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ABSTRACT: Let  be a triangular n-matrix ring (n = 2) and 6 : & — J a map. It is shown that 6 is a multiplicative
Jordan derivation if and only if one of the statements holds: (1) if & is 2-torsion free, then 6 is an additive derivation;
(2) if T is 2-torsion, under some mild assumptions, then §(X) = d(X) + y(X) holds for all X € 7, whered : 7 - F
is an additive derivation and y is a map from  into its center vanishing on all elements XY + YX for X,Y € . This

generalizes some related known results.
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INTRODUCTION

Let ./ be an associative ring or an algebra. For
any A,B € ./, the Jordan product of A,B is de-
fined by Ao B = AB + BA. Recall that a map 6 :
4 — o is called a multiplicative (or nonlinear)
derivation if §(AB) = 6(A)B + A5(B) for all A,B €
./ ; is called a multiplicative (or nonlinear) Jordan
derivation if 6(AoB) = 6(A)o B + Ao 6(B) for all
A,B € .¢/. Particularly, if 6 is also assumed to be
additive (linear), then & is called additive (linear)
derivation and Jordan derivation, respectively. The
questions of characterizing (multiplicative) Jordan
derivations and revealing the relationship between
Jordan derivations and derivations have received
many mathematicians’ attention (for example, see
[1-7] and the references therein).

In [8], the author introduced a class of rings
(or algebras) as follows. Let . and 9 be unital
rings (or algebras over a commutative ring %),
and .# an (., 8)-bimodule which is faithful as a
left .o-module as well as a right %-module. The
associative ring (or % -algebra)

Tri(.of, M, %)z{(g IBV[) ‘AE S MeEMBe 93}

under the usual matrix operations is called a trian-
gular ring (or algebra). Zhang and Yu [7] show
that every linear Jordan derivation on a triangular
algebra % is a derivation under the assumption that
the commutative ring £ is 2-torsion free. Recall that
aring .«/ is said to be 2-torsion free if 2a = 0 implies
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a =0 foranya € .«/; otherwise, ./ is 2-torsion. Xiao
[6] generalizes the result of [7] to multiplicative
Jordan derivations and obtains the same result.

Recently, Ferreira [9] defined a class of ring
called triangular n-matrix ring as follows.

Definition 1 ([9]) Let %,,%,,...,%, be unital
rings and ./;; be (%;, #;)-bimodules with .#;; = &;
forall 1 <i<j<n. Let g : A ®a, M = Mg
be (Z;, %;)-bimodules homomorphisms with ¢;;; :
‘%i ®@i '//lij i ‘//tij and (pijj : '//tij ®@j ‘%j — ‘//tij
the canonical multiplication maps for all 1 <i <
j <k <n. Write ab = ¢;;(a®b) for all a € .4;;
and b € M. Assume that .#;; is faithful as a left
2;-module and faithful as a right 2;-module for all
1<i<j<n. Let T = Z,(%;; M;;) be the set

ry My myp—1) my,

0 Taa My(p—1) my,
”_ { . | .

0 O Ttn—1)(n—1) Mn—1)n

0 o .- 0 r

nn

riiéﬂi, mijE.%ij, 1<l<]<n}
Furthermore, assume that a(bc) = (ab)c for all a €
-/ﬂik,be//tkl; andce.ﬁl]‘ with 1 <i<k<I<
j < m. Then, with the usual matrix operations,  is
called a triangular n-matrix ring.

It is obvious that upper triangular matrix rings
T.(#) with n = 3 over a unital associative ring %
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are triangular n-matrix rings; and that triangular 2-
matrix rings are usual triangular rings. However, for
n = 3, a triangular ring may not be a triangular n-
matrix ring; conversely, a triangular n-matrix ring
may not be a triangular ring (see Example 2.1 in
[10]). For some results on triangular n-matrix rings,
see [9,11].

