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ABSTRACT: This work addresses an important and yet outstanding issue for the numerical solution of the nonlinear
partial differential equations arising in elastic image registration. We present an efficient multigrid method using local
Fourier analysis and, in particular, its application to register a group of monomodal images. We demonstrate that the
proposed multigrid method is fast, accurate, and reliable in delivering visually-pleasing registration results.
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INTRODUCTION

In the last decades, there has been a dramatic
growth in research and application of partial dif-
ferential equation (PDE) based methods in image
processing and computer vision. This is mainly
due to the fact that these methods have remarkable
advantages in both theory and computation, and
that with the rapid progress of recent computer tech-
nology the solution of the resulting large systems of
linear or nonlinear equations has become feasible
using a normal PC.

PDE-based image registration methods have
been actively and extensively studied and applied
in the field of image analysis. The task of image
registration is to find spatial correspondences be-
tween two given images, a so-called reference R :
Ω ⊂ R2 → V ⊂ R and a so-called template T : Ω ⊂
R2→ V ⊂R, where the image domain Ω is assumed
to be a rectangle. This is usually done by finding
an optimal deformation u : R2→ R2,u : x 7→u(x) =
(u1(x), u2(x))T, such that the transformed template
Tu(x) = T (x+u(x)) and the reference R are spatially
matched, according to an image-to-image dissimi-
larity measure, D(u; T, R). Without loss of gener-
ality, this work assumes that Ω = [0, 1]2 ⊂ R2 and
V = [0, 1] for 2D grey images.

If the image intensities of R and T are compa-
rable (i.e., in a monomodal registration scenario),
one may find various choices for D. Probably the
most popular choice for the dissimilarity measure is
provided by the so-called sum of squared differences

D(u; T, R) =
1
2

∫

Ω

(Tu(x)−R(x))2 dx.

The registration task is then to solve the minimiza-
tion problem

min
u
{D(u; T, R)}, (1)

where u is searched over a set of admissible func-
tions U minimizing D. As is well known, the
minimization ofD does not have a unique minimizer
and it becomes necessary to impose a constraint on
the solution u via a regularizing term. In this work,
the commonly used regularizing term of the form

Relas =

∫

Ω

µ

4

2
∑

l,m=1

�

∂ um

∂ x l
+
∂ ul

∂ xm

�2

+
λ

2
(∇·u)2 dx,

is used to ensure that the constructed deformation
u is unique and penalizes cracks, foldings, or other
unwanted deformations. This term is known as
the elastic regularizer resulting from the theory
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of linear elasticity for homogeneous and isotropic
materials, typically human tissue for the purpose of
medical image registration. Here u is assumed to be
relatively small. λ ¾ 0 and µ > 0 are the so-called
Lamé constants which reflect material properties. In
contrast to other traditional regularizers, e.g., dif-
fusion1, curvature2, 3, or total variation based reg-
ularizers4, this regularizer couples the directions.
The strength of the coupling depends on the choice
of λ. By modifying (1), the desired deformation
u is a minimizer of the unconstrained optimization
problem

min
u
{Jα(u; T, R) = D(u; T, R)+αRelas(u)} (2)

where α> 0 is a positive constant that compromises
the quality of the similarity between Tu and R, mea-
sured by D, and the level of penalty for unwanted
deformations, measured by R . For simplicity, it is
appropriate to use the search space U = (H1

0(Ω))
2

rather than U = (H1(Ω))2. Here the space H1(Ω)
is the Sobolev space of functions in L2(Ω). H1

0(Ω) is
the subspace of H1(Ω) consisting of functions with
zero boundary values.

According to the calculus of variations, the min-
imization of Jα is equivalent to finding a solution of
the boundary value problem

f(u)− (µ̄∆u+(λ̄+ µ̄)∇divu) = 0 (3)

subject to the boundary conditions u1(x) = u2(x) =
0 for x ∈ ∂Ω, where f(u) = (Tu − R)∇uTu and ∂Ω
denotes the image boundary. Here λ̄ ≡ αλ and
µ̄≡ αµ. Note that (3) is known as the Navier-Lamé
equation.

