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ABSTRACT: Let T be a triangular n-matrix ring (n ¾ 2) and δ : T → T a map. It is shown that δ is a multiplicative
Jordan derivation if and only if one of the statements holds: (1) if T is 2-torsion free, then δ is an additive derivation;
(2) if T is 2-torsion, under some mild assumptions, then δ(X ) = d(X ) + γ(X ) holds for all X ∈ T , where d : T → T
is an additive derivation and γ is a map from T into its center vanishing on all elements X Y + Y X for X , Y ∈ T . This
generalizes some related known results.
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INTRODUCTION

Let A be an associative ring or an algebra. For
any A, B ∈ A , the Jordan product of A, B is de-
fined by A ◦ B = AB + BA. Recall that a map δ :
A → A is called a multiplicative (or nonlinear)
derivation if δ(AB) = δ(A)B + Aδ(B) for all A, B ∈
A ; is called a multiplicative (or nonlinear) Jordan
derivation if δ(A ◦ B) = δ(A) ◦ B + A ◦ δ(B) for all
A, B ∈ A . Particularly, if δ is also assumed to be
additive (linear), then δ is called additive (linear)
derivation and Jordan derivation, respectively. The
questions of characterizing (multiplicative) Jordan
derivations and revealing the relationship between
Jordan derivations and derivations have received
many mathematicians’ attention (for example, see
[1–7] and the references therein).

In [8], the author introduced a class of rings
(or algebras) as follows. Let A and B be unital
rings (or algebras over a commutative ring R),
and M an (A ,B)-bimodule which is faithful as a
left A -module as well as a right B-module. The
associative ring (or R-algebra)

Tri(A ,M ,B)=
§�

A M
0 B

�
�

�

�A∈A , M ∈M , B ∈B
ª

under the usual matrix operations is called a trian-
gular ring (or algebra). Zhang and Yu [7] show
that every linear Jordan derivation on a triangular
algebraU is a derivation under the assumption that
the commutative ringR is 2-torsion free. Recall that
a ringA is said to be 2-torsion free if 2a= 0 implies

a= 0 for any a ∈A ; otherwise,A is 2-torsion. Xiao
[6] generalizes the result of [7] to multiplicative
Jordan derivations and obtains the same result.

Recently, Ferreira [9] defined a class of ring
called triangular n-matrix ring as follows.

Definition 1 ([9]) Let R1,R2, . . . ,Rn be unital
rings andMi j be (Ri ,R j)-bimodules withMii =Ri
for all 1 ¶ i ¶ j ¶ n. Let ϕi jk :Mi j ⊗R j

M jk →Mik

be (Ri ,Rk)-bimodules homomorphisms with ϕii j :
Ri ⊗Ri

Mi j → Mi j and ϕi j j : Mi j ⊗R j
R j → Mi j

the canonical multiplication maps for all 1 ¶ i ¶
j ¶ k ¶ n. Write ab = ϕi jk(a ⊗ b) for all a ∈ Mi j
and b ∈ M jk. Assume that Mi j is faithful as a left
Ri-module and faithful as a right R j-module for all
1¶ i < j ¶ n. Let T = Tn(Ri;Mi j) be the set

T =
�













r11 m12 · · · m1(n−1) m1n
0 r22 · · · m2(n−1) m2n
...

...
. . .

...
...

0 0 · · · r(n−1)(n−1) m(n−1)n
0 0 · · · 0 rnn













�

�

�

�

rii ∈ Ri , mi j ∈Mi j , 1¶ i < j ¶ n

�

.

Furthermore, assume that a(bc) = (ab)c for all a ∈
Mik, b ∈ Mkl , and c ∈ Ml j with 1 ¶ i ¶ k ¶ l ¶
j ¶m. Then, with the usual matrix operations, T is
called a triangular n-matrix ring.

It is obvious that upper triangular matrix rings
Tn(R) with n ¾ 3 over a unital associative ring R
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are triangular n-matrix rings; and that triangular 2-
matrix rings are usual triangular rings. However, for
n ¾ 3, a triangular ring may not be a triangular n-
matrix ring; conversely, a triangular n-matrix ring
may not be a triangular ring (see Example 2.1 in
[10]). For some results on triangular n-matrix rings,
see [9, 11].

The purpose of the present paper is to discuss
the structure of multiplicative Jordan derivations on
triangular n-matrix rings for any n¾ 2. Assume that
δ is a map on a triangular n-matrix ring T . We
show that δ is a multiplicative Jordan derivation
if and only if one of the following statements is
true: (1) if T is 2-torsion free, then δ is an additive
derivation; (2) if T is 2-torsion, then δ has the
form δ(X ) = d(X )+γ(X ) for all X ∈ T under some
mild assumptions on T , where d is an additive
derivation on T , and γ is a map from T into its
center vanishing on all elements X Y +Y X for X , Y ∈
T .

