A generalized statistical convergence in intuitionistic fuzzy normed spaces

Ekrem Sava¸s^a **, Mehmet Gürdal**b,[∗]

^a Department of Mathematics, Istanbul Ticaret University, Üsküdar-Istanbul, Turkey

 b Suleyman Demirel University, Department of Mathematics, 32260, Isparta, Turkey</sup>

[∗]Corresponding author, e-mail: gurdalmehmet@sdu.edu.tr

Received 2 Feb 2015 Accepted 22 Jul 2015

ABSTRACT: In this paper, we introduce the notion of $\mathcal{I}\text{-}[V,\lambda]$ -summability and $\mathcal{I}\text{-}\lambda$ -statistical convergence with respect to the intuitionistic fuzzy norm (μ, ν) , investigate their relationship, and make some observations about these classes. We mainly examine the relation between these two new methods and the relation between *β*-λ-statistical convergence and \mathcal{I} -statistical convergence in the corresponding intuitionistic fuzzy normed space.

KEYWORDS: ideal, filter, \mathcal{I} -statistical convergence, \mathcal{I} - λ -statistical convergence, \mathcal{I} -[V, λ]-summability

MSC2010: 40G99

INTRODUCTION AND PRELIMINARIES

The idea of convergence of a real sequence has been extended to statistical convergence by Fast $^{\rm 1}$ $^{\rm 1}$ $^{\rm 1}$ as follows: let *K* be a subset of $N \equiv \{1, 2, ...\}$. Then the asymptotic density of *K* is defined by $\delta(K)$:= $\lim_{n\to\infty}(1/n)|{k \le n : k \in K}|$, where |*S*| denotes the cardinality of the set *S*. A number sequence $x = (x_k)_{k \in \mathbb{N}}$ is said to be statistically convergent to *L* if for every $\varepsilon > 0$, $\delta({k \in \mathbb{N} : |x_k - L| \geq \varepsilon}) = 0$. If $(x_k)_{k \in \mathbb{N}}$ is statistically convergent to *L* we write st -lim $x_k = L$. Statistical convergence turned out to be one of the most active areas of research in summability theory after the work of Fridy 2 2 and Šalát 3 3 .

In Ref. [4,](#page-5-3) Kostyrko et al introduced the concept of \mathcal{I} -convergence of sequences in a metric space and studied some properties of such convergence. Note that \mathcal{I} -convergence is an interesting generalization of statistical convergence. More investigations in this direction and more applications of ideals can be found in Refs. [5–](#page-5-4)[7.](#page-5-5) In another direction, the idea of *λ*-statistical convergence was introduced and studied by Mursaleen 8 8 as an extension of the [V, λ]summability of Leindler [9](#page-5-7) . *λ*-statistical convergence is a special case of the more general *A*-statistical convergence studied in Ref. [10.](#page-5-8)

Following the introduction of fuzzy set theory by Zadeh^{[11](#page-5-9)}, there has been extensive research to find applications and fuzzy analogues of the classical theories. The theory of intuitionistic fuzzy sets was

introduced by Atanassov^{[12](#page-5-10)}; it has been extensively used in decision-making problems 13 13 13 . The concept of an intuitionistic fuzzy metric space was introduced in Ref. [14.](#page-5-12) Saadati and Park 15 introduced the notion of an intuitionistic fuzzy normed space. Some work related to the convergence of sequences in several normed linear spaces in a fuzzy setting can be found in Refs. [16–](#page-5-14)[19.](#page-5-15)

Here we intend to unify these two approaches and use ideals to introduce the concept of $\mathcal{I} - \lambda$ statistical convergence with respect to the intuitionistic fuzzy norm (μ, ν) , and investigate some of its consequences.

Definition 1 [Ref. [20](#page-5-16)] A triangular norm (*t*-norm) is a continuous mapping \ast : $[0,1] \times [0,1] \rightarrow [0,1]$ such that $(S, *)$ is an abelian monoid with unit one and $c * d \le a * b$ if $c \le a$ and $d \le b$ for all $a, b, c, d \in$ [0, 1].

Definition 2 [Ref. [20](#page-5-16)] A binary operation \diamond : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is said to be a continuous *t*conorm if it satisfies the following conditions:

- (i) \Diamond is associative and commutative,
- (ii) \Diamond is continuous,
- (iii) $a \diamond 0 = a$ for all $a \in [0, 1]$,
- (iv) $a \Diamond b \leq c \Diamond d$ whenever $a \leq c$ and $b \leq d$ for each a, b, c, d ∈ [0, 1].