The purpose of the present paper is to discuss
the structure of multiplicative Jordan derivations on
triangular n-matrix rings for any n = 2. Assume that
6 is a map on a triangular n-matrix ring 7. We
show that & is a multiplicative Jordan derivation
if and only if one of the following statements is
true: (1) if & is 2-torsion free, then & is an additive
derivation; (2) if & is 2-torsion, then & has the
form 6(X) =d(X)+vy(X) for all X €  under some
mild assumptions on &, where d is an additive
derivation on &, and y is a map from & into its
center vanishing on all elements XY +YX forX,Y €
T.

MAIN RESULT

For 2-torsion free triangular n-matrix rings, we have
the following result.

Theorem 1 Let J be a 2-torsion free triangular n-
matrix ring (n = 2). Thenamap 6 : T = T is a
multiplicative Jordan derivation if and only if 6 is an
additive derivation.

Note that, if a ring & is 2-torsion, then for any
elements T, S € &, itis clear that TS+ST = TS—ST.
In this case, Jordan derivations and Lie derivations
are equivalent. Thus, by Theorem 2.3 in [12],
we can give the characterization of multiplicative
Jordan derivations on 2-torsion triangular n-matrix
rings.

Fix any i € {1,2,...,n}. Let E; stand for the
nontrivial idempotent in & whose elements with
(i,1) position 1 and the rest 0. Write P; = E; + E, +
-+++E;and Q; =I—P,.

Theorem 2 Let I be a 2-torsion triangular n-
matrix ring (n = 2). Assume that P[%]EZ’(?)P[%] =
Z (P17 Pryy) and Qu Z(7)Q3y = Z(Qr317 Q).
Then a map 6 : I — J is a multiplicative Jordan
derivation if and only if 6§(X) = d(X) + y(X) holds
for all X € I, where d : 7 — T is an additive
derivation and y : 7 — Z(J) is a map vanishing on
any [X,Y]=XY +YX. Here, [s] is the integer part
of s and #(T) is the center of 7.

Particularly, if n = 2, we can obtain a complete
characterization of multiplicative Jordan deriva-
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tions on triangular rings, which is a generalization
of the related results in [6, 7].

Corollary 1 Let .« and % be unital rings, and A
be an (.o, $)-bimodule, which is faithful as a left
«/-module and also as a right B-module. Let U =
Tri(.of, M, B) be the triangular ring. Then a map
6 : U — 2 is a multiplicative Jordan derivation if
and only if the following statements hold:

() if % is 2-torsion free, then 6 is an additive
derivation;

(ii) if % is 2-torsion, P%(% )P = #(P% P) and (I—
P)Z#(%)(I—P)=Z((I—P)%(I—P)), then 6 =
d+y, where d : % — % is an additive derivation
and y : % — %¥(%) is a map vanishing on all
commutators.

Setfor1<i<j<n,

| my;, if (k,t) = (1, ),
e = {o, if(k,t);é(i,j),} <7

Then we can write 7 =Y, .. i<n 7ij- Obviously, for
any element a;; € 7;, a;;a;; = 0 whenever j # k.

Denote by .«f; = P,TP;, B, =Q;7Q; and ; =
PTQ; (i € {1,2,...,n}). Then & can also be
written as 7 = .o, +.#;+ 9B, for each i. In this paper,
if no confusion occurs, for any A; € .«f;, M; € .#; and
B; € &,, we always identify

Tij= {(mkt)

ryp My my;
0 T My
Ai = . >
0 0 Tii
My Myiyo My,
Myip1 Myiyo My,
M ~
i . . . >
m;;.1 Myigp m;,
and
Tivli+1  Mit1i+2 m;,
0 Tiy2i+2 Miyon
B =
1 . .
0 0 "'nn

Proof of Theorem 1

The “if” part is obvious. For the “only if” part, we
will prove it by checking a series of claims. Firstly,
letie{1,2,...,n}.

Claim 1. For any A; € .«;, M; € M#; and B; € %;, we
have
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(1) Q;6(A)Q; =0;
(ii) P;6(B;)P; =0;
(iii) P;5(M;)P; = Q;8(M;)Q; = 0.