MAIN RESULT

For 2-torsion free triangular n-matrix rings, we have
the following result.

Theorem 1 Let T be a 2-torsion free triangular n-
matrix ring (n ¾ 2). Then a map δ : T → T is a
multiplicative Jordan derivation if and only if δ is an
additive derivation.

Note that, if a ring R is 2-torsion, then for any
elements T, S ∈R , it is clear that TS+ST = TS−ST .
In this case, Jordan derivations and Lie derivations
are equivalent. Thus, by Theorem 2.3 in [12],
we can give the characterization of multiplicative
Jordan derivations on 2-torsion triangular n-matrix
rings.

Fix any i ∈ {1,2, . . . , n}. Let Ei stand for the
nontrivial idempotent in T whose elements with
(i, i) position 1 and the rest 0. Write Pi = E1 + E2 +
· · ·+ Ei and Q i = I − Pi .

Theorem 2 Let T be a 2-torsion triangular n-
matrix ring (n ¾ 2). Assume that P[ n

2 ]
Z (T )P[ n

2 ]
=

Z (P[ n
2 ]
T P[ n

2 ]
) and Q[ n

2 ]
Z (T )Q[ n

2 ]
=Z (Q[ n

2 ]
T Q[ n

2 ]
).

Then a map δ : T → T is a multiplicative Jordan
derivation if and only if δ(X ) = d(X ) + γ(X ) holds
for all X ∈ T , where d : T → T is an additive
derivation and γ : T →Z (T ) is a map vanishing on
any [X , Y ] = X Y + Y X . Here, [s] is the integer part
of s and Z (T ) is the center of T .

Particularly, if n = 2, we can obtain a complete
characterization of multiplicative Jordan deriva-

tions on triangular rings, which is a generalization
of the related results in [6, 7].

Corollary 1 Let A and B be unital rings, and M
be an (A ,B)-bimodule, which is faithful as a left
A -module and also as a right B-module. Let U =
Tri(A ,M ,B) be the triangular ring. Then a map
δ : U → U is a multiplicative Jordan derivation if
and only if the following statements hold:

(i) if U is 2-torsion free, then δ is an additive
derivation;

(ii) ifU is 2-torsion, PZ (U )P =Z (PU P) and (I−
P)Z (U )(I−P) =Z ((I−P)U (I−P)), then δ=
d+γ, where d :U →U is an additive derivation
and γ : U → Z (U ) is a map vanishing on all
commutators.

Set for 1¶ i ¶ j ¶ n,

Ti j =

¨

(mkt)
�

�

�mkt =

¨

mi j , if (k, t) = (i, j),
0, if (k, t) 6= (i, j),

«

⊂ T .

Then we can write T =
∑

1¶i¶ j¶nTi j . Obviously, for
any element ai j ∈ Ti j , ai jak j = 0 whenever j 6= k.

Denote byAi = PiT Pi ,Bi =Q iT Q i andMi =
PiT Q i (i ∈ {1,2, . . . , n}). Then T can also be
written as T =Ai+Mi+Bi for each i. In this paper,
if no confusion occurs, for any Ai ∈Ai , Mi ∈Mi and
Bi ∈Bi , we always identify

Ai
∼=









r11 m12 · · · m1i
0 r22 · · · m2i
...

...
. . .

...
0 0 · · · rii









,

Mi
∼=









m1,i+1 m1,i+2 · · · m1n
m2,i+1 m2,i+2 · · · m2n

...
...

. . .
...

mi,i+1 mi,i+2 · · · min









,

and

Bi
∼=









ri+1,i+1 mi+1,i+2 · · · min
0 ri+2,i+2 · · · mi+2,n
...

...
. . .

...
0 0 · · · rnn









.

Proof of Theorem 1

The “if” part is obvious. For the “only if” part, we
will prove it by checking a series of claims. Firstly,
let i ∈ {1, 2, . . . , n}.

Claim 1. For any Ai ∈Ai , Mi ∈Mi and Bi ∈Bi , we
have
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(i) Q iδ(Ai)Q i = 0;

(ii) Piδ(Bi)Pi = 0;

(iii) Piδ(Mi)Pi =Q iδ(Mi)Q i = 0.

It is clear that δ(0) = 0. For any Ai ∈ Ai , since
Ai ◦Q i = 0, one gets

0= δ(Ai ◦Q i) = δ(Ai) ◦Q i +Ai ◦δ(Q i)
= Piδ(Ai)Q i +2Q iδ(Ai)Q i +Aiδ(Q i)+δ(Q i)Ai .

Multiplying by Q i from the two sides in the above
equation, and by the 2-torsion freeness of T , one
has Q iδ(Ai)Q i = 0.