For example, we can give $a * b = ab$, $a * b = ab$ $b = \min\{a, b\}, a \diamond b = \min\{a + b, 1\}$ and $a \diamond b =$ max $\{a, b\}$ for all $a, b \in [0, 1]$.

Using the continuous *t*-norm and *t*-conorm, Saadati and Park 15 has recently introduced the concept of intuitionistic fuzzy normed space as follows.

Definition 3 [Ref. [15](#page-5-13)] The five-tuple $(X, \mu, \nu, \ast, \Diamond)$ is said to be an intuitionistic fuzzy normed space (for short, IFNS) if X is a vector space, $*$ is a continuous *t*-norm, \diamond is a continuous *t*-conorm, and μ , ν are fuzzy sets on $X \times (0, \infty)$ satisfying the following conditions for every $x, y \in X$, and $s, t > 0$: (i) $\mu(x, t) + \nu(x, t) \leq 1;$ (ii) $\mu(x, t) > 0$; (iii) $\mu(x, t) = 1$ if and only if $x = 0$; (iv) $\mu(\alpha x, t) = \mu(x, t/|\alpha|)$ for each $\alpha \neq 0$; $\mu(x, t) * \mu(y, s) \leq \mu(x + y, t + s);$ (vi) $\mu(x, \cdot) : (0, \infty) \to [0, 1]$ is continuous; (vii) $\lim_{t \to \infty} \mu(x, t) = 1$ and $\lim_{t \to 0} \mu(x, t) = 0$; (viii) $v(x, t) < 1$; (ix) $v(x, t) = 0$ if and only if $x = 0$; $v(\alpha x, t) = \mu(x, t/|\alpha|)$ for each $\alpha \neq 0$; $v(x, t) \diamond v(y, s) \ge v(x + y, t + s);$ (xii) $v(x, \cdot) : (0, \infty) \to [0, 1]$ is continuous; (xiii) $\lim_{t\to\infty} v(x,t) = 0$ and $\lim_{t\to 0} v(x,t) = 1$.

In this case (μ, ν) is called an intuitionistic fuzzy norm. As a standard example, we can give the following. Let $(X, \|\cdot\|)$ be a normed space, and let $a * b = ab$ and $a \diamond b = \min\{a + b, 1\}$ for all $a, b \in$ [0, 1]. For all $x \in X$ and every $t > 0$, consider

$$
\mu(x, t) = \frac{t}{t + ||x||} \text{ and } \nu(x, t) = \frac{||x||}{t + ||x||}.
$$

Then observe that $(X, \mu, \nu, \ast, \Diamond)$ is an intuitionistic fuzzy normed space.

Definition 4 [Ref. [15](#page-5-13)] Let $(X, \mu, \nu, \ast, \Diamond)$ be an IFNS. Then a sequence $x = \{x_k\}$ is said to be convergent to $L \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) if, for every $\varepsilon > 0$ and $t > 0$, there exists $k_0 \in \mathbb{N}$ such that $\mu(x_k - L, t) > 1 - \varepsilon$ and *v*(x_k − *L*, *t*) < ε for all $k \ge k_0$. It is denoted by

$$
(\mu, \nu)\text{-lim}\,x = L \text{ or } x_k \stackrel{(\mu, \nu)}{\rightarrow} L
$$

as $k \rightarrow \infty$.

I -*λ***-STATISTICAL CONVERGENCE ON IFNS**

In this section we deal with the relation between these two new methods and with relations between I -*λ*-statistical convergence and *I*-statistical convergence introduced by the authors recently in an intuitionistic fuzzy normed space. Before proceeding further, we should recall some notation for \mathcal{I} statistical convergence and ideal convergence.

The family $\mathscr{I} \subset 2^Y$ of subsets of a nonempty set *Y* is said to be an ideal in *Y* if (i) $\emptyset \notin \mathcal{I}$; (ii) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$; (iii) $A \in \mathcal{I}$, $B \subset A$ imply $B \in \mathcal{I}$, while an admissible ideal $\mathcal I$ of Y further satisfies ${x} \in \mathcal{I}$ for each $x \in Y$. If \mathcal{I} is an ideal in *Y* then the collection $F(\mathcal{I}) = \{M \subset Y : M^c \in \mathcal{I}\}\)$ forms a filter in *Y* which is called the filter associated with \mathcal{I} . Let $\mathscr{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in N. Then a sequence ${x_n}_{n \in \mathbb{N}}$ in *X* is said to be \mathcal{I} -convergent to $x \in X$, if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{ n \in \mathbb{N} : ||x_n - x|| \geqslant \varepsilon \}$ belongs to \mathcal{I} (see Ref. [4\)](#page-5-3).