It is clear that 6(0) = 0. For any A; € .¢/, since
A;0Q; =0, one gets

0=0(A;0Q;)=06(A)oQ; +A;006(Q;)
=P;0(A;)Q; +2Q;6(A)Q; +A;0(Q;) +6(Q)A;.

Multiplying by Q; from the two sides in the above
equation, and by the 2-torsion freeness of &, one
has Q;6(4;)Q; = 0.

Similarly, by using the relation P; o B; = 0, one
can show P;6(B;)P; = 0. So, the statements (i)—(ii)
are true.

For any M; € #;, we have

o0(M;)=06(P;oM;)=06(P;)oM; +P;056(M,)
= 6(P)M; + M;6(P;) + 2P;6(M;)P; + P;6(M;)Q;.

Multiplying by P; and Q; from the two sides in the
above equation, respectively, one gets P;6(M;)P; =0
and Q;6(M;)Q; = 0. So, the statement (iii) is true,
and the claim holds.

Now, define two maps d;,8; : & — 7 by

i) =[56(P),X] and &,(X) = 5(X)+d;(X). (1)

It is easy to check that d; is an additive derivation
and 6; is a multiplicative Jordan derivation. Then,
Claim 1 is also true for §;, that is,

Q;6,(A;))Q; =0, P;6,(B;)P; =0,
P;6,(M;)P; =Q;6,(M;)Q; =0. 2)
So
6;(P)=056(P))+d;(P))=06(P,)+[6(P;), P;]=P;6(P;)P;.
This yields that
6;(P;) = P;6(P;)P; = P;6;(P;)P;. 3

We will discuss the properties of &; for
i€{1,2,...,n} by Claims 2-5.

Claim 2. For any A; € ., M; € M;, and B; € $B;, we
have

() 6,(M;) € M;, 5;(A;) € ., and 6,(B;) € B;;
(i) 6;(P;)M; = M;6,(Q;) =0.
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By (2), it is true that 6;(M;) € .#;. By (2)-(3),
one has

0=10;(P;oQ;) = 6;(P;)oQ;+P;25,(Q;) = P;6,(Q;)Q;,

and so 6;(Q;) = Q;6;(Q;)Q;. Thus, for any A; € ./,
by (2) again, one obtains

0=106;(A;°Q;) = 6;(A;)oQ;+A;26,(Q;) = P;5;(A))Q;.

It follows that §;(A;) = P;6;(A;)P; € ;.
Similarly, one can show 6;(B;) = Q;6;(B;)Q; €
B; for all B; € %;. The statement (i) is true.
Finally, for any M; € #;, by Claim 2(i), one gets

0;(M;) = 6;(P;oM;) = 6;(P;)oM; + P; 0 5,(M;)
= 6;(P)M; + 6;(M;)
and
0{(M;) =6;(M;0Q;) =6;(M;)oQ; + M, 06,(Q;)
=6;(M;) + M;6,(Q,),

which imply that 6;(P;)M; = M;6,(Q;) = 0. So, the
statement (ii) is true.

Claim 3. For any A; € .«f;, M; € M;, and B; € %5, we
have

@ 6;(A;+M;) € o+ M; and
6;(M;) = P;6;(A; + M;)Q;;

(ll) 5i(Mi +Bl) S .//tl' + ‘%i and
6;(M;) = P;6,(M; + B;)Q;-

We only give the proof of (i). The proof of (ii)
is similar and we omit it here. For any A; € .«/; and
M; € #;, by Claim 2, we get

0;(M;) =6,(M;0Q;) =6;((A; + M;)°Q;)
=0;(A; + M;)oQ; +A;06;(Q;)+M;06,(Q;)
=P;6,(A; + M;)Q; +2Q;0,(A; + M;)Q;.