Similarly, by using the relation Pi ◦ Bi = 0, one
can show Piδ(Bi)Pi = 0. So, the statements (i)–(ii)
are true.

For any Mi ∈Mi , we have

δ(Mi) = δ(Pi ◦Mi) = δ(Pi) ◦Mi + Pi ◦δ(Mi)
= δ(Pi)Mi +Miδ(Pi)+2Piδ(Mi)Pi + Piδ(Mi)Q i .

Multiplying by Pi and Q i from the two sides in the
above equation, respectively, one gets Piδ(Mi)Pi = 0
and Q iδ(Mi)Q i = 0. So, the statement (iii) is true,
and the claim holds.

Now, define two maps di ,δi : T → T by

di(X ) = [δ(Pi), X ] and δi(X ) = δ(X )+ di(X ). (1)

It is easy to check that di is an additive derivation
and δi is a multiplicative Jordan derivation. Then,
Claim 1 is also true for δi , that is,

Q iδi(Ai)Q i = 0, Piδi(Bi)Pi = 0,

Piδi(Mi)Pi =Q iδi(Mi)Q i = 0.
(2)

So

δi(Pi)=δ(Pi)+di(Pi)=δ(Pi)+[δ(Pi), Pi]=Piδ(Pi)Pi .

This yields that

δi(Pi) = Piδ(Pi)Pi = Piδi(Pi)Pi . (3)

We will discuss the properties of δi for
i ∈ {1,2, . . . , n} by Claims 2–5.

Claim 2. For any Ai ∈Ai , Mi ∈Mi , and Bi ∈Bi , we
have

(i) δi(Mi) ∈Mi , δi(Ai) ∈Ai , and δi(Bi) ∈Bi;

(ii) δi(Pi)Mi = Miδi(Q i) = 0.

By (2), it is true that δi(Mi) ∈Mi . By (2)–(3),
one has

0= δi(Pi◦Q i) = δi(Pi)◦Q i+Pi◦δi(Q i) = Piδi(Q i)Q i ,

and so δi(Q i) = Q iδi(Q i)Q i . Thus, for any Ai ∈Ai ,
by (2) again, one obtains

0= δi(Ai◦Q i) = δi(Ai)◦Q i+Ai◦δi(Q i) = Piδi(Ai)Q i .

It follows that δi(Ai) = Piδi(Ai)Pi ∈Ai .
Similarly, one can show δi(Bi) = Q iδi(Bi)Q i ∈

Bi for all Bi ∈Bi . The statement (i) is true.
Finally, for any Mi ∈Mi , by Claim 2(i), one gets

δi(Mi) = δi(Pi ◦Mi) = δi(Pi) ◦Mi + Pi ◦δi(Mi)
= δi(Pi)Mi +δi(Mi)

and

δi(Mi) = δi(Mi ◦Q i) = δi(Mi) ◦Q i +Mi ◦δi(Q i)
= δi(Mi)+Miδi(Q i),

which imply that δi(Pi)Mi = Miδi(Q i) = 0. So, the
statement (ii) is true.

Claim 3. For any Ai ∈Ai , Mi ∈Mi , and Bi ∈Bi , we
have

(i) δi(Ai +Mi) ∈Ai +Mi and
δi(Mi) = Piδi(Ai +Mi)Q i;

(ii) δi(Mi + Bi) ∈Mi +Bi and
δi(Mi) = Piδi(Mi + Bi)Q i .

We only give the proof of (i). The proof of (ii)
is similar and we omit it here. For any Ai ∈ Ai and
Mi ∈Mi , by Claim 2, we get

δi(Mi) =δi(Mi ◦Q i) = δi((Ai +Mi) ◦Q i)
=δi(Ai +Mi) ◦Q i +Ai ◦δi(Q i)+Mi ◦δi(Q i)
=Piδi(Ai +Mi)Q i +2Q iδi(Ai +Mi)Q i .

It follows from Claim 2(i) and 2-torsion
freeness of T that δi(Mi) = Piδi(Ai + Mi)Q i
and Q iδi(Ai +Mi)Q i = 0.