Most commonly, the PDE in (3) is approxi-
mated by a finite difference scheme, which results
in a large but sparse nonlinear algebraic system of
equations for high-resolution digital images. For
example, a registration problem of two 4096×4096
mammography images leads to a discrete nonlinear
system of equations in about 32 × 106 unknowns.
Thus reliable and computationally efficient solvers
for such systems are essential in order to perform
the registration in a reasonable amount of time.
One of the most efficient techniques for solving
such large systems is the so-called multigrid (MG)
method. This approach uses a sequence of progres-
sively coarser grids to accelerate the convergence
of some basic relaxation process on the target grid.
The basic relaxation method is referred to as the
‘smoother’, as its objective is to smooth the error
in the current approximation relative to the com-
putational grid. There are two general approaches

for solving discretized nonlinear partial differential
equations (PDEs) by MG methods. One is to perform
a global linearization, usually by Newton’s method,
and solve the resulting linear system approximately
by a linear MG algorithm; this is then repeated iter-
atively until the convergence of Newton’s method is
obtained. The second approach, represented by the
so-called full approximation scheme nonlinear MG
(FAS-NMG) method, is to apply the method directly
to the nonlinear system by performing only global
and/or local linearization in the error-smoothing
process. Convergence acceleration is then provided
by nonlinear coarse-grid operators.

Over the years, variants of these two general
categories have been proposed and developed in
the field of PDE-based image registration methods.
Although no proof exists, the latter approach has an
efficiency similar to that of Newton’s method, but it
is much more suitable due to two advantages. First,
there is no requirement that the initial solutions are
within the domain of attraction. Second, it is not
necessary to compute and store the Jacobian in the
latter approach, as is necessary in the Newton-based
methods. As motivated by these advantages, the
main aim of this paper is to propose an efficient MG
solution for the boundary value problem given by
(3). This work is closely related to that of Henn and
Witsch5 where an FAS-NMG solution is presented
with a nonlinear Jacobi smoother. Although they
share similar backgrounds (e.g., the same boundary
value problem and MG methods), they are totally
different by virtue of their smoothing processes
and applications. In particular, the existence and
efficiency of pointwise smoothing methods are in-
vestigated in this paper using local Fourier analysis
(LFA) techniques.

The remaining parts of this paper are arranged
as follows. The second section presents a finite
difference method for (3) followed by the proposed
MG solution with a potential smoother for solving
the discrete nonlinear system in the third section.
LFA techniques for the resulting discrete nonlinear
operator and the proposed smoother also include
in this section. The fourth section discusses im-
plementation details in applying the proposed MG
solution method for a group of monomodal images.
The fifth section presents some experimental results
to demonstrate the computational efficiency of the
proposed MG solution in registering synthetic and
real medical images as well as a group of real
medical images. Concluding remarks are given in
the last section.
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FINITE DIFFERENCE DISCRETIZATION

To start with, the PDE in (3) is rewritten as

f1(u)− [(λ̄+2µ̄)∂x1 x1
u1+ µ̄∂x2 x2

u1

+(λ̄+ µ̄)∂x1 x2
u2

�

= 0

f2(u)− [(λ̄+ µ̄)∂x1 x2
u1+ µ̄∂x1 x1

u2

+(λ̄+ 2̄µ)∂x2 x2
u2

�

= 0



















(4)

where fl(u) = (Tu−R)∂ul
Tu for l = 1, 2. To discretize

the PDEs represented in (4), let (uh
l )i, j = uh

l (x1i
, x2 j
)

be the grid function for l = 1, 2 with the uniform grid
spacing h= 1/n. The integer n= 1/h is the number
of uniform intervals in both coordinate directions.
Each grid point x in the discretized domain Ωh is
given by x = (x1i

, x2 j
)T = (ih, jh)T for 0 ¶ i, j ¶

n. The partial derivatives are approximated by
the standard second-order finite difference schemes.
By the lexicographic column ordering of unknowns
(starting from top-to-bottom and left-to-right), the
discrete nonlinear system is given by

Nhuh = Gh[u
h], (5)

where (·)i, j is dropped for simplicity and

Nh =
1
h2

�

−L h
1 −P h

−P h −L h
2

�

, Gh[u
h] =

�

− f h
1 (u

h)
− f h

2 (u
h)

�

.

