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Reverses and variations of the Young inequality
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ABSTRACT: We extend the range of the weighted operator means for v ¢ [0, 1] and obtain some corresponding operator
inequalities. We also present several reversed Young-type inequalities.
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INTRODUCTION

Let B(H) be the C*-algebra of all bounded linear
operators on a Hilbert space H equipped with the
operator norm, S(H) the set of all bounded self-
adjoint operators, and P = P(H) the open convex
cone of all positive invertible operators. For X,Y €
S(H), we write X <Y if Y —X is positive, and X <Y
if Y — X is positive invertible.

The unitarily invariant norm ||-|| is defined on
the matrix algebra M, of all n x n matrices with
entries in the complex field C. For A = (a;;) € M,
the Hilbert-Schmidt norm of A is defined by ||A||, =
(Z;‘zlsf(A))l/z, where s;(A),s,(A),...,s,(A) are the
singular values of A, i.e., the eigenvalues of the
positive matrix |A| = (A*A)'/? where A* = (A)"), ar-
ranged in decreasing order and repeated according
to multiplicity. It is known that the Hilbert-Schmidt
norm is unitarily invariant.

Let a, b > 0 be two positive real numbers and
v €[0,1]. The v-weighted arithmetic and geometric
means of a and b, denoted by A, (a, b) and G, (a, b),
respectively, are defined as

A,(a,b)=1—v)a+vb, G,(a,b)=a'"b".
Note that A,(a, b) = G, (a, b) for all v € [0,1]. This
is the well-known Young inequality. In particular, if
v = 3 then A, ,(a,b) = 2(a +b) and G, ,(a,b) =
Vab are the arithmetic and geometric means, re-
spectively. The Heinz mean of a and b is defined
as
a’ bl—v + al—v bY

Hy(a,b) = ——

forv €[0,1]. For v =0, 1, this is equal to arithmetic
mean and for v = % it is the geometric mean.

Let A,B € B(H) be two positive operators and
v €[0,1]. The v-weighted arithmetic mean of A and
B, denoted by AV, B, is defined as

AV,B=(1—v)A+VB.

If A is invertible, the v-weighted geometric
mean of A and B, denoted by Afl,B, is defined as

AuvB :Al/Z(A_l/zBA_l/Z)VAl/Z.

For more details, see Ref. 1. When v = %, we write
AVB and AfB for brevity, respectively.

The operator version of the Heinz mean, de-
noted by H, (A, B), is defined as

Af,B+A},_,B

, O0svs<l
2

H,(A,B) =

It is well known that if A and B are positive invertible
operators, then

AV,B>Af,B, O0<v<l.
The Specht ratio?? is defined by

tV/(=1)

S(t) for t >0,t #1,

- elog t1/(t=1)

and
S(1)= }in}S(t) =1.

Furuichi* gave the following refined version:
AV,B > S(h")Af,B > At B,

where r = min{v,1—v}. Zuo et al® gave another
one:
K(h,2)"At,B <AV, B,
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where K(t,2) = (t + 1)?/4t for t > 0 is the Kan-
torovich constant. In Ref. 6, Furuichi gave another
refined version:

AV,B > Afl,B + 2r(AVB —A{B) > At B.

Recently there have been a number of other studies
on similar topics and various improvement ver-
sions” 1L,

The Heinz norm inequality, which is one of the
essential inequalities in operator theory, states that
for any positive operators A, B € M,,, any operator
X € M, and v € [0, 1], the following double inequal-
ity holds:

2 ||A1/2XB”2H < HAVXBH +A1_"XBV||
<|lAX +XB|l. (1)

Kittaneh and Manasrah '? showed a refinement
of the right-hand side of inequality (1) for the
Hilbert-Schmidt norm as follows:

|A7X B +AXBY|[; + 2r, IAX —XB|3
<|lAX +XB|j;, (2)

in which A,B,X € M, such that A, B are positive
semidefinite, v € [0, 1] and ry = min{v, 1—v}. Kaur
et al'3, using the convexity of the function f(v) =
|||Ax B +A"XB" || with v € [0,1], presented
more refinements of the Heinz inequality.

It was shown in Ref. 14 that a reverse of in-
equality (2) is

lAX +XBI2 < |AXB"™ + A XB"|;
+2ro IAX —XBI3, (3)
where A,B,X € M, such that A, B are positive
semidefinite, v € [0, 1], and ry = max{v,1—v}.
In this paper, we extend the range of the
weighted operator means for v ¢ [0,1] and obtain
some corresponding operator inequalities. We also

present a reverse of (2) and some other operator
inequalities.

SOME OPERATOR INEQUALITIES FOR v ¢ [0, 1]
ForA,BePandv €[0, 1], the v-weighted geometric

operator mean is defined as
AﬁvB =A1/2(A_1/2BA_1/2)VA1/2.