Claim 4. For any X = Ai +Mi + Bi ∈ T , we have

(i) Piδi(X )Q i = δi(PiXQ i);

(ii) Et(δi(Ai+Mi+Bi)−δi(Ai)−δi(Mi)−δi(Bi))Et =
0, where t = 1, . . . , n.
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For any X = Ai +Mi + Bi ∈ T , Claim 2 gives

δi(2Ai +Mi) = δi(X ◦ Pi) = δi(X ) ◦ Pi + X ◦δi(Pi)

= 2Piδi(X )Pi + Piδi(X )Q i +Aiδi(Pi)Pi + Piδi(Pi)Ai (4)

and

δi(2Ai +Mi) = δi((Ai +Mi) ◦ Pi)

= δi(Ai +Mi) ◦ Pi +(Ai +Mi) ◦δi(Pi)

= 2Piδi(Ai+Mi)Pi+Piδi(Ai+Mi)Q i+Aiδi(Pi)Pi+Piδi(Pi)Ai .
(5)

Comparing (4)–(5) and Claim 3(i) gives

Piδi(X )Q i = Piδi(Ai +Mi + Bi)Q i

= Piδi(Ai +Mi)Q i = δi(Mi) = δi(PiXQ i)

and
2Piδi(X )Pi = 2Piδi(Ai +Mi)Pi . (6)

Since T is 2-torsion free, (6) implies

Piδi(X )Pi = Piδi(Ai +Mi)Pi . (7)

Next, take any M ′i ∈Mi . Note that

δi((Ai+Mi)◦M ′i ) =δi(Ai+Mi)◦M ′i+(Ai+Mi)◦δi(M
′
i )

and

δi((Ai+Mi)◦M ′i )=δi(Ai◦M ′i )=δi(Ai)◦M ′i+Ai◦δi(M
′
i ).

Combining the above two equations, Claim 2(i) and
Claim 3(i) yields

(δi(Ai+Mi)−δi(Ai)−δi(Mi))M
′
i = 0, ∀M ′i ∈Mi .

Moreover, sinceMi j is a faithful leftRi-module, one
can show that for t = 1, . . . , i,

Et(δi(Ai +Mi)−δi(Ai)−δi(Mi))Et = 0. (8)

By the fact Piδi(Bi)Pi = 0 and (7)–(8), one achieves,
for t = 1,2, . . . , i,

Et(δi(Ai+Mi+Bi)−δi(Ai)−δi(Mi)−δi(Bi))Et=0. (9)

Finally, by calculating δi(M ′i ◦ (Mi + Bi)), a sim-
ilar argument to that of the above gives, for
t = i+1, . . . , n,

Et(δi(Ai+Mi+Bi)−δi(Ai)−δi(Mi)−δi(Bi))Et=0. (10)

It follows from (9)–(10) that Et(δi(Ai +Mi + Bi)−
δi(Ai)−δi(Mi)−δi(Bi))Et = 0 holds for t = 1, . . . , n.
The claim holds.

Claim 5. δi is additive onMi .

For Pi and any Mi ∈ Mi , on the one hand, by
Claim 4(i), one has

δi(2Pi) = δi((Pi +Mi) ◦ (Pi −Q i))

= δi(Pi +Mi) ◦ (Pi −Q i)+ (Pi +Mi) ◦δi(Pi −Q i)
= 2Piδi(Pi +Mi)Pi +2Piδi(Pi −Q i)Pi

+Piδi(Pi−Q i)Q i+Miδi(Pi−Q i)Q i+Piδi(Pi−Q i)Mi .

On the other hand, by Claim 2(i) and Claim 4(i),
one has

δi(2Pi) = δi(Pi ◦ (Pi −Q i))

= δi(Pi) ◦ (Pi −Q i)+ Pi ◦δi(Pi −Q i)
= 2Piδi(Pi)Pi +2Piδi(Pi −Q i)Pi + Piδi(Pi −Q i)Q i

= 2δi(Pi)+2Piδi(Pi −Q i)Pi .

Comparing the above two equations yields

Piδi(Pi +Mi)Pi = δi(Pi)

by the 2-torsion freeness of T , which together with
Claim 3(i) and Claim 4(i), implies that

δi(Pi +Mi) = Piδi(Pi +Mi)Pi + Piδi(Pi +Mi)Q i

= δi(Pi)+δi(Mi). (11)

Symmetrically, one can show that

δi(Mi +Q i) = δi(Mi)+δi(Q i). (12)

Now, for any Mi , M ′i ∈ Mi , by Claim 2 and
(11)–(12), one achieves

δi(Mi +M ′i ) = δi((Pi +Mi) ◦ (M ′i +Q i))

= δi(Pi+Mi) ◦ (M ′i+Q i)+(Pi+Mi) ◦δi(M
′
i+Q i)

= (δi(Pi)+δi(Mi)) ◦ (M ′i +Q i)
+ (Pi +Mi) ◦ (δi(M

′
i )+δi(Q i))

= δi(Mi)+δi(M
′
i ),

that is, δi is additive on Mi , completing the proof
of the claim.

From now on, let i ∈ {2, . . . , n − 1}. Define
another maps τi : T → T by

τi(X ) = δ1(X )+ [δ1(Pi), X ]. (13)

By the same arguments as those of Claims 2–5 for
δi , we can prove that τi is also a multiplicative
Jordan derivation satisfying τi(Pi) = Piτi(Pi)Pi ,
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and Claims 2–5 still hold for the map τi .