Definition 5 [Refs. [6,](#page-5-17) [7](#page-5-5)] A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be \mathcal{I} -statistically convergent to *L* or *S*(*I*)convergent to *L* if, for each $\varepsilon > 0$ and $\delta > 0$,

$$
\left\{n \in \mathbb{N} : \frac{1}{n} \left|\left\{k \leq n : ||x_k - L|| \geq \varepsilon\right\}\right| \geq \delta\right\} \in \mathcal{I}
$$

or equivalently if for each $\varepsilon > 0$

$$
\delta_{\mathscr{I}}(A(\varepsilon)) = \mathscr{I} - \lim \delta_n(A(\varepsilon)) = 0,
$$

where $A(\varepsilon) = \{k \le n : ||x_k - L|| \ge \varepsilon\}$ and $\delta_n(A(\varepsilon)) =$ $|A(\varepsilon)|/n$.

In this case we write $x_k \to L(S(\mathcal{I}))$. The class of all I -statistically convergent sequences will be denoted simply by $S(\mathcal{I})$. Let \mathcal{I}_f be the family of all finite subsets of N. Then \mathcal{I}_f is an admissible ideal in $\mathbb N$ and $\mathscr I$ -statistical convergence is the statistical convergence.

Definition 6 [Ref. [21](#page-5-18)] Let $(X, \mu, \nu, \ast, \Diamond)$ be an IFNS. Then a sequence $x = (x_k)$ is said to be \mathcal{I} statistically convergent to $L \in X$ with respect to the intuitionistic fuzzy normed space and is denoted by

$$
x_k \stackrel{(\mu,\nu)}{\rightarrow} L(S^{(\mu,\nu)}(\mathcal{I})),
$$

if for every $\varepsilon > 0$, and every $\delta > 0$ and $t > 0$,

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : \mu(x_k - L, t) \le 1 - \varepsilon \}
$$

or $v(x_k - L, t) \ge \varepsilon \} \ge \delta \right\} \in \mathcal{I}.$

Let \mathcal{I}_f be the family of all finite subsets of N. Then \mathcal{I}_f is an admissible ideal in N, and \mathcal{I} -statistical convergence coincides with the notion of statistical convergence introduced in Ref. [22.](#page-5-19)

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq$ $\lambda_n + 1$, $\lambda_1 = 1$. The collection of such a sequence λ will be denoted by *∆*.

[ScienceAsia](http://www.scienceasia.org/2015.html) 41 (2015) 291

The generalized de Valée-Pousin mean is defined by

$$
t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k,
$$

where $I_n = [n - \lambda_n + 1, n]$. We are now ready to obtain our main results.

Definition 7 Let $(X, \mu, \nu, \ast, \Diamond)$ be an IFNS. A sequence $x = (x_k)$ is said to be \mathcal{I} -[*V*, λ]-summable to $L \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) and is denoted by $\mathcal{I} \text{-}[V, \lambda]^{(\mu, \nu)}$ -lim $x = L$, if for any $\delta > 0$ and $t > 0$,

$$
\{n \in \mathbb{N} : \mu(t_n(x) - L, t) \leq 1 - \delta
$$

or $v(t_n(x) - L, t) \geq \delta\} \in \mathcal{I}.$

Definition 8 A sequence $x = (x_k)$ is said to be \mathcal{I} *λ*-statistically convergent or I -*S*_λ convergent to *L* with respect to the intuitionistic fuzzy norm (μ, ν) , and denoted by \mathscr{I} -S_{λ}^(μ , ν)- $\lim x = L$ or $x_k \to L(\mathscr{I}$ - $S_{\lambda}^{(\mu,\nu)}$), if for every $\varepsilon > 0$, $\delta > 0$ and $t > 0$,

$$
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \{ k \in I_n : \mu(x_k - L, t) \leq 1 - \varepsilon \right. \right\}
$$
\nor