It follows from Claim 2() and 2-torsion

freeness Of y that 51(Ml) = Pi5i(Ai + Mi)Qi
and Qiéi(Ai +MI)Q1 =0.

Claim 4. For any X =A; + M; + B; € 7, we have
D P;6;(X)Q; =6;(PXQ;);

(i) E.(6;(A;+M;+B;)—6;(A;)—6,(M;)—6;(B;))E, =
0, wheret=1,...,n.
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For any X =A; + M; +B; € 7, Claim 2 gives

6;(2A;+M;)=6;(XoP)=6;(X)oP;+X 0 5,(P,)
=2P,6,(X)P; + P;56;(X)Q; +A;6,(P)P; + P;6,(P)A;  (4)

and

6;(2A; + M;) = 6,((A; + M;) o P;)
=6;(A;+ M;)o P+ (A + M;) 0 5,(P)
=2P,;6;(A;+M;)P;+P;5,(A+M;)Q;+A;5,(P;)P;+P;5,(P)A,;.
(5)

Comparing (4)—(5) and Claim 3(i) gives

P;6,(X)Q; = P;5;(A; + M; + B;)Q;
=P;6,(A; + M;)Q; = 6;(M;) = 6,(P.XQ;)

and
2P;6;(X)P; = 2P;6;(A; + M;)P;. (6)

Since 7 is 2-torsion free, (6) implies

P;6;(X)P; = P;5;(A; + M;)P;. (7)
Next, take any M, € .#;. Note that
5,((A+M;)oM]) = 5,(A;+M;)oM;+(A;+M; )05, (M)
and
5:((AtM;)oM[)=5(A;0M;)=5(A;)oMHA;05,;(M]).

Combining the above two equations, Claim 2(i) and
Claim 3(ji) yields
(6:(A;+M)—56,(A)—6,(M)M/ =0, VM€ #,.

Moreover, since #;; is a faithful left #;-module, one
can show thatfort =1,...,1,

E (6,(A; +M;)—6;(A;)—6,(M;))E, = 0. ®

By the fact P;6;(B;)P; = 0 and (7)—(8), one achieves,
fort=1,2,...,1,

E.(0;(A/+M+B;)}-0,(A;)-06,(M;}-0,(B;))E,=0. (9)

Finally, by calculating 6;(M; o (M; + B;)), a sim-
ilar argument to that of the above gives, for
t=i+1,...,n,

E (6;(A+MAB;}-5,(A;)-6;(M;)}-6,(B;))E,=0. (10)

It follows from (9)-(10) that E,(5;(A; + M; + B;) —
51(A1)_61(Ml)_51(31))Et =0 hOldS for t= ]., N
The claim holds.
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Claim 5. §; is additive on ;.

For P; and any M; € .#;, on the one hand, by
Claim 4(i), one has

6;(2P;) = 6;((P; + M;) o (P;—Q;))
=0;(P;+M;)o(P;—Q;)+ (P;+ M;)06;(P,—Q;)
= 2P;6;(P; + M;)P; + 2P;6;(P; —Q;)P;

+P;6;(P;—Q;)Q;+M;6,(P;—Q;)Q; +P;6,(P;—Q;)M;.

On the other hand, by Claim 2(i) and Claim 4(i),

one has

6;(2P;) = 6;(P;o(P;—Q;))
=06;(P)o(P;—Q;)+P;006,(P,—Q;)
= 2P;6,(P;)P; + 2P;6,(P; — Q;)P; + P;5,(P; — Q;)Q;
= 261(P1)+2PI5I(P1_Q1)p1'

Comparing the above two equations yields

P;5;(P; + M;)P; = 6,(P;)

by the 2-torsion freeness of 7, which together with
Claim 3(i) and Claim 4(i), implies that

6;(P; + M;) = P;6;(P; + M;)P; + P;5;(P; + M;)Q;

Symmetrically, one can show that
6;(M; +Q;) = 6;(M;) + 6;(Qy)- (12)

Now, for any M;,M; € .#;, by Claim 2 and
(11)-(12), one achieves

§;(M; + M) = 5,((P; + M;) o (M] +Q;))
= 5;(P;+M;) o (M{+Q;)+(P;+M;) 0 5;(M/+Q;)
=(6,(P)+6,(M;))o (M +Q;)
+(P;+M;) o (5;(M))+5,(Q)))
= 6;(M;) +6;(M,),

that is, 6; is additive on .#;, completing the proof
of the claim.