Claim 6. For any Mi ∈ Mi , we have
δ1(Mi) = τi(Mi). Therefore, δ1 is additive on
Mi .

Take any Mi ∈ Mi . As δ1(Mi) = τi(Mi) −
[δ1(Pi), Mi] ∈Mi , it is true that

Piδ1(Mi)Q i = δ1(Mi) = δ1(Pi ◦Mi)
= δ1(Pi) ◦Mi + Pi ◦δ1(Mi)
= δ1(Pi)Mi +Miδ1(Pi)+ Piδ1(Mi)Q i .

This means

δ1(Pi)Mi +Miδ1(Pi) = 0.

Also note that

Ai 3 τi(Pi) = δ1(Pi)+ [δ1(Pi), Pi]
= Piδ1(Pi)Pi +Q iδ1(Pi)Q i ,

which implies Q iδ1(Pi)Q i = 0. So

Miδ1(Pi) = 0= δ1(Pi)Mi , ∀Mi ∈Mi . (14)

It follows that δ1(Mi) = τi(Mi). Hence δ1 is
additive onMi .

Claim 7. For any X = A1 + M1 + B1 ∈ T , we have
δ1(X ) = δ1(A1)+δ1(M1)+δ1(B1).

For any X = A1+M1+B1 = Ai+Mi+Bi ∈ T , let

H1 = δ1(X )−δ1(A1)−δ1(M1)−δ1(B1) and

Ki = τi(X )−τi(Ai)−τi(Mi)−τi(Bi).

Our goal is to show that H1 = 0. In fact, by (13),
one has

H1− Ki = δ1(X )−τi(X )−δ1(A1)+τi(Ai)
−δ1(M1)+τi(Mi)−δ1(B1)+τi(Bi)

= −[δ1(Pi), X ]− (τi(A1)− [δ1(Pi), A1])+τi(Ai)
−(τi(M1)−[δ1(Pi), M1])+(δ1(Mi)+[δ1(Pi), Mi])
− (τi(B1)− [δ1(Pi), B1])+τi(Bi)
= −τi(A1)+τi(Ai)−τi(M1)+δ1(Mi)

+ [δ1(Pi), Mi]−τi(B1)+τi(Bi). (15)

Observe that, by Claim 2(i) for τi , one gets

τi(A1) = Piτi(A1)Pi , τi(Ai) = Piτi(Ai)Pi ,

τi(Bi) =Q iτi(Bi)Q i;
(16)

by (13) and Claim 2(i) for δ1, one has

τi(M1) = δ1(M1)+ [δ1(Pi), M1] ∈M1; (17)

and by Claim 6 and Claim 2(i) for δ1, one gets

δ1(Mi) = δ1(P1Mi P1)+δ1(P1MiQ1)+δ1(Q1MiQ1)
= δ1(P1MiQ1)+δ1(Q1MiQ1)

∈M1+δ1(Q1MiQ1). (18)

Now, combining Claim 4(i) and (13)–(18) yields

Ei(H1− Ki)E j = Eiδ1(Mi)E j−Eiτi(B1)E j

= Eiδ1(Q1MiQ1)E j−Ei Piτi(B1)Q i E j

= Eiδ1(Q1MiQ1)E j−Eiτi(PiB1Q i)E j

= Ei(δ1(Q1MiQ1)−τi(Q1MiQ1))E j

= Ei[Q1MiQ1,δ1(Pi)]E j = 0, (19)

where j = i+1, . . . , n. Here, the reciprocal 3rd equa-
tion is due to Q1MiQ1 = PiB1Q i ∈

∑i
k=2

∑n−i
l=1Tk,i+l .

On the other hand, by Claim 4(i) and Claim
2(i) for τi , we know that PiKiQ i = 0, which implies
EiKi E j = Ei PiKiQ i E j = 0 for j = i + 1, . . . , n. Hence
(19) reduces to EiH1E j = 0.

Also note that P1H1Q1 = 0 and Et H1Et = 0,
t = 1, . . . , n, by Claim 4 and Claim 2(i) for δ1.
Hence H1 = 0, completing the proof of the claim.

Claim 8. δ1 is additive on T .

We will prove the claim by several steps.

Step 8.1. δ1 is additive onM1.
By Claim 5, this is true.

Step 8.2. δ1 is additive onA1.
Take any A1, A′1 ∈ A1 and any M1 ∈ M1. By

Claim 2(i) and Step 8.1, we have

δ1((A1+A′1) ◦M1)
= δ1(A1+A′1) ◦M1+(A1+A′1) ◦δ1(M1)
= δ1(A1+A′1)M1+(A1+A′1)δ1(M1)

and

δ1((A1+A′1) ◦M1) = δ1(A1M1+A′1M1)
= δ1(A1 ◦M1)+δ1(A

′
1 ◦M1)

= δ1(A1)M1+A1δ1(M1)+δ1(A
′
1)M1+A′1δ1(M1).