The stencils corresponding to L h
1 , L h

2 , and P h are
given respectively by

L h
1 =





0 2µ̄+ λ̄ 0
µ̄ −2(3µ̄+ λ̄) µ̄

0 2µ̄+ λ̄ 0



 ,

L h
2 =L

hT

1 =





0 µ̄ 0
2µ̄+ λ̄ −2(3µ̄+ λ̄) 2µ̄+ λ̄

0 µ̄ 0



 ,

P h =
1
4





−(µ̄+ λ̄) 0 µ̄+ λ̄
0 0 0

µ̄+ λ̄ 0 −(µ̄+ λ̄)



 .

THE PROPOSED MULTIGRID SOLUTION OF THE
ASSOCIATED SYSTEM OF NONLINEAR
EQUATIONS

The challenging part in applying the finite difference
methods for nonlinear PDEs is how to effectively
solve the associated system of nonlinear equations.
Each system can be very large and is strongly cou-
pled, but it has a few characteristics which are
particularly amenable to MG methods. The main
aim of this section is to propose an MG solution of
the discrete nonlinear system as represented by (5).

Local Fourier analysis and the measure of
h-ellipticity

Local Fourier analysis (LFA) is often applied to
develop efficient MG methods. Although LFA was
originally developed for linear elliptic PDEs with
constant (or frozen) coefficients on infinite grids, it
can also be applied to more general nonlinear PDEs
with varying coefficients. LFA is based on the sim-
plification that boundary conditions are neglected
and all occurring discrete operators are extended to
an infinite grid. On an infinite grid, the discrete
nonlinear operator can be linearized (by freezing
coefficients) and replaced locally by a new operator
with constant coefficients6.

The h-ellipticity measure is an important quan-
tity in the framework of LFA. It is often used
to decide whether or not a certain discretization
is appropriate for an MG treatment. A certain
amount of h-ellipticity can be used as a sufficient
condition for the existence of an efficient pointwise
smoother. Because of the nonlinearity of the data
terms f h

l (u
h) = f h

l (u
h
1, uh

2) in (5), the analysis will be
performed locally on the linearized discrete system
as given by

Nh[ū
h]uh = Gh[ū

h], (6)

where ūh = (ūh
1, ūh

2)
T represents the current approx-

imation obtained from solving (6), and

Nh[ū
h]

=
1
h2

�

−L h
1 +h2σ11[ūh] −P h+h2σ12[ūh]

−P h+h2σ21[ūh] −L h
2 +h2σ22[ūh]

�

and

Gh[ū
h] =

�

− f h
1 (ū

h)+σ11[ūh]ūh
1+σ12[ūh]ūh

2
− f h

2 (ū
h)+σ21[ūh]ūh

1+σ22[ūh]ūh
2

�

are the discrete operators resulting from applying
the first-order approximation to the data terms, i.e.,

f h
l (u

h)≈ f h
l (ū

h)+σl1(ū
h)(uh

1−ūh
1)+σl2(ū

h)(uh
2−ūh

2).

Here σl1(ūh) = ∂u1
f h
l (ū

h) = (∂ul
T h

ūh)(∂u1
T h

ūh) +
(T h

ūh − Rh)(∂u1ul
T h

ūh) and σl2(ūh) = ∂u2
f h
l (ū

h) =
(∂ul

T h
ūh)(∂u2

T h
ūh) + (T h

ūh − Rh)(∂u2ul
T h

ūh). Because the
image difference T h

ūh−Rh is small for well-registered
images (ūh is very close to the true solution),
σlm(ūh) can be replaced by (∂ul

T h
ūh)(∂um

T h
ūh) for m=

1,2.
Let Ωh

∞ = {x ∈ Ω | x = (x1i
, x2 j
)T =

(ih, jh)T, i, j ∈ Z2} be the infinite grid and let
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ϕh(θ ,x) = exp(iθx/h) · bI be grid functions,
where bI = (1, 1)T, θ = (θ1,θ2)T ∈ Θ = (−π,π]2

and x ∈ Ω∞h . It is important to remark that
due to the local nature of LFA, the analysis
should be applied to each grid point separately,
i.e., it focuses on the local discrete system
Nh(ξ)uh(ξ) = Gh(ξ) centred and defined only
within a small neighbourhood of each grid point
ξ = (x i , y j) and uh(ξ) = [uh