From now on, let i € {2,...,n—1}. Define
another maps 7; : 7 — J by
7;(X) = 6:(X)+[6:(P),X]. (13)

By the same arguments as those of Claims 2-5 for
6;, we can prove that 7; is also a multiplicative
Jordan derivation satisfying 7;(P;) = P;7;(P;)P;,
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and Claims 2-5 still hold for the map ;.

Claim 6. For any M; € .#; we have
6,(M;) = 7;(M;). Therefore, &, is additive on
M.

Take any Mi < ‘ﬂi' As 51(Ml) = Ti(Mi) —_
[6:(P;),M;] € M, it is true that
P;6,(M)Q; = 61(M;) = 6,(P; o M;)
=64(P;) o M; + P; 0 61(M;)
= 61(P,)M; +M;6,(P;) + P;6,(M;)Q;.

This means
61(P;)M; + M;6,(P;) = 0.
Also note that

o 2 7(P;)=61(P;)+[6:(P,),P;]
=P;6,(P;)P; +Q;6,(P)Q;,

which implies Q;6,(P;)Q; =0. So

M;5,(P)=0=26,(P)M;, VYM;e.#;. (14)

It follows that &;(M;) = 7;(M;). Hence &, is
additive on ;.

Claim 7. For any X = A, + M; +B; € 7, we have
61(X) =61(A1) +6,(M;) + 61(By).

Forany X =A,+M;+B; =A;+M;+B, €7, let

Hy =6,(X)—6,(A1)—6,(M;)—64,(B;) and
K =1:(X)—7;(4) — 7:(M;) — 7:(By).

Our goal is to show that H; = 0. In fact, by (13),
one has

H; —K; = 0:(X)—7;(X)—6:(A1) + 7:(4))
—01(My) + 7:(M;)—81(B1) + 74(B;)
=—[6:1(P), X]—(7:(A)) —[6:1(P), A1 D + 7:(4))
—(7;(M7)—[61(P;), M1 D+(81(M;)+[6:(P;), M;])
—(7i(B1)—[6,(P;), B1]) + 7:(B;)
=—7i(A1) + 7;(A;) — 7;(M;) + 6.(M;)

+[61(P), M;]—7;(By) + 7:(B;). (15)
Observe that, by Claim 2(i) for 7;, one gets
7,(A) =Pit;(A)P;, 7(A)=P1(A)P, (16)

7:(B;) = Q;7:(B;)Q;;
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by (13) and Claim 2(i) for &, one has

7;(My) = 6,;(M;) +[6,(P,),M;] € M; a7

and by Claim 6 and Claim 2(i) for &;, one gets

01(M;) = 6,(P;M;P;) + 6,(P1M;Q;) + 61(Q: M;Q,)
=6,(PM;Q,) +6,(Q: M;Q;)

€ My +6,(Q M;Q,). (18)

Now, combining Claim 4(i) and (13)-(18) yields

E;,(H, _Ki)Ej = Ei51(Mi)Ej_EiTi(B1)Ej
= E;01(Q1M;Q,)E;—E;P;7;(B)Q;E;
= E;61(Q1M;Q)E;—E;7;(P;B,Q;)E;
= E;i(6:(Q1M;Q1)—7;(Q1 M;Q,))E;
=E[QM;Q;,6,(P)]E; =0, (19)

where j =i+1,...,n. Here, the reciprocal 3rd equa-
tion is due to QM;Q; =PB1Q; € > _, > T ini-

On the other hand, by Claim 4(i) and Claim
2(i) for t;, we know that P,K;Q; = 0, which implies
E,K;E; = E;P;K;Q;E; =0 for j=1i+1,...,n. Hence
(19) reduces to E;H,E; =0.

