
tion gives the proof of (7):

min{‖x − y‖,‖x + y‖}+ ‖x‖+ ‖y‖

=min{‖x − y‖,‖x + y‖}+max{‖x − y‖,‖x + y‖}
= ‖x − y‖+ ‖x + y‖
=max{‖x + y + x − y‖,‖x + y + y − x‖}
=max{‖x + y + x − y‖,‖x +2y − x‖}
=max{‖2x‖,‖2y‖}

min{‖x − y‖,‖x + y‖}=max{2‖x‖, 2‖y‖}−‖x‖−‖y‖
min{‖x − y‖,‖x + y‖}= | ‖x‖−‖y‖ |.

Conversely, assume that a group-norm fulfills (7)
and also is 2-homogeneous. Then we can see that

max{‖x − y‖,‖x + y‖}−min{‖x − y‖,‖x + y‖}
= | ‖x + y‖−‖x − y‖ |.

Applying (7) in the following computation, we ob-
tain that

max{‖x− y‖,‖x+ y‖}−|‖x‖−‖y‖ |= | ‖x+ y‖−‖x− y‖ |

=min{‖x + y + x − y‖,‖x + y + y − x‖}
=min{‖2x‖,‖x +2y − x‖}
=min{‖2x‖,‖2y‖}

max{‖x − y‖,‖x + y‖}= 2 min{‖x‖,‖y‖}+ | ‖x‖−‖y‖ |
max{‖x − y‖,‖x + y‖}= ‖x‖+ ‖y‖,

which implies that (G,‖·‖,+) is a normed group. 2

Corollary 2 If (G,+) is a group and a mapping
‖ · ‖: G → R fulfills the proposed condition (C), then
(G,‖ · ‖,+) is a normed group if and only if

‖x‖+ ‖y‖= ‖x − y‖+ ‖x + y‖− |‖x‖−‖y‖ |, (8)

for any x , y ∈ G, and also ‖0‖= 0 holds.

Proof : Assume that (8) holds and also ‖0‖ = 0.
Then (8) yields that

2 max{‖x‖,‖y‖}= ‖x− y‖+‖x+ y‖, x , y ∈ G. (9)

Since ‖0‖ = 0, replacing y with x , we can easily
compute that ‖2x‖ = 2‖x‖. Then replacing x with
x + y and y with x − y in (9), we have

2max{‖x − y‖,‖x + y‖}= {‖2x‖+ ‖2y‖}
= {2‖x‖+2‖y‖}

max{‖x − y‖,‖x + y‖}= ‖x‖+ ‖y‖.

Conversely, suppose (G,‖ · ‖,+) is a normed group,
then, by Theorem 3, we can determine that ‖0‖= 0,
and (8) also holds. 2

STABILITY OF (5)

To analyze the stability results of (5) involving vari-
ables x and y , first replacing y with x in (5), we will
find the stability result of (5) in a single variable x
in the following theorem.

Theorem 4 Suppose that (G,+) is a group and for
some δ ¾ 0 a mapping ‖ · ‖∗ : G→ R satisfies

|max{‖2x‖∗,‖0‖∗}−2‖x‖∗|¶ δ, x ∈ G, (10)

then, we can obtain a group-norm ‖ · ‖: G→ R of

max{‖2x‖,‖0‖}= 2‖x‖, x ∈ G, (11)

such that
−3δ ¶ ‖x‖−‖x‖∗ ¶ δ. (12)

Also, the group-norm ‖ · ‖ can be written as

‖x‖= lim
n→∞

1
2n
‖2n x‖∗, x ∈ G. (13)

By (11), ‖ · ‖ is uniquely determined, and by (12),
‖ · ‖−‖ · ‖∗ is also bounded.