\n
$$
v(x_k - L, t) \geq \varepsilon \} \geq \delta \left\} \in \mathcal{I}.
$$

Let \mathcal{I}_f be the family of all finite subsets of N. Then \mathcal{I}_f is an admissible ideal in N and \mathcal{I} *λ*-statistical convergence is the *λ*-statistical convergence introduced in Ref. [8.](#page-5-6)

We shall denote by $S^{(\mu,\nu)}(\mathscr{I})$, $S^{(\mu,\nu)}_{\lambda}(\mathscr{I})$ and $[V, \lambda]^{(\mu,\nu)}(\mathscr{I})$ the collections of all \mathscr{I} -statistically convergent, $\mathscr{I} - S_{\lambda}^{(\mu,\nu)}$ -convergent and $\mathscr{I} - [V, \lambda]^{(\mu,\nu)}$ convergent sequences, respectively.

Theorem 1 *Let* $(X, \mu, \nu, \ast, \Diamond)$ *be an IFNS, and let* $\lambda =$ (*λⁿ*) *be a sequence in ∆.*

- (i) If $x_n \to L[V, \lambda]^{(\mu,\nu)}(\mathcal{I})$ then $x_k \to L(S^{(\mu,\nu)}_{\lambda}(\mathcal{I}))$.
- (ii) *If* $x \in m(X)$, the space of all bounded se*quences of X* and $x_k \to L(S^{(\mu,\nu)}_{\lambda}(\mathcal{I}))$ then $x_k \to$ $L[V, \lambda]^{(\mu,\nu)}(\mathscr{I}).$

(iii)
$$
S_{\lambda}^{(\mu,\nu)}(\mathscr{I}) \cap m(X) = [V, \lambda]^{(\mu,\nu)}(\mathscr{I}) \cap m(X).
$$

Proof: (i) By hypothesis, for every $\varepsilon > 0$, $\delta > 0$ and $t > 0$, let $x_k \to L[V, \lambda]^{(\mu, \nu)}(\mathscr{I})$. We have

$$
\sum_{k \in I_n} (\mu(x_k - L, t) \text{ or } v(x_k - L, t))
$$
\n
$$
\geq \sum_{k \in I_n \& \mu(x_k - L, t) < 1 - \varepsilon} (\mu(x_k - L, t) \text{ or } v(x_k - L, t))
$$
\n
$$
\geq \varepsilon |\{k \in I_r : \mu(x_k - L, t) \leq 1 - \varepsilon \text{ or } v(x_k - L, t) \geq \varepsilon\}|.
$$

Then observe that

$$
\frac{1}{\lambda_n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } 1 - \varepsilon \le \varepsilon\}| \ge \delta
$$

\n
$$
\Rightarrow \frac{1}{\lambda_n} \sum_{k \in I_n} \mu(x_k - L, t) \le (1 - \varepsilon)\delta \text{ or }
$$

\n
$$
\frac{1}{\lambda_n} \sum_{k \in I_n} \nu(x_k - L, t) \ge \varepsilon \delta,
$$

which implies

$$
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \{ k \in I_n : \mu(x_k - L, t) \leq 1 - \varepsilon \text{ or } 0 \leq x_k - L, t \leq \varepsilon \} \right| \geq \delta \right\}
$$
\n
$$
\subset \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left\{ \sum_{k \in I_n} \mu(x_k - L, t) \leq 1 - \varepsilon \text{ or } 0 \leq x_k - L, t \leq \varepsilon \right\} \geq \varepsilon \delta \right\}.
$$

Since $x_k \to L[V, \lambda]^{(\mu, v)}(\mathscr{I})$, we immediately see that $x_k \to L(S_{\lambda}^{(\mu,\nu)})$, whence the result.

(ii) We assume that $x_k \to L(S_\lambda^{(\mu,\nu)}(\mathcal{I}))$ and $x \in$ *l*^{(μ , ν). The inequalities μ (x_k −*L*, *t*) ≥ 1−*M* or ν (x_k −} L, t) $\leq M$ hold for all *k*. Let $\varepsilon > 0$ be given. Then we have

$$
\frac{1}{\lambda_n} \sum_{k \in I_n} (\mu(x_k - L, t) \text{ or } v(x_k - L, t))
$$
\n
$$
= \frac{1}{\lambda_n} \sum_{k \in I_n} \sum_{\substack{k, \mu(x_k - L, t) \leq 1 - \varepsilon \\ v(x_k - L, t) \geq \varepsilon}} (\mu(x_k - L, t) \text{ or } v(x_k - L, t))
$$
\n
$$
+ \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ \nu(x_k - L, t) > 1 - \varepsilon \\ v(x_k - L, t) < \varepsilon}} (\mu(x_k - L, t) \text{ or } v(x_k - L, t))
$$
\n
$$
\leq \frac{M}{\lambda_n} |\{k \in I_n : \mu(x_k - L, t) \leq 1 - \varepsilon \text{ or } v(x_k - L, t) \geq \varepsilon\}| + \varepsilon.
$$