1(ξ), uh
2(ξ)]. Applying

the discrete operator Nh(ξ) to the grid functions
ϕh(θ ,x), i.e., Nh(ξ)ϕh(θ ,x) = bNh(ξ,θ )ϕh(θ ,x),
yields the Fourier component

bNh(ξ,θ )

=
1
h2

�

−cL h
1 (θ )+h2σ11(ξ) −cP h(θ )+h2σ12(ξ)

−cP h(θ )+h2σ21(ξ) −cL h
2 (θ )+h2σ22(ξ)

�

.

(7)

Here cL h
1 (θ ) =−(2aw1+2bw2), cL h

2 (θ ) =−(2bw1+
2aw2) and cP h(θ ) = −c sinθ1 sinθ2 denote, respec-
tively, the Fourier components of the discrete oper-
ators L h

1 , L h
2 and P h, where a = 2µ̄+ λ̄, b = µ̄,

c = µ̄+ λ̄, w1 = 1− cosθ1, and w2 = 1− cosθ2.
Following Ref. 6, the measure of the h-ellipticity

is defined via bNh(ξ,θ ) as follows:

Eh(Nh(ξ)) =
min{|det(bNh(ξ,θ ))| : θ ∈Θhigh}

max{|det(bNh(ξ,θ ))| : θ ∈Θ}
, (8)

where Θhigh = Θ\(−π/2,π/2]2 denotes the range
of high frequencies and det(bNh(ξ,θ )) = [4ab((1−
cosθ1)2+(1− cosθ2)2)+4(a2+ b2)(1− cosθ1)(1−
cosθ2)−c2 sin2 θ1 sin2 θ2]/h4+[c1(1−cosθ1)+c2(1−
cosθ2) − c3 sinθ1 sinθ2]/h2 + c4 is the determi-
nant of bNh(ξ,θ ), where c1 = 2aσ22(ξ) + 2bσ11(ξ),
c2 = 2bσ22 + 2aσ11, c3 = 2cσ12(ξ), and c4 =
σ11(ξ)σ22(ξ) − σ2

12(ξ). By the second-order suf-
ficient conditions as given in the fundamentals of
optimization, maxθ∈Θ{|det(bNh(ξ,θ ))|} is obtained
at θmax = (π,π) and minθ∈Θhigh

{|det(bNh(ξ,θ ))|} is

obtained at θmin = (−
1
2π, 0) and (0,− 1

2π). Thus
Eh(Nh(ξ)) is bounded away from zero for all rea-
sonable choices of α, µ, λ and for all possible values
of h > 0, σ11(ξ), σ12(ξ), σ21(ξ), and σ22(ξ) (i.e.,
the results do not depend on the given images and
their sizes) over the whole discrete domain Ωh. For
a very small mesh size one obtains

lim
h→0

Eh(Nh(ξ)) =
ab

4(a+ b)2
∈ (0, 1

4 ).

As a result, it guarantees that there exists an ef-
ficient pointwise smoother within an MG method

for solving the discrete nonlinear system (5). Sur-
prisingly, the discrete nonlinear system may contain
grid anisotropies for λ >> µ. That is, the values
of the coefficients referring to the different spatial
directions (i.e., 2µ̄+ λ̄ and µ̄) vary considerably for
such a choice of the Lamé constants. Apparently,
the smoothing properties of a proper pointwise
smoother for this discrete system are not affected
by this scalar grid anisotropy.

The proposed smoother and its smoothing
analysis

In the previous section, the LFA shows theoretical
choice of error-smoothing procedures for an MG
solution of the discrete nonlinear system (5). To
obtain a high-potential pointwise smoother, this
work proposes an outer-inner iteration method.