For convenience, we use the notation fj, and H? for
the binary operation
AI:]VB — Al/Z(Afl/ZBAfl/z)VAl/Z’
Ay,B+Af;_,B
HE(A,B)Z hv nl 34 ,
2
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for v ¢ [0,1]. We use the notation <, and H‘? for
the binary operation

A<>‘,B =A1/2(A—1/2BA—1/2)VA1/2’
H‘?(A,B) — AuvB +2/ml—vB ,

forvé¢ [%, 1], whose formulae are the same as f, and

H, (A, B). Note that Aff,B for v € [0, 1] is monotonic,

but A, B and A, B are not.

In this section, we extend the range of the
definition of the weighted operator. We also present
some operator inequalities for v ¢ [0,1] and v ¢
[%, 1]. To obtain the results, we need the following
lemmas.

Lemma 1 (Ref. 15) Let X € B(H) be self-adjoint
and let f and g be continuous real functions such that
f(t) = g(t) for all t € Sp(X) (the spectrum of X).
Then f(X) = g(X).

Lemma 2 (Ref. 16) Let a, b > 0 and v ¢ [0,1].
Then,
(6]
va+(1—»b+(—1)(va— Vb2 <a'b'™,

(i)

(a+b)+2(v—1)(vVa— Vb)Y <a’b' +b"a"",
(iii)

(a+b)?+2(v—=1)(a—b)* < (a"b*™V+b"a'™)%
Proof: Leta,b>0and v ¢[0,1].
(i) Assume that f(t) =tV —v+(v—1)t witht €
(0, 00). It is easy to see that f(t) has a minimum at
t =1 in the interval (0, c0). Hence f(t) = f(1)=0
for all t > 0. Assume that a, b > 0. Letting t = b/a,

we get
va+(1—=v)b<a’b™.

So we have

va+(1—v)b+(v—1)(va—vb)?
=(2-2v)Vab+(2v—1)a
< ( /ab)ZfzvaZ\/fl — av blfv'
(ii) It can be proved in a similar fashion to (i).
(iii) It follows from (ii) by replacing a by a® and b
by b2.
O
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Theorem 1 Let AAB€Pandv ¢[0,1]. Then:
vA+(1—v)B+2(v—1)(AVB—AtB) < Ay,_,B.
Proof: By Lemma 2(i), we have
v+(1-b+(v-1)A- Vb3 <b,

for any b > 0. If X = A"/2BA™Y/? and thus Sp(X) C
(0, +00), then we have

v+(A-t+ (=11 -V <,
for any t € Sp(X). This is the same as
VI+(1—vX+(v -1 -XY2)2<x"™. @
Multiplying both sides of (4) by A2, we get
VA+(1—v)B + (v—1)(A+ B —24Y2x1/241/2)
<AV2X1vAl2 (5)
If v¢[0,1], then
VA+(1—v)B+2(v—1)(AVB —AiB) < Afj,_,B.
a

Remark 1 InRef. 12, the authors showed thatifv €
(o, %), then

vA+(1—v)B+2(v—1)(AVB —AfB) < Af, ,B.

It is the same version of the formula (5). Hence for
allv ¢ [%, 1],

VA+(1—v)B+2(v—1)(AVB —AtB) <A, B
holds.

Remark 2 If A, B€Pand B = A, v €(1,2), then by
the monotonicity of f, and 0 <v—1<1,B 1 <A™,
VA+(1—v)B+2(v—1)(AVB —AtB) < Af,_,B

:Al/Z(A—l/ZBA—l/Z)l—VAl/Z
:Al/Z(Al/ZB—lAl/Z)V—lAl/Z
<Al/Z(Al/ZA_lAl/z)v_lAl/z =A.

This is the same as

B—A
0<AVB—AfB< —=.

By Lemma 2 (ii), (iii) and using the same processing
technique as in Theorem 1, we can get the following
theorems and the corresponding remarks.
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Theorem 2 Let A, B€Pandv ¢[0,1]. Then
AVB +2(v —1)(AVB —AfB) < H(A, B).

Remark 3 InRef. 14, the authors showed thatif v €
(o, %), then

AVB +2(v—1)(AVB —A{B) < H, (A, B).
Hence for all v ¢ [%, 1],

AVB +2(v—1)(AVB —A{B) < HY(A,B)
holds.
Remark 4 IfAB€Pand B> A, v €(1,2), then

B+4(v—1)(AVB —AfB) < A, B.
Theorem 3 Let A, B€Pandv ¢[0,1]. Then
(2v—1)(A+Af,B)—4(v—1)B < A, ,,B +Al,,B.

Remark 5 If A, BePand B> A, v e (1,2), then

2(v—1)(A—2B) + (2v — 1)A},B < Al,, B.