Note that

$$
A_{\mu,\nu}(\varepsilon,t) = \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \{ k \in I_n : \mu(x_k - L, t) \right| \ge \varepsilon \} \right| \ge \frac{\varepsilon}{M} \right\}
$$

belong to \mathscr{I} . If $n \in (A_{\mu,\nu}(\varepsilon,t))^c$ then we have

$$
\frac{1}{\lambda_n} \sum_{k \in I_n} \mu(x_k - L, t) > 1 - 2\varepsilon \text{ or } \frac{1}{\lambda_n} \sum_{k \in I_n} \nu(x_k - L, t) < 2\varepsilon.
$$

Now

$$
T_{\mu,\nu}(\varepsilon,t) = \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} \mu(x_k - L, t) \le
$$

$$
1 - 2\varepsilon \text{ or } \frac{1}{\lambda_n} \sum_{k \in I_n} \nu(x_k - L, t) \ge 2\varepsilon \right\}.
$$

Hence $T_{\mu,\nu}(\varepsilon,t) \subset A_{\mu,\nu}(\varepsilon,t)$ and so, by definition of an ideal, $T_{\mu,\nu}(\varepsilon,t) \in \mathscr{I}$. Hence we conclude that $x_k \to L[V, \lambda]^{(\mu, v)}(\mathscr{I})$. (iii) This readily follows from (i) and (ii). \Box

Theorem 2

- (i) $S^{(\mu,\nu)}(\mathscr{I}) \subset S^{(\mu,\nu)}_{\lambda}(\mathscr{I})$ *if* lim inf_{n→∞} $\lambda_n/n > 0$.
- (ii) *If* $\liminf_{n\to\infty} \lambda_n/n = 0$, \Im -strongly (by which we *mean that* \exists *a subsequence* $(n(j))_{j=1}^{\infty}$ *, for which* $(\lambda_{n(j)}/n(j))(1/j)\forall j$ and $\{n(j) : j \in \mathbb{N}\}\notin \mathcal{I}$ *then* $S^{(\mu,\nu)}(\mathscr{I}) \varsubsetneqq S^{(\mu,\nu)}_{\lambda}(\mathscr{I})$ *.*

Proof: (i) For given $\varepsilon > 0$ and every $t > 0$, we have

$$
\frac{1}{n} |\{k \le n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \}
$$
\n
$$
\nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
\ge \frac{1}{n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
= \frac{\lambda_n}{n} \frac{1}{\lambda_n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|.
$$

If $\liminf_{n\to\infty} \lambda_n/n = \alpha$ then from the definition { $n \in$ $\mathbb{N}: \lambda_n/n < \frac{1}{2}\alpha$ } is finite. For every $\delta > 0$,

$$
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \{ k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \right. \right. \right.
$$
\n
$$
\text{or } v(x_k - L, t) \ge \varepsilon \} \right| \ge \delta \}
$$
\n
$$
\subset \left\{ n \in \mathbb{N} : \frac{1}{n} \left| \{ k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \right. \right.
$$
\n
$$
\text{or } v(x_k - L, t) \ge \varepsilon \} \right| \ge \frac{\alpha}{2} \delta \}
$$
\n
$$
\cup \left\{ n \in \mathbb{N} : \frac{\lambda_n}{n} < \frac{\alpha}{2} \right\}
$$

Since \Im is admissible, the set on the right-hand side belongs to $\mathcal I$ and this completed the proof of (i). (ii) The proof is standard. \Box

Theorem 3 *Let* $(X, \mu, \nu, \ast, \diamond)$ *be an IFNS. If* $\lambda \in \triangle$ *is such that* $\lim_{n} \lambda_n/n = 1$ *, then* $S_{\lambda}^{(\mu,\nu)}(\mathscr{I}) \subset S^{(\mu,\nu)}(\mathscr{I})$ *.*