Starting from an initial guess u[0] (typically
u[0] = 0) in the outer iteration, the proposed
method computes a sequence of approximate so-
lutions u[1], . . . ,u[ν],u[ν+1], . . . by solving the lin-
earized discrete version of (5) as given by

N̄u[ν+1] = Ḡ[u[ν]] (9)

where N̄= −diag(L1,L2)/h2 and

Ḡ[u[ν]]

=

�

g1− f1(u[ν]) 0
0 g2− f2(u[ν])

�

+
1
h2

�

0 P
P 0

�

�

u[ν]1

u[ν]2

�

g1 = g2 = 0 on the finest grid in the MG setting to
be used shortly, ν denotes the index for the outer
iteration step and the h in (5) is dropped for simplic-
ity. Next the resulting linear system is solved by the
so-called block or pointwise collective Gauss-Seidel
(PCGS) relaxation method for the inner iteration.
Note that one may introduce a relaxation parameter
ω ∈ (0, 2) to obtain the ω-PCGS (or successive over
relaxation) steps. However, the LFA to be discussed
shortly informs us that the smoothing properties of
the PCGS relaxation method are better than those
of the ω-PCGS relaxation (SOR) method. It is also
worth noting that other iterative techniques, such
as the line relaxation techniques or the precondi-
tioned conjugate gradient methods may be used
as an inner solver. However, the PCGS relaxation
method appears to be a cheaper option for practical
applications.

To verify the smoothing efficiency of the pro-
posed smoother, a quantitative measure is the so-
called smoothing factor from an LFA which is de-
fined as the worst asymptotic error reduction by
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performing one smoothing step. To this end, let
N̄huh = Ḡ(ūh) be the linearized discrete system re-
sulting from the outer iterations in (9) with uh and
ūh being the exact result and current approximation,
respectively. The local inner iterations using the
PCGS relaxation method leads to

N̄[+]h ūh
new+ N̄[0]h ūh

new+ N̄[−]h ūold = Ḡ(ūh), (10)

where ūh
new and ūh

old stand for the approximations
to uh before and after the inner smoothing step,
respectively. Here

N̄[+/0/−]h =
1
h2

�

−L h[+/0/−]
1 0

0 −L h[+/0/−]
2

�

,

L h[+]
1 ¬





0 0 0
b 0 0
0 a 0



 ,

L h[0]
1 ¬





0 0 0
0 −2(a+ b) 0
0 0 0



 ,

L h[−]
1 ¬





0 a 0
0 0 b
0 0 0



 ,

L h[+]
2 = (L h[+]

1 )T, L h[0]
2 = L h[0]

1 , and L h[−]
2 =

(L h[−]
1 )T.
By subtracting (10) from N̄huh = Ḡ(ūh), one ob-

tains the system of local error equations N̄[+]h ēh
new +

N̄[0]h ēh
new+N̄[−]h ēold = 0 or ēh

new = Shēh
old where ēh

new =
uh− ūh

new and ēh
old = uh− ūh

old are the error functions

and Sh = −[N̄
[0]
h + N̄[+]h ]

−1[N̄[−]h ] is the amplification
factor. The effect of Sh on the grid functionsϕh(θ ,x)
within Θhigh will determine the smoothing proper-
ties of the proposed smoother. Thus the smoothing
factor is defined by

µ̄loc = sup{|ρ(bSh(θ ))| : θ∈Θhigh}, (11)

where ρ indicates the spectral radius of bSh(θ ). Here
bSh(θ ) is the Fourier coefficient of Sh and is defined
by

bSh(θ ) =−[bN
[0]
h (θ )+bN

[+]
h (θ )]

−1[bN[−]h (θ )] ∈C
2×C2,

(12)
where

bN[+/0/−]h (θ )

=
1
h2

�

−cL h[+/0/−]
1 (θ ) 0

0 −cL h[+/0/−]
2 (θ )

�

,

Fig. 1 Registration results for the synthetic and real
medical images using the proposed MG solution. Left
column: reference R; centre column: template T ; right
column: the transformed image Tu obtained from the
proposed multigrid solution.

and cL h[+]
1 (θ ) = a e−iθ1 + b e−iθ2 , cL h[0]

1 (θ ) = −2(a+
b), cL h[−]

1 (θ ) = b eiθ2 + a eiθ1 , cL h[+]
2 (θ ) = b e−iθ1 +

a e−iθ2 , cL h[0]
2 (θ ) = −2(a + b), cL h[−]