Combining the above two equations gives
(δ1(A1+A′1)−δ1(A1)−δ1(A′1))M1 = 0 for all
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M1 ∈ M1. Since M1 j is a faithful left R1-module,
we get δ1(A1+A′1)−δ1(A1)−δ1(A′1) = 0.

Step 8.3. δ1 is additive onB1.
For any B1, B′1 ∈B1 and any M1 ∈M1, by Claim

8.1, one obtains

δ1(M1 ◦ (B1+ B′1))
= δ1(M1) ◦ (B1+ B′1)+M1 ◦δ1(B1+ B′1)
= δ1(M1)(B1+ B′1)+M1δ1(B1+ B′1)

and

δ1(M1 ◦ (B1+ B′1)) = δ1(M1B1+M1B′1)
= δ1(M1 ◦ B1)+δ1(M1 ◦ B′1)
= δ1(M1)B1+M1δ1(B1)+δ1(M1)B

′
1+M1δ1(B1),

which implies M1(δ1(B1+B′1)−δ1(B1)−δ1(B′1)) = 0.
It follows from the fact M1t is a faithful right Rt -
module that, for t = 2, . . . , n,

Et(δ1(B1+ B′1)−δ1(B1)−δ1(B
′
1))Et = 0. (20)

On the other hand, by Claim 4(i) for τi , Claim 5 for
τi , and (13), one obtains

Piδ1(B1 + B′1)Q i = Pi(τi(B1 + B′1)− [δ1(Pi), B1 + B′1])Q i

= Piτi(B1 + B′1)Q i − Pi([δ1(Pi), B1 + B′1])Q i

= τi(Pi(B1 + B′1)Q i)− Pi([δ1(Pi), B1])Q i

− Pi([δ1(Pi), B′1])Q i

= τi(Pi B1Q i)− Pi([δ1(Pi), B1])Q i +τi(Pi B
′
1Q i)

− Pi([δ1(Pi), B′1])Q i

= Pi(τi(B1)− [δ1(Pi), B1])Q i

+ Pi(τi(B
′
1)− [δ1(Pi), B′1])Q i

= Piδ1(B1)Q i + Piδ1(B
′
1)Q i ,

which implies that, for i = 2, . . . , n−1,

Pi(δ1(B1+ B′1)−δ1(B1)−δ1(B
′
1))Q i = 0. (21)

Combining (20)–(21) yields δ1(B1+ B′1)−δ1(B1)−
δ1(B′1) = 0.

Step 8.4. δ1 is additive on T .
For any X1 = A1+M1+B1 ∈T and X2 = A′1+M ′1+

B′1 ∈ T , by Claim 7 and Steps 8.1–8.3, we achieve

δ1(X1+ X2) = δ1(A1+M1+ B1+A′1+M ′1+ B′1)
= δ1(A1+A′1)+δ1(M1+M ′1)+δ1(B1+ B′1)
= δ1(A1)+δ1(M1)+δ1(B1)+δ1(A

′
1)

+δ1(M
′
1)+δ1(B

′
1)

= δ1(X1)+δ1(X2).

Claim 9. δ1 is a derivation on T .

We will prove the claim by several steps.

Step 9.1. For any M1, M ′1 ∈ M1, we have
δ1(M1M ′1) = δ1(M1)M ′1+M1δ1(M ′1) = 0.

This is obvious by the fact δ1(M1) ⊆M1.

Step 9.2. For any A1, A′1 ∈A1 and any M1 ∈M1, we
have

δ1(A1M1) = δ1(A1)M1+A1δ1(M1) and

δ1(A1A′1) = δ1(A1)A
′
1+A1δ1(A

′
1).

Take any A1, A′1 ∈ A1 and any M1 ∈ M1. By
Claim 2(i), one has

δ1(A1A′1M1) = δ1((A1A′1) ◦M1)
= δ1(A1A′1) ◦M1+(A1A′1) ◦δ1(M1)

= δ1(A1A′1)M1+A1A′1δ1(M1); (22)

particularly, we have δ1(A1M1) = δ1(A1)M1 +
A1δ1(M1). On the other hand, one gets

δ1(A1A′1M1) = δ1(A1 ◦A′1M1)
= δ1(A1) ◦ (A′1M1)+A1 ◦δ1(A

′
1M1)

= δ1(A1)A
′
1M1+A1(δ1(A

′
1)M1+A′1δ1(M1))

= δ1(A1)A
′
1M1+A1δ1(A

′
1)M1+A1A′1δ1(M1). (23)

combining (22)–(23) yields (δ1(A1A′1)−δ1(A1)A′1−
A1δ1(A′1))M1 = 0 for all M1 ∈ M1. Since
M1 j is a faithful left R1-module, we obtain
δ1(A1A′1) = δ1(A1)A′1+A1δ1(A′1).