Also note that PH,Q; = 0 and E,H,E, =0,
t =1,...,n, by Claim 4 and Claim 2(i) for &;.
Hence H; = 0, completing the proof of the claim.

Claim 8. 6, is additive on .
We will prove the claim by several steps.

Step 8.1. &, is additive on ..
By Claim 5, this is true.

Step 8.2. §; is additive on ..
Take any A;,A] € ./ and any M; € .#,. By
Claim 2(i) and Step 8.1, we have

5,1((A; +A)) o M)
=61(A) +A) oMy + (A +A]) 0 5,(M;)
=01(A +A/1)M1 + (4 +A/1)51(M1)
and
51((A +A)) o M) = 6,(A; M, +A | M;)
=06,(A;oM;)+ 51(A/1 oM;)
= 51(A1)M1+A151(M1)+51(A/1)M1+A/151(M1)-

Combining the above two equations gives
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M, € M, . Since ,; is a faithful left #,-module,

Step 8.3. §; is additive on %,.
For any By, B; € 98, and any M; € .#,, by Claim
8.1, one obtains

51(M; o (B, +B)))
=61(M;)o(B;+B})+M,;06,(B; +B))
= 6,(M;)(B; +B})+M;5,(B; +B))

and

61(M; o (B, +Bi)) =6,(M;B, +M1Bi)
=6,(M; 0By)+06,(M, OBi)
= &,(M;)B;+M;5,(B,)+6,(M;)B;+M,;5,(B,),

which implies M;(6,(B,+B;)—6,(B;)—5,(B})) =0.
It follows from the fact .4, is a faithful right %,-
module that, fort =2,...,n,

E.(51(B; +B})—5:(B1)—61(B)))E, =0. (20)

On the other hand, by Claim 4(i) for 7;, Claim 5 for
T;, and (13), one obtains
P;5,(B, +B)Q; = P,(7;(B, +B})—[5,(P,), B, + B{Q;
= P;7(B; +B))Q; — P,([6,(P), B; + B ])Q;
=7,(P,(B; +B;)Qi)_Pi([él(Pi):Bl])Qi
—P,([6,(P), B{]DQ;
=1,(P;B;Q;)—Pi([6,(P)),B; DQ; + Ti(PiBiQi)
—P,([5,(P),B;DQ;
= P,(7,(B,)—[6:(P,), B 1)Q;
+Pi(7:(B))—[8,(P,), B Q;
=P,5,(B,)Q; +P;6,(B))Q;,

which implies that, fori =2,...,n—1,

Py(81(B; +B})—51(B1)—61(B)))Q; =0. (21)

Combining (20)-(21) yields &,(B; +B;)—61(B;)—
61(31) =0.

Step 8.4. §, is additive on 7.
For anyXl :A1+M1+Bl S g aI‘ldX2 =A/1+M{+
B} € 7, by Claim 7 and Steps 8.1-8.3, we achieve

51(X; +X,) =6,(A; + M, +B; +A} + M, +B})
=6,(A +A))+6,(M; + M) +6,(B; +Bj)
=61(A)) +6,(M;)+6,(B) + 5, (A])
+51(M{)+61(Bg)
=061(X1) +61(Xy).
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Claim 9. 6, is a derivation on 7.
We will prove the claim by several steps.

Step 9.1. For any M;,M; € .#,, we have
61 (M M) = &, (MM, + M;6,(M;) = 0.
This is obvious by the fact §,(.#;) C #;.