Proof: Let $\delta > 0$ be given. Since $\lim_{n} \lambda_n/n = 1$, we can choose $m \in \mathbb{N}$ such that $\mu(\lambda_n/n-1, t) > 1-\frac{1}{2}\delta$ or $v(\lambda_n/n-1, t) < \frac{1}{2}\delta$, for all $n \geq m$. Now observe that, for $\varepsilon > 0$, every $t > 0$ and $n \ge m$

$$
\frac{1}{n} |\{k \le n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
= \frac{1}{n} |\{k \le n - \lambda_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
+ \frac{1}{n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
\le \frac{n - \lambda_n}{n} + \frac{1}{n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
\le 1 - \left(1 - \frac{\delta}{2}\right) + \frac{1}{n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
= \frac{\delta}{2} + \frac{1}{n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \text{ or } \nu(x_k - L, t) \ge \varepsilon\}|.
$$

Hence

.

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : \mu(x_k - L, t) \le 1 - \varepsilon \}
$$

or $v(x_k - L, t) \ge \varepsilon \} \ge \delta \right\}$

$$
\subset \left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \}
$$

or $v(x_k - L, t) \ge \varepsilon \} \ge \frac{\delta}{2} \right\} \cup \{1, 2, 3, ..., m\}.$

If $\mathscr{I} - S_{\lambda}^{(\mu,\nu)}$ -lim $x = L$ then the set on the right-hand side belongs to $\mathcal I$ and so the set on the left-hand side also belongs to \mathcal{I} . This shows that $x = (x_k)$ is I -statistically convergent to I with respect to the intuitionistic fuzzy norm (μ, ν) .

Theorem 4 *Let* $(X, \mu, \nu, \ast, \Diamond)$ *be an IFNS such that* $\frac{1}{4}\varepsilon_n \Diamond \frac{1}{4}\varepsilon_n < \frac{1}{2}\varepsilon_n$ and $(1 - \frac{1}{4}\varepsilon_n) * (1 - \frac{1}{4}\varepsilon_n) > 1 - \frac{1}{2}\varepsilon_n$. If X is a Banach space then $S^{(\mu,\nu)}_\lambda(\mathscr I)\cap m(X)$ is a closed *subset of m*(*X*)

[ScienceAsia](http://www.scienceasia.org/2015.html) 41 (2015) 293

Proof: We first assume that $(x^n) \subset S_{\lambda}^{(\mu,\nu)}(\mathscr{I}) \cap m(X)$ is a convergent sequence and it converges to $x \in$ *m*(*X*). We need to show that $x \in S_{\lambda}^{(\mu,\nu)}(\mathcal{I}) \cap m(X)$. Suppose that $x^n \to L_n(S^{(\mu,\nu)}_{\lambda}(\mathscr{I}))$ for all $n \in \mathbb{N}$. Take a sequence $\{ \varepsilon_n \}_{n \in \mathbb{N}}$ of strictly decreasing positive numbers converging to zero. We can find an $n \in \mathbb{N}$ such that $\sup_j v(x-x^j,t) < \frac{1}{4}\varepsilon_n$ for all $j \ge n$. Choose $0 < \delta < \frac{1}{5}$. Now let

$$
A_{\mu,\nu}(\varepsilon_n, t) = \left\{ m \in \mathbb{N} : \frac{1}{\lambda_m} \left| \left\{ k \in I_m : \mu(x_k^n - L_n, t) \le 1 - \frac{\varepsilon_n}{4} \text{ or } \mu(x_k^n - L_n, t) \ge \frac{\varepsilon_n}{4} \right\} \right| < \delta \right\}
$$

belongs to $F(\mathcal{I})$ and

$$
B_{\mu,\nu}(\varepsilon_n, t) = \left\{ m \in \mathbb{N} : \frac{1}{\lambda_m} \left| \{ k \in I_m : \mu(x_k^{n+1} - L_{n+1}, t) \leq 1 - \frac{\varepsilon_n}{4} \text{ or } \mu(x_k^{n+1} - L_{n+1}, t) \geq \frac{\varepsilon_n}{4} \right\} \right| < \delta \left\}
$$