A REVERSE OF THE HEINZ INEQUALITY FOR
MATRICES

In this section, we present a reverse of the Heinz
inequality for matrices. To obtain the result, we
need the following lemma.

Lemma 3 (Ref. 17) Leta, b> 0. [f0<v < 3, then
via+(1-v)?’b<(1—v)*(Va— \/3)2
+a’[(1=v)*b]"™. (6)
If%<v<1, then
v2a+(1—v)?b < v3(va— Vb +(2a)'b™. (7)

Based on Lemma 3, the following corollaries can
be easily obtained.

1
Corollary 1 Leta, b > 0. If 0 <v < 3, then

2w(a+b) <2(1—v)(Wa—Vb)?
+ (1= [ab Y + b ™]. (8)

If%SvSl,then

2(1—v)(a+b) < 2v(va—Vb)?
+ vzv_l[avbl_" + b"al_"]. ()]
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Corollary 2 Leta, b>0. If0<v < 3, then

2v(a+b)? <2(1—v)(a—b)?

+(1 =) (@b +b¥a ™) (10)
If% < v <1, then
2(1—=v)(a+b)? < 2v(a—b)?
+v2 @b+ bvat ™) (1D

Theorem 4 Let A,B,X € M, with A, B are positive,
and v €[0,1]. Then

2v [|AX + XB||2 < 2(1—v)||AX —XB||}

+(1—v)" |AXB + A" X B2

forOSvé%,and

2(1—v)|IAX + XB|[> < 2v||AX —XB||?
+v? 71 |aXB + A XBY |

for%<v<1.

Proof: By spectral decomposition, there are unitary
matrices U,V € M, such that A= UA,U* and B =
VA,V*, where

Al = diag(a‘lr A'2: ey A'n)

and

AZ = diag(‘ula Moy :un)

where A; and y; fori =1,2,...,n are the eigenval-
ues of A and B, respectively. Let Y = U*XV = [y;;],
then

AX +XB=U(AY +YA,)V*
=Ul(A; +pyy;; V7,
AX —XB=U(AY —YA,)V*
=U[(}; _Ui)yz'j]V*,
A'XB'™ +A'"XBY
=UNU*XVA, 'V + UA U XVALV*
=UNYA 'V +UAYALV*

= U[A;YA;V + A%“’YA;]V*

= U[()Liv“il_v + Ag_vu;’)ylj]v*.
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fosvs< %, then by (10) and the unitary invariance
of the Hilbert-Schmidt norm, we have

n
2
2v[IAX +XB[3 =2v > (A +p)? |y
i,j=1

n
2
<201-v) > (A —u)? |y
i,j=1
. 2
A=) Y AT ) [y
i,j=1

=2(1—v)||AX —XB||?

+(1 =)

1— 1— 2
A'XB "V +ATVXBY g

If % < v <1, then by (11) and using the same tech-
nique in the first part we get the other result. O

SOME REVERSES OF THE YOUNG-TYPE
INEQUALITY FOR OPERATORS

In this section, we obtain some reverses of the
Young-type inequality for two positive invertible
operators.

Theorem 5 Let A,B<€Pandv €[0,1]. Then
vZA+(1—v)’B < 2(v—1)*(AVB —AfB)
+(1—v)*" At B,
forO<v< %, and
v2A+(1—v)?B < 2v*(AVB —AfB) + v¥’Af,_, B,
for % <v<1l
Proof: For 0< v < %, by (6) we have
v2a+(1—v)?b < (1—v)2(vVa—v b)*+a’[(1—v)*b]"™,

for any b > 0. If X = A"/2BA™/2 and thus Sp(X) C
(0, +00), then we have

2+ (1=v?2b < (1—v22(1— Vb2 +[(1—v)*b]"™,
for any t € Sp(X). This is the same as
VI+(1—v)2X < (1—v)2(I—XY2P+[(1—v)?X 1.

(12)
Multiplying both sides of (12) by A2, we get

vZA+(1—v)*B < 2(v—1)*(AVB —AfB)
+(1—v)*37af,_,B.

O
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Theorem 6 Let A,B€Pandv €[0,1]. Then 16. Mojtaba B, Mohammad SM (2015) Reverses and
1o variations of Heinz inequality. Lin Multilin Algebra
2vAVB < 2(1—V)(AVB —AﬁB)-F(l—V) VHV(A,B), 63, 1972-80.

17. Burqan A, Khandagji M (2015) Reverses of Young

<y<gi
for0Sv< 3, and type inequalities. J Math Inequal 9, 113-20.

2(1—v)AVB < 2v(AVB —A}#B) + v 'H, (A, B),
for % <svsl

Proof: By Corollary 2 and the same processing
technique as in Theorem 5, we can easily obtain the
result. O
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