2 (θ ) = a eiθ2 +
b eiθ1 are the Fourier coefficients of L h[+]

1 , L h[0]
1 ,

L h[−]
1 , L h[+]

2 , L h[0]
2 and L h[−]

2 , respectively. Note
that the amplification factor for the local inner iter-
ations being the ω-PCGS or SOR relaxation method
is given by

bSh(θ ) = [bN
[0]
h (θ )+ωbN

[+]
h (θ )]

−1

× [(1−ω)bN[0]h (θ )−ωbN
[−]
h (θ )] ∈ C

2×C2.

The effectiveness of the proposed smoother is
now tested by computing their smoothing factors
at different values of µ/λ, starting at 10/10−1, on
a data set of two synthetic images as shown in
the top row of Fig. 1 on a 32 × 32 grid. Table 1
not only indicates that the proposed smoother with
ω = 1 (the PCGS relaxation method) is indeed the
best smoother (the smaller the smoothing factor, the
better the smoothing) compared with those of the
ω-PCGS relaxation method at different values of ω
(ω= 0.67, 0.75, 1.25, 1.33), but also its smoothing
property is not affected significantly by this ratio.
Note that a small or large ratio as µ/λ→ 0 or µ/λ→
∞ is meaningless for the purpose of image regis-
tration since it may lead to very irregular solutions.
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Table 1 Smoothing factors µ̄loc by the local Fourier
analysis for various ω values after one smoothing step
(one iteration) with α = 1/10 at different values of µ/λ
on a 32×32 grid for the registration problem as shown in
the top row of Fig. 1.

µ/λ: 10 5 1 0.5 10−1

ω= 0.67 0.7260 0.7333 0.7787 0.8179 0.9252
ω= 0.75 0.6860 0.6934 0.7435 0.7876 0.9113
ω= 1.00 0.5718 0.5785 0.5840 0.5901 0.6014
ω= 1.25 0.5859 0.5870 0.5967 0.6168 0.7768
ω= 1.33 0.6244 0.6248 0.6285 0.6344 0.7452

From a practical point of view, only moderate values
of µ/λ, particularly µ/λ ∈ [10−1, 101], yield a rea-
sonable deformation and lead to visually pleasing
registration results. Moreover, this recommended
range of µ/λ provides a positive lower bound for
Eh(Nh(ξ)) and ensures the existence of the efficient
pointwise smoother. Several numerical tests given
later back up the theoretical results discussed in this
section; see Table 2.

Coarsening, prolongation and restriction
operators

As a starting point, the standard coarsening is used
in computing the coarse-grid domain ΩH by dou-
bling the grid size in each space direction, i.e.,
h → 2h = H. To fulfil the relation between the
order of the differential operator and the sum of
the orders of prolongation and restriction, we use
the bilinear interpolation operator uh

l = Ih
HuH

l for
prolongation and the full weighting operator uH

l =
IH
h uh

l for restriction.

Coarse grid operator

Owing to the uniform and structure grids, one can
use the so-called discretization coarse grid approxi-
mation (DCA) method6. The idea is to re-discretize
the PDEs in (4) directly. In the case of f H

l (u
H
1 , uH

2 ),
the restriction operator IH

h is used to obtain uH
1 , uH

2 ,
RH and T H , and then compute the corresponding
coarse-grid part of f h

l (u
h
1, uh

2). For L H
l and P H ,

the corresponding coarse-grid part of L h
l and P h,

are obtained using uH
l and the DCA method. Note

that it is possible to use a Galerkin operator in
determining the coarse grid operators. However,
a straightforward implementation requires either
additional memory or additional computation for
each operator application. Thus the DCA method is
appropriate for numerical implementation on mod-
est computational architecture.