Proof : First, setting x = 0 in (10) implies that
|max{‖0‖∗,‖0‖∗}−2‖0‖∗|¶ δ, therefore |‖0‖∗|¶ δ.
Additionally, (10) also gives that

−δ+2‖x‖∗ ¶max{‖2x‖∗,‖0‖∗}¶ δ+2‖x‖∗

−δ ¶ ‖0‖∗ ¶ δ+2‖x‖∗

−δ ¶ ‖x‖∗, for all x ∈ G. (14)
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Replacing x with 2x gives that −δ ¶ ‖2x‖∗, so we
can obtain

‖0‖∗ ¶ δ = 2δ−δ ¶ 2δ+ ‖2x‖∗

‖0‖∗ ¶ 2δ+ ‖2x‖∗ for all x ∈ G. (15)

By (10) and (15), we can compute

2‖x‖∗ ¶ δ+max{‖2x‖∗,‖0‖∗}
2‖x‖∗ ¶ δ+ ‖0‖∗ ¶ 3δ+ ‖2x‖∗

or 2‖x‖∗ ¶ δ+ ‖2x‖∗ ¶ 3δ+ ‖2x‖∗.

Joining both cases, we determine that

−3δ ¶ ‖2x‖∗−2‖x‖∗. (16)

By (10), we can see that max{‖2x‖∗,‖0‖∗} ¶ δ +
2‖x‖∗, which is possible whenever

‖2x‖∗−2‖x‖∗ ¶ δ. (17)

Inequalities (16) and (17) imply that

−3δ ¶ ‖2x‖∗−2‖x‖∗ ¶ δ for all x ∈ G. (18)

By (18), it can be observed that the mapping
‖ · ‖: G→ R given in (13) exists and ‖ · ‖ fulfills

‖2x‖= 2‖x‖ for all x ∈ G. (19)

Moreover, ‖ · ‖ satisfies (12). Also, replacing x with
2n x in (14) and dividing by 2n, then taking the limit
n→∞while utilizing (13), we can get that ‖x‖¾ 0
for all x ∈ G. Therefore, we get (11) from (19). In
view of (11) and using fact that ‖2x‖= 2‖x‖¾ 0 for
every x ∈ G, we can see the uniqueness of ‖ · ‖. 2

Stability results of (5) involving two variables
can be easily shown with the help of Theorem 4 as
follows.

Theorem 5 Suppose that (G,+) is a group and a
mapping ‖ · ‖∗ : G→ R satisfies

|max{‖x− y‖∗,‖x+ y‖∗}−‖x‖∗−‖y‖∗|¶ δ, (20)

for all x , y ∈ G and for some δ¾ 0. Then, there exists
a unique group-norm ‖ · ‖: G→ R of

‖x‖+‖y‖=max{‖x−y‖,‖x+y‖}, x , y ∈ G (21)

such that

−3δ ¶ ‖x‖−‖x‖∗ ¶ δ, x ∈ G. (22)

Also,

‖x‖= lim
n→∞

1
2n
‖2n x‖∗, x ∈ G. (23)

Proof : By Theorem 4, we can show the required
stability results. First, replacing y with x in (20),
and by Theorem 4 we can get a mapping ‖·‖: G→R.
Moreover, we show that this mapping ‖ · ‖ fulfills
(21). By replacing x with 2n x and y with 2n y in
(20) and dividing by 2n, then applying the limit
n→∞ and also utilizing (23), we get the required
result in the form of (21). 2

Theorem 6 Let (G,+) be a group. Assume that a
mapping ‖ · ‖∗ : G → R satisfies (20), then it fulfills
the proposed condition

lim
n→∞

1
2n

�

max{‖2n x −2n y‖∗,‖2n x +2n y‖∗}

−max{‖2n[x − y]‖∗,‖2n[x + y]‖∗}
�

= 0 (24)

if and only if (G,‖ · ‖,+) is a normed group.

Proof : Suppose that (G,‖ · ‖,+) is a normed group,
then (21) holds. Taking any elements x , y ∈ G, we
have
�

�max{‖2n x −2n y‖∗,‖2n x +2n y‖∗}

−max{‖2n[x − y]‖∗,‖2n[x + y]‖∗}
�

�

¶ |max{‖2n x −2n y‖∗,‖2n x +2n y‖∗}−‖2n x‖∗−‖2n y‖∗|
+ |max{‖2n[x− y]‖∗,‖2n[x+ y]‖∗}−‖2n x‖∗−‖2n y‖∗|
¶ δ+|max{‖2n[x−y]‖∗,‖2n[x+y]‖∗}−‖2n x‖∗−‖2n y‖∗|.

To obtain the required statement, first dividing both
sides by 2n, taking the limit n→∞, and using the
proposed condition (21), we can see that

lim
n→∞

1
2n

�

max{‖2n x −2n y‖∗,‖2n x +2n y‖∗}

−max{‖2n[x − y]‖∗,‖2n[x + y]‖∗}
�

= 0.