Step 9.3. For any B1, B′1 ∈ B1 and any M1 ∈ M1,
we have

δ1(M1B1) = δ1(M1)B1+M1δ1(B1) and

δ1(B1B′1) = δ1(B1)B
′
1+ B1δ1(B

′
1).

Taking any B1, B′1 ∈ B1 and any M1 ∈ M1, by
the same arguments as those of Step 9.2, we can
prove that

δ1(M1B1) = δ1(M1)B1+M1δ1(B1) and

M1(δ1(B1B′1)−δ1(B1)B
′
1− B1δ1(B

′
1)) = 0.

SinceMi j is a faithful rightR j-module, one gets for
t = 2, . . . , n,

Et(δ1(B1B′1)−δ1(B1)B
′
1− B1δ1(B

′
1))Et = 0. (24)

Now, writing B1 = (bkl)n×n and B′1 = (b
′
st)n×n; then

B1B′1 =
∑

2¶k¶l¶n,
2¶s¶t¶n

Bkl B
′
st =

∑

2¶k¶l¶t¶n

Bkl B
′
l t ,
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where Bkl is the element with (k, l) position bk,l and
other positions 0. Thus, to show that δ1(B1B′1) =
δ1(B1)B′1 + B1δ1(B′1), by the additivity of δ1, one
only needs to check that δ1 satisfies the following
equations:
¨

δ1(Bkl B
′
l t) = δ1(Bkl)B′l t + Bklδ1(B′l t) and

δ1(Bkl)B′st + Bklδ1(B′st) = 0,
(25)

for all 2 ¶ k ¶ l ¶ t ¶ n and 2 ¶ k ¶ l ¶ n, 2 ¶ s ¶
t ¶ n with l 6= s, respectively.

Observe that, by taking B1 = Bkk and B′1 = Ek
with k 6= t in (24), one achieves

0= Et(δ1(Bkk Ek)−δ1(Bkk)Ek − Bkkδ1(Ek))Et

= Etδ1(Bkk)Et ,

that is,

Etδ1(Bkk)Et = 0, t, k ∈ {2, . . . , n}, t 6= k. (26)

Step 9.3.1. For any Bkk, B′ss with k < s, we have

0= δ1(Bkk)B
′
ss + Bkkδ1(B

′
ss) and

δ1(B
′
ss)Bkk = B′ssδ1(Bkk) = 0.

For Bkk and B′ss with k < s, we have

0= δ1(Bkk ◦ B′ss) = δ1(Bkk) ◦ B′ss + Bkk ◦δ1(B
′
ss)

= δ1(Bkk)B
′
ss + B′ssδ1(Bkk)

+ Bkkδ1(B
′
ss)+δ1(B

′
ss)Bkk. (27)

Note that (26) implies

δ1(Bkk)B
′
ss ∈

s−1
∑

j=2

T js, B′ssδ1(Bkk)

∈
n
∑

j=s+1

Ts j , Bkkδ1(B
′
ss)

∈
n
∑

j=k+1

Tk j ,δ1(B
′
ss)Bkk ∈

k−1
∑

j=2

T jk.

These and (27) mean that δ1(Bkk)B′ss+Bkkδ1(B′ss) =
0= B′ssδ1(Bkk) = δ1(B′ss)Bkk.

Note that, by Step 9.3.1, one can check that, for
k = 2, . . . , n,

δ1(Bkk) ∈ T2k + · · ·+Tkk +Tk(k+1)+ · · ·+Tkn. (28)

Step 9.3.2. For any Bkl , B′st with k ¶ l and s ¶ t, we
have

(i) B′stδ1(Bkl) = δ1(B′st)Bkl = 0 if k < s or k = s,
s < t;

(ii) δ1(Bkl)B′st = Bklδ1(B′st) = 0 if k > s or k = s,
k < l.

Note that, by Claim 6 (that is, δ1(Mi) = τi(Mi)
for all Mi), we know that δ1(Bkl) ⊆Mk ∩B1 holds
for all Bkl with k < l. In addition, by (28), it is true
that B′stδ1(Bkk) = 0 for k < s. Now, the step is easily
checked.

Step 9.3.3. For any Bkk and B′kk, we have
δ1(BkkB′kk) = δ1(Bkk)B′kk + Bkkδ1(B′kk).