Table 2 Registration results by the proposed MG solution
with α= 1/10, µ= 1/2 for Examples 1–3.

q M/D/C

Example 1 Example 2 Example 3
λ= 5/2 λ= 1/4 λ= 1/4

7 8/0.0190/7.3 7/0.1168/6.2 7/0.1147/6.0
8 8/0.0146/16.9 6/0.1226/13.1 7/0.1030/14.8
9 7/0.0142/44.2 6/0.1268/37.5 6/0.1000/38.1
10 6/0.0132/129 6/0.1284/127 6/0.1002/122
11 5/0.0130/446 5/0.1289/378 6/0.1005/453
12 5/0.0128/1663 5/0.1290/1669 6/0.1006/2011

q = − log2 h; M : number of MG steps; D: relative
reduction of dissimilarity; C: total run times (s).

Coarsest grid solver

To overcome nonlinearity, the explicit time march-
ing scheme associated with (5) as given by

uh
tk+1
= uh

tk
+τ(Gh[u

h
tk
]−Nhuh

tk
), (13)

is used to linearize and solve the nonlinear residual
equation on the coarsest grid, typically the 4×4 grid.
Here τ > 0 is the time step determined from dis-
cretization by a forward difference approximation
of the time derivative ∂tu, where t is the artificial
time variable.

Multigrid cycle

The above multigrid components are linked to-
gether to form a V-, W-, or F-cycle. In this work, the
W-cycle is selected for solving (5). As can be seen in
the numerical experiments, the W(3,3)-cycle is very
effective and can significantly decrease the relative
residuals.

AN APPLICATION FOR REGISTERING A GROUP
OF MONOMODAL IMAGES

Given a finite set of monomodal images I =
{I1, I2, . . . , IN} (N > 2) where I i : Ω ⊂ R2 → V ⊂ R
for i ∈ {1,2, . . . , N}, the aim of the so-called implicit
reference based groupwise (IRG) image registration
method7 is to simultaneously estimate N deforma-
tions defined by

uiR : R2→ R2,uiR : x 7→uiR(x) = (uiR
1 (x), uiR

2 (x))
T

from each image I i ∈ I to an implicit or common
reference R corresponding to the group average (or
the average shape). This registration problem can
be stated as follows:

min
U
{J̄α(U; I i) = D̄(U; I i)+αR̄elas(U)}, (14)

where U= (u1R,u2R, . . . ,uNR)∈U N is searched over
a space of admissible functions minimizing J̄α. The
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first term in (14) defined by

D̄(U; I i) = 1
2

N
∑

i=1

∑

i< j

∫

Ω

(I i
uiR(x)− I j

u jR(x))
2 dx, (15)

is used to eliminate an unavoidable bias caused by
the reference selection, while the second term in
(14) defined by R̄elas(U) =

∑N
i=1R

elas(uiR) is used
to estimate deformations exhibiting some kind of
smoothness by the elastic regularizer. Here I i

uiR(x) =
I i(ϕiR(x)), where ϕiR(x) = x + uiR(x) denotes the
transformation from image i to the implicit refer-
ence R. Note that the transformation ϕi j between
every pair of images is obtained by concatenating
transformations,ϕi j(x) =ϕiR(ϕ jR−1

(x)). As a conse-
quence, the minimization problem in (14) yields the
system of N nonlinear PDEs. Here the ith equation
is given by

fiR(uiR)− (µ̄∆uiR+(λ̄+ µ̄)∇divuiR) = 0, (16)

subject to the boundary conditions uiR
1 = uiR

2 = 0 for
all i ∈ {1, 2, . . . , N} and

fiR(uiR) =
N
∑

j=1

(I i
uiR − I j

u jR)∇uiR I i
uiR .

Apparently, the number of unknown variables in the
above system can be very large and it requires an
efficient solution method. To this end, the proposed
MG solution can apply only a single W-cycle for each
nonlinear equation. As can be seen in the next
section, the proposed MG solution is very efficient
at estimating the deformations and delivering the
implicit reference images in a reasonable amount of
time.

NUMERICAL EXPERIMENTS

This section presents some experiments on three
registration problems consisting of the synthetic
and real medical images (Fig. 1) to (i) demonstrate
the performance of the proposed MG solution with
regard to parameter changes; (ii) show the effec-
tiveness of the proposed MG solution in registering
a group of monomodal images; (iii) compare with
other MG solution methods. All numerical algo-
rithms were implemented on a 2.5 GHz laptop with
an Intel Core i5 and 8 GB of RAM. Note that in all
experiments, ν1 = ν2 = 3 (pre- and post-smoothing
steps), the maximum number of inner iterations
used by the proposed smoother is 2, the relaxation
parameter ω = 1, and cubic interpolation was used
for computing the deformed template images.