Conversely, suppose that condition (24) holds.
Replacing x with 2n x and y with 2n y in (20), then
taking the limit n→∞ after dividing by 2n, we have

lim
n→∞

1
2n

max{‖2n x −2n y‖∗,‖2n x +2n y‖∗}

= ‖x‖+ ‖y‖,

lim
n→∞

1
2n

max{‖2n[x − y]‖∗,‖2n[x + y]‖∗}

=max{‖x − y‖,‖x + y‖}.

By condition (24), we can compute ‖x‖ + ‖y‖ =
max{‖x − y‖,‖x + y‖}.

Also, the proposed condition (24) associated
with function ‖ · ‖∗ is not directly related to (G,+),
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but some valuable properties about G can be ob-
served. We have given below a modified condition
that is equivalent to the proposed condition (24).
Consider a subsequence m(n) of N such that

lim
n→∞

1
2m(n)

�

max{‖2m(n)x −2m(n) y‖∗,‖2m(n)x +2m(n) y‖∗}

−max{‖2m(n)[x − y]‖∗,‖2m(n)[x + y]‖∗}
�

= 0,

which implies the mapping ‖ ·‖∗. Moreover, it holds
because both of the limits

lim
n→∞

1
2m(n)

max{‖2m(n)x −2m(n) y‖∗,‖2m(n)x +2m(n) y‖∗}

and

lim
n→∞

1
2m(n)

max{‖2m(n)[x − y]‖∗,‖2m(n)[x + y]‖∗}

exist and are finite. 2

Corollary 3 Assume that a mapping ‖ · ‖∗ : G → R
satisfies (11). Then it fulfills the proposed condition

lim
n→∞

1
2n

�

max{‖2n x +2n y‖∗,‖2n x −2n y‖}

−‖2n[x + y]‖∗
�

= 0 for all x , y ∈ G, (25)

if and only if ‖x‖ + ‖y‖ = ‖x + y‖ holds for every
x , y ∈ G.

Remark 1 The proposed condition (24) satisfies
when G is an n-abelian group (a group G is known
as an n-abelian group if condition n(u+v) = nu+nv
holds for every integer n and for every u, v ∈ G, for
instance, see [1, 3]).

Remark 2 Proposed condition (24) also holds
when G is related to the class of groups Cn for every
natural number n belongs to N (Cn is a notation
for the class of groups, which fulfills the condition
nv+ nu= nu+ nv for every n ∈ N and u, v ∈ G).

Remark 3 If a group-norm ‖ · ‖ is abelian, then the
proposed condition (24) is also true.

Theorem 7 Assume that (5) is stable on a normed
group (G,‖ · ‖,+). Then a free abelian group H can
be embedded into G.

Proof : Let ‖·‖: G→R and for some δ¾ 0, we have

|max{‖x−y‖,‖x+y‖}−‖x‖−‖y‖ |¶ δ, x , y ∈ G. (26)

H is a torsion-free group because H is a free abelian
group. By using the concept of HNN-extensions, for
instance, see [6, 8]. Any torsion-free group H can
be embedded into G, if for every h ∈ H, there exists

an element g ∈ G such that g + h− g = 2h. If H is
embedding into G, then (26) implies that

|max{‖h+ g‖,‖h− g‖}−‖h‖−‖g‖ |¶ δ, h, g ∈ G. (27)

It will be shown that ‖ · ‖ is bounded. The proof
is obvious when δ = 0, so assume that δ > 0. More
explicitly, we show that ‖h‖< 2δ for every h∈ G. By
(27), we have two possible values that either | ‖h−
g‖ − ‖h‖ − ‖g‖ | ¶ δ or | ‖h+ g‖ − ‖h‖ − ‖g‖ | ¶ δ.
Considering the first possibility and setting h= g =
0, we can see that ‖0‖ ¶ δ. Setting g = h, we can
conclude that

| ‖0‖−2‖h‖ |¶ δ
|2‖h‖|− |‖0‖ |¶ δ

2‖h‖¶ δ+ ‖0‖
2‖h‖¶ δ+δ
‖h‖¶ δ.