Step 9.2. Forany A, A € ./, and any M, € ./, we
have
01(A1M;) = 61(A;)M; +A,6,(M;) and
51(A1A]) = 61(A1)A] +A;,61(A).
Take any A;,A]| € ./, and any M, € .#,. By
Claim 2(i), one has
51(A1AT M) = 51((A147) o M)
= 51(A1A/1) oM; + (AlAll) 061(M;)
= 5,(AA))M; +A A5, (M,); (22)

particularly, we have 6,(A;M;) = 6,(A;)M; +
A;6,(M;). On the other hand, one gets

51(A1A/1M1) =6,(4A; °A/1M1)
=51(A)) o (A]M;) +A, 05,(A|M;)
= 51(A1)A/1M1 +A1(51(A/1)M1 +A/151(M1))

= 51(ADA| M +A, 6, (A))M; +A, A5, (M;).  (23)
combining (22)-(23) yields (5,(A;A])—61(A;)A] —
A5, (A)D)M; = 0 for all M; € 4. Since
M, is a faithful left %;-module, we obtain
61(A1A]) = 61(A)A] +A,6,(A).

Step 9.3. For any B,B; € %, and any M, € ./,
we have

6,(M;B,) = 6,(M;)B; + M;6,(B;) and
51(3131) = 51(31)31 +Bl61(B£)-

Taking any By,B] € %, and any M; € .#,, by
the same arguments as those of Step 9.2, we can
prove that

0,(M,By) = 6,(M;)B; + M;6,(B;) and
M,(6,(B,B;)—6,(B,)B; —B,5,(B})) = 0.

Since .;; is a faithful right %;-module, one gets for
t=2,...,n,

E.(6,(B,B})—5,(B;)B;—B,5,(B}))E, =0. (24)

Now, writing By = (by;),x, and By = (b!,),x,; then

BB, = . BuB,= . ByBj,

2<k<I<n, 2<k<I<t<n
2<s<t<n
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where By, is the element with (k, [) position b, ; and
other positions 0. Thus, to show that &,(B;B;) =
61(B1)B] + B16,(B}), by the additivity of &,, one
only needs to check that &, satisfies the following
equations:

{61(Bk13;t) =5,(B)B;, +Bud, (B and

51(Bi)B;, + By 61(B.,) =0,

forall2<k<I<t<nand2<k<I<n,2<s<
t < nwith | #s, respectively.

Observe that, by taking B; = By, and B] = E;
with k # t in (24), one achieves

0 = E{(61(BikEy) — 01 (B ) Ex — Biic 61 (Ei))E,

= Et51(Bkk)Et7

that is,
E.851(Bi)E, =0,

t,ke{2,...,n}, t#k. (26)

Step 9.3.1. For any By, B/, with k <'s, we have
0= 61(Bkk)B;5 +Bkk51(B;5) and
51(BL)By =B, 5, (By) = 0.

For By and B, with k <'s, we have

0=56,(Byx ©B.) = 6,(Bx) ©B. + By 0 51(B.,)
= 6,(Bri)B., +B..5,(Bik)

+Bkk51(3;5) + 51(B;S)Bkk- @27

Note that (26) implies

s—1

51(Bw)B., € > . T, BL.51(Bi)
j=2

€ Z %,Bkk&(Bs’s)

j=s+1
n k=1
€ D, Ty 51(BBu € D Ty
j=k+1 j=2

These and (27) mean that &, (By)B., + By 51(B.) =
0 = B;61(Bik) = 61(B,)Bi-

Note that, by Step 9.3.1, one can check that, for
k=2,...,n,

01Bk) € Tox ++* + T + Tiesy +++* + T (28)

Step 9.3.2. For any By, B/, with k <l ands < t, we
have

(1) B;t51(Bkl) = 61(Bs/t)Bkl =0ifk<sork= S,
s<t;
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(11) 51(Bkl)B;[ = Bklél(B;[) =0ifk>sork= S,
k<l

Note that, by Claim 6 (that is, §;(M;) = 7;(M;)
for all M;), we know that &,(By;) € 4 N %, holds
for all B; with k < [. In addition, by (28), it is true
that B],5;(By) = 0 for k <s. Now, the step is easily
checked.