For any Bkk, B′kk, by Claim 8, one gets

2δ1(Bkk) = δ1(Bkk ◦ Ek)
= δ1(Bkk) ◦ Ek + Bkk ◦δ1(Ek)
= δ1(Bkk)Ek + Ekδ1(Bkk)+ Bkkδ1(Ek)

+δ1(Ek)Bkk. (29)

Multiplying respectively by Et , t = 2, . . . , k− 1, and
Ek from the left and the right in (29), one obtains

Etδ1(Bkk)Ek = Etδ1(Ek)Bkk, t = 2, . . . , k−1; (30)

multiplying respectively by Ek and Es, s = k +
1, . . . , n, from the left and the right in (29), we get

Ekδ1(Bkk)Es = Bkkδ1(Ek)Es, s = k+1, . . . , n. (31)

Thus, (30)–(31) imply

Et(δ1(BkkB′kk)−δ1(Bkk)B
′
kk − Bkkδ1(B

′
kk))Ek

= Etδ1(BkkB′kk)Ek − Etδ1(Bkk)B
′
kk

= Etδ1(Ek)BkkB′kk − Etδ1(Ek)BkkB′kk = 0 (32)

and

Ek(δ1(BkkB′kk)−δ1(Bkk)B
′
kk−Bkkδ1(B

′
kk))Es=0 (33)

for t = 2, . . . , k−1 and s = k+1, . . . , n. In addition,
by (28), it is clear that

δ1(BkkB′kk)−δ1(Bkk)B
′
kk − Bkkδ1(B

′
kk)

∈ T2k + · · ·+Tkk +Tk(k+1)+ · · ·+Tkn. (34)

Now, combining (32)–(34) and (24) gives
δ1(BkkB′kk) = δ1(Bkk)B′kk + Bkkδ1(B′kk).

Step 9.3.4. For any Bkk, B′kt with k < t, we have
δ1(BkkB′kt) = δ1(Bkk)B′kt + Bkkδ1(B′kt).

By (28) and the fact δ1(Bkt)⊆Mk∩B1, we have

δ1(BkkB′kt)=δ1(Bkk◦B′kt)=δ1(Bkk)◦B′kt+Bkk◦δ1(B
′
kt)

= δ1(Bkk)B
′
kt+B′ktδ1(Bkk)+Bkkδ1(B

′
kt)+δ1(B

′
kt)Bkk

= δ1(Bkk)B
′
kt + Bkkδ1(B

′
kt).
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A similar argument to that of Step 9.3.4 can
give the following two steps.

Step 9.3.5. For any Bkl , B′l l with k < l, we have
δ1(Bkl B

′
l l) = δ1(Bkl)B′l l + Bklδ1(B′l l).

Step 9.3.6. For any Bkl , B′l t with k < l < t, we have
δ1(Bkl B

′
l t) = δ1(Bkl)B′l t + Bklδ1(B′l t).

Step 9.3.7. For any Bkl , B′st with k ¶ l, s ¶ t and
l 6= s, we have δ1(Bkl)B′st + Bklδ1(B′st) = 0.

In fact, if k¶ l < s¶ t, by Step 9.3.2(i), one has

0= δ1(Bkl ◦ B′st) = δ1(Bkl) ◦ B′st + Bkl ◦δ1(B
′
st)

= δ1(Bkl)B
′
st+B′stδ1(Bkl)+Bklδ1(B

′
st)+δ1(B

′
st)Bkl

= δ1(Bkl)B
′
st + Bklδ1(B

′
st). (35)

Similarly, if k ¶ s < l ¶ t, k ¶ s < t ¶ l or k < s ¶
t < l, one can check that δ1(Bkl)B′st+Bklδ1(B′st) = 0.

Next, if k = s = t < l, we have

δ1(B
′
kkBkl) = δ1(Bkl ◦ B′kk)

= δ1(Bkl)B
′
kk+B′kkδ1(Bkl)+Bklδ1(B

′
kk)+δ1(B

′
kk)Bkl ,

and Step 9.3.4 gives δ1(Bkl)B′kk + Bklδ1(B′kk) = 0.
Similarly, if s ¶ k and l 6= s, by considering subcases
s¶ k¶ t ¶ l, s¶ k¶ l ¶ t, and s¶ t ¶ k¶ l, respec-
tively, one can show that δ1(Bkl)B′st+Bklδ1(B′st) = 0.
The substep is true.

Now, combining Steps 9.3.1–9.3.7, and by a
bald calculation, one can show that (25) holds,
completing the proof of Step 9.3. It follows from
Claim 8 and Steps 9.1–9.3 that δ1 is a derivation.

Claim 10. δ is an additive derivation on T .

By (1), δ = δ1 − d1 with d1 an additive deriva-
tion. Now, it follows from Claims 8–9 that δ is an
additive derivation on T .

The proof of Theorem 1 is finished. 2
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