For the second possibility, we can obtain

| ‖h+ g‖−‖h‖−‖g‖ |¶ δ. (28)

On the contrary, assume that ‖h‖ ¾ 2δ for some
h ∈ G. Setting g = h in (28), we have

| ‖2h‖−2‖h‖ |¶ δ
|2‖h‖−‖2h‖ |¶ δ

2‖h‖−δ ¶ ‖2h‖
3δ ¶ ‖2h‖.

Again, setting g = 2h in (28) we have

| ‖3h‖−‖h‖−‖2h‖ |¶ δ
| ‖h‖+ ‖2h‖−‖3h‖ |¶ δ

| ‖h‖|+ |‖2h‖ |¶ δ+ ‖3h‖
5δ−δ ¶ ‖3h‖

4δ ¶ ‖3h‖.

Repeating this process for g = 3h, we can conclude
‖4h‖ ¾ 4δ. Continuing the process, we can deter-
mine

(m+1)δ ¶ ‖mh‖,

where m = 1, 2, . . ., so we can see that ‖mh‖ is
unbounded when the value of m varies.

Also, let g ∈ G such that 2h = g + h− g. Then
2mh= g+mh− g for any integer m> 0. Moreover,
for any m, setting g = mh and h = mh in (28), we
have

| ‖2mh‖−2‖mh‖ |¶ δ
| ‖g +mh− g‖−2‖mh‖ |¶ δ. (29)
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Moreover, (28) follows that

| ‖g +mh− g‖−‖g‖−‖mh− g‖ |¶ δ and

| ‖mh− g‖−‖mh‖−‖− g‖ |¶ δ;

thus, we can get

| ‖g +mh− g‖−‖g‖−‖mh‖−‖− g‖ |
¶ | ‖g +mh− g‖−‖g‖−‖mh− g‖ |
+ | ‖mh− g‖−‖mh‖−‖− g‖ |
¶ 2δ. (30)

From (29) and (30) we have

| ‖g +mh− g‖−2‖mh‖+ ‖mh‖ |¶ 2δ+ ‖g‖+ ‖− g‖
‖mh‖¶ 2δ+ ‖g‖+ ‖− g‖+ | ‖g +mh− g‖−2‖mh‖ |
‖mh‖¶ 5δ,

for m = 1,2, . . ., which is a contradiction. This
completes the proof because the group-norm ‖ · ‖ is
bounded. 2

Corollary 4 Assume that (5) is stable on a normed
group (G,‖·‖,+), and H is a discretely normed abelian
group. Then H is embedding into G.

Proof : Since H is a discretely normed abelian group,
then H is a free group, for instance, see [11];
consequently H is embedding into G. 2

When we analyzed condition (24), it is noticed
that for the stability of (5), the given condition (24)
is necessary and sufficient. This condition leads to
the following definition.

Definition 3 ([16]) A group (G,+) is called weakly
commutative if for any a, b ∈ G, there exists n =
n(a, b)¾ 2 such that 2n(a+ b) = 2na+2n b.

When we consider Theorem 6 and Definition 3
about Tabor weakly commutativity, then it gives the
following theorem.

Theorem 8 Let (G,‖ · ‖∗,+) be a Tabor weakly com-
mutative, then the group-norm ‖ · ‖ satisfies (5).

Proof : From Theorem 6, it can be seen that condi-
tion (24) satisfies when G is weakly commutative.
To prove the second condition presented in Theo-
rem 6, we need to construct a sequence {m(n)},
which holds the second condition. For this purpose,
assume that m1 = n(x , y) for fixed x , y ∈ G. Con-
sidering the pair (2m1 x , 2m1 y), by our assumption,
there exists n(2m1 x , 2m1 y) such that

2n(2m1 x ,2m1 y)(2m1 x +2m1 y)

= 2n(2m1 x ,2m1 y)(2m1 x)+2n(2m1 x ,2m1 y)(2m1 y).

Since 2m1(x + y) = 2m1 x +2m1 y , so we get that

2m1+n(2m1 x ,2m1 y)(x + y)

= 2m1+n(2m1 x ,2m1 y)x +2m1+n(2m1 x ,2m1 y) y.

Again, assume that m1+ n(2m1 x , 2m1 y) =m2; there-
fore, we have 2m2(x + y) = 2m2 x +2m2 y . By mathe-
matical induction, it leads to the required sequence
{mn}. 2
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