I1 I2 I3 I4

Fig. 2 Registration results from the proposed MG solution.
Top row: original four images; middle row: transformed
images corresponding to the implicit reference image;
bottom row: the transformation ϕiR applied to a rectan-
gular grid.

h-independent convergence tests

One of the key properties of MG techniques is that
their convergence does not depend on the number
of grid points. Thus the first test was designed
to investigate this property with the proposed MG
solution and to support the theoretical results from
LFA. The number of MG steps used to reduce the
mean of the relative residual to below 10−8, the
relative reduction of dissimilarity, and run times (in
seconds) are given in Table 2 with different numbers
of grid points. As can be seen in Table 2, the results
show that the proposed MG solution not only con-
verges within a few MG steps, but it is also accurate
because the dissimilarities between the reference
and registered images have been reduced by more
than 98% for Example 1, 87% for Example 2, and
89% for Example 3.

Tests of the proposed MG solution in registering
a group of monomodal images

The aim of this test is to assess the performance of
the proposed MG solution in registering a group of
monomodal images. To this end, two data sets of
the four synthetic and real medical images shown
in the top rows of Figs. 2 and 3 were used with
the parameters α = 1/10, µ = 1/2, λ = 1/4, and
h= 1/128. To obtain the registration results quickly,
the proposed MG solution was performed using only
a single W-cycle and took about 1 s to solve each
equation in (16). The results shown in the middle
rows of Figs. 2 and 3 indicate that the four implicit
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I1 I2 I3 I4

Fig. 3 Registration results from the proposed MG solution.
Top row: original four images; middle row: transformed
images corresponding to the implicit reference image;
bottom row: transformation ϕiR applied to a rectangular
grid.

reference images agree with each other very well.

Comparison with other multigrid methods

Numerical methods in Refs. 5, 8, 9 are some exist-
ing MG techniques used to solve the elastic image
registration. This section uses Example 1 shown
in the first two images in the top row of Fig. 1 to
compare the proposed MG solution and other three
MG methods by starting with the fixed parameters
h = 1/128, α = 1/10, µ = 1/2, λ = 5/2 and the
initial solution u(0) = 0. The linear multigrid (LMG)
methods combined with the Gauss-Newton (GN)
methods in Refs. 8, 9 were performed using two pre-
smoothing and two post-smoothing steps until the
relative residuals are below a user-supplied thresh-
old (10−8). Table 3 reports the results for all MG
methods. As expected from the experiments, all
methods are very fast and accurate in registering the
given images because the dissimilarities between
the reference and registered images have been sig-
nificantly reduced by more than 97% within the first
20 iterations. The proposed method is not only the
fastest way to solve this registration problem, but
also reduces the relative residuals to below 10−8.

CONCLUSIONS

This paper has presented an efficient multigrid so-
lution of the nonlinear PDEs arising in elastic im-
age registration. The h-ellipticity shows that the
resulting nonlinear discrete operator is amenable to
multigrid methods. We propose a high potential
smoother based on an outer-inner iteration scheme

Table 3 A comparison among different multigrid methods
in Refs. 5, 8, 9 to solve the elastic image registration in the
first 20 iterations.

Methods M/R/D

FAS-NMG V(1,1) 5 20/2.7×10−6/0.0196
GN+LMG V(2,2) 8 20/4.1×10−7/0.0214
GN+LMG F(2,2) 9 20/7.5×10−8/0.0211
Proposed method F(2,2) 14/8.9×10−9/0.0217
Proposed method W(3,3) 8/1.7×10−9/0.0189

M : number of iterations or MG steps to reduce the
relative residuals to below 10−8; R: relative residuals;
D: relative reduction of dissimilarity.

and confirm its effectiveness by the LFA and several
numerical tests conducted to assess the accuracy
and efficiency of the proposed multigrid solution.
As expected from a multigrid method, numerical
results show that the proposed multigrid solution is
reliable and can be recommended for a wide range
of real applications.
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