Step 9.3.3. For any By, and B;,, we have
51(BixByy.) = 61(Bii)Bry + Bii61(By)-
For any By, By, by Claim 8, one gets

261 (Byk) = 61(Byx © Ex)
= 61(Byk) © E + By © 61 (Ey)
= 61 (Bir)Ex + E01(Byx) + By 61 (Ex)

+51(Ek)Bkk' (29)

Multiplying respectively by E,, t =2,...,k—1, and
E, from the left and the right in (29), one obtains

Etél(Bkk)Ek = Etsl(Ek)BkkJ t= 2, ey k— 1, (30)

multiplying respectively by E, and E,, s = k +
1,...,n, from the left and the right in (29), we get
Ekgl(Bkk)ES = Bkkél(Ek)ESﬂ S = k + 1, R (31)

Thus, (30)-(31) imply

E,(61(BiB1i) — 81 (Bii)Bry — Biic 61 (B, ) Ex
= Etél(BkkB]ik)Ek _Etél(Bkk)Bllck
=E,5,(E)BiBy;, —E.81(Ex)BiiB;,, =0 (32)

and

E(81(BiByy )0 1 (Bii BB 61 (B ))E;=0 (33)

fort=2,...,k—1lands=k+1,...,n. In addition,
by (28), it is clear that

81(BiBry) — 81(Biie)Bry — Biic51(Byy.)

€ T+ + T+ Ty + 7+ T (34)

Now, combining (32)-(34) and (24) gives
51(BixByy.) = 61(Bii)Bry + B 61(By)-

Step 9.3.4. For any By, B;, with k < t, we have
61(BiBy,) = 61(Bik)By, + B 61(By,)-
By (28) and the fact &, (By;) € 4, N%B;, we have

51(BuBy.,)=061(BrioBy, ) =61 (Byr)oBy +Byi061(By,)
= 61(Byi)By, By, 61(Bi)+Bi61(By, ) +61 (B, Bk
= 61(Byi)By, + Br61(By,).


http://www.scienceasia.org/
www.scienceasia.org

ScienceAsia 46 (2020)

A similar argument to that of Step 9.3.4 can
give the following two steps.

Step 9.3.5. For any By, B;, with k < I, we have
61(ByBy;) = 61(By)Bj, + By 51(By)).

Step 9.3.6. For any By, B;, with k <1 < t, we have
61(BB;,) = 61(By)B;, + By 51(Bj,).

Step 9.3.7. For any By, B/, with k <[, s <t and
l 7é S, we have 51(Bkl)BS/t +Bk151(Bs/t) =0.
In fact, if k < I <s < t, by Step 9.3.2(i), one has

0=56,(By ©B;,)=6,(By)oB,, +By05,(B.,)
= 6,(By)B.,+B.,6,(Bx)+B6,(B.,)+5,(B.,)By
= 6,(By)B;, + B 6,(B.,). (35)

Similarly, if k Ss<I<t,k<s<t<lork<s<
t <1, one can check that §,(By;)B., +By;5,(B.,) =0.
Next, if k =s =t < I, we have

51(ByBi) = 61(By; ©By,)
= 61(By)By +B;61(Bi)+By 81 (B, )+61 (B, )Br,

and Step 9.3.4 gives 6;(By)B;, + Bi61(By,) = 0.
Similarly, if s < k and [ # s, by considering subcases
sSkst<l,ssks<I<t,ands<t<k<] respec-
tively, one can show that &,(By;)B., +By;6,(B.,) = 0.
The substep is true.

Now, combining Steps 9.3.1-9.3.7, and by a
bald calculation, one can show that (25) holds,
completing the proof of Step 9.3. It follows from
Claim 8 and Steps 9.1-9.3 that &, is a derivation.

Claim 10. 6 is an additive derivation on & .
By (1), 6 = 6; —d; with d; an additive deriva-

tion. Now, it follows from Claims 8-9 that & is an
additive derivation on .

745

The proof of Theorem 1 is finished. m|
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