belongs to $F(\mathcal{I})$. Since $A_{\mu,\nu}(\varepsilon_n,t) \cap B_{\mu,\nu}(\varepsilon_n,t) \in$ *F*(\mathscr{I}) and $\varnothing \notin F(\mathscr{I})$, we can choose $m \in A_{\mu,\nu}(\varepsilon_n,t) \cap I$ $B_{\mu,\nu}(\varepsilon_n,t)$. Then

$$
\frac{1}{\lambda_m} \left| \left\{ k \in I_m : \mu(x_k^n - L_n, t) \le 1 - \frac{\varepsilon_n}{4} \right\} \right|
$$
\n
$$
\text{or } v(x_k^n - L_n, t) \ge \frac{\varepsilon_n}{4} \vee
$$
\n
$$
\mu(x_k^{n+1} - L_{n+1}, t) \le 1 - \frac{\varepsilon_n}{4} \text{ or}
$$
\n
$$
v(x_k^{n+1} - L_{n+1}, t) \ge \frac{\varepsilon_n}{4} \right\} \left| \le 2\delta < 1.
$$

Since $\lambda_m \to \infty$ and $A_{\mu,\nu}(\varepsilon_n, t) \cap B_{\mu,\nu}(\varepsilon_n, t) \in F(\mathcal{I})$ is infinite, we can choose the above *m* so that λ_m > 5. Hence there must exist a $k \in I_m$ for which we have simultaneously, $\mu(x_k^n - L_n, t) > 1 - \frac{1}{4} \varepsilon_n$ or $\nu(x_k^n - L_n, t) < \frac{1}{4} \varepsilon_n$ and $\mu(x_k^{n+1} - L_{n+1}, t) > 1 - \frac{1}{4} \varepsilon_n$ or $v(x_k^{n+1} - L_{n+1}, t) < \frac{1}{4} \varepsilon_n$. For a given $\varepsilon_n > 0$ choose $\frac{1}{2}\varepsilon_n$ such that $(1 - \frac{1}{2}\varepsilon_n) * (1 - \frac{1}{2}\varepsilon_n) > 1 - \varepsilon_n$ and $\frac{1}{2}\varepsilon_n \Diamond \frac{1}{2}\varepsilon_n < \varepsilon_n$. Then it follows that

$$
\nu\left(L_n - x_k^n, \frac{t}{2}\right) \Diamond \nu\left(L_{n+1} - x_k^{n+1}, \frac{t}{2}\right)
$$

\$\leq \frac{\varepsilon_n}{4} \Diamond \frac{\varepsilon_n}{4} < \frac{\varepsilon_n}{2}\$

and

$$
v(x_k^n - x_k^{n+1}, t) \le \sup_n v\left(x - x^n, \frac{t}{2}\right)
$$

$$
\diamond \sup_n v\left(x - x^{n+1}, \frac{t}{2}\right)
$$

$$
\le \frac{\varepsilon_n}{4} \diamond \frac{\varepsilon_n}{4} < \frac{\varepsilon_n}{2}.
$$

Hence we have

$$
\nu(L_n - L_{n+1}, t) \le \left[\nu \left(L_n - x_k^n, \frac{t}{3} \right) \right]
$$

$$
\diamond \nu \left(x_k^{n+1} - L_{n+1}, \frac{t}{3} \right) \right]
$$

$$
\diamond \nu \left(x_k^n - x_k^{n+1}, \frac{t}{3} \right)
$$

$$
\le \frac{\varepsilon_n}{2} \diamond \frac{\varepsilon_n}{2} < \varepsilon_n
$$

and similarly $\mu(L_n - L_{n+1}, t) > 1 - \varepsilon_n$. This implies that ${L_n}_{n \in \mathbb{N}}$ is a Cauchy sequence in *X* and let $L_n \to L \in X$ as $n \to \infty$. We shall prove that $x \to$ $L(S_{\lambda}^{(\mu,\nu)}(\mathscr{I}))$. For any $\varepsilon > 0$ and $t > 0$, choose $n \in \mathbb{N}$ such that $\varepsilon_n < \frac{1}{4}\varepsilon$, $\sup_n v(x - x^n, t) < \frac{1}{4}\varepsilon$, $\mu(L_n-L, t) > 1-\frac{1}{4}\varepsilon$ or $\nu(L_n-L, t) < \frac{1}{4}\varepsilon$. Now since

$$
\frac{1}{\lambda_n} |\{k \in I_n : \nu(x_k - L, t) \ge \varepsilon\}|
$$
\n
$$
\le \frac{1}{\lambda_n} \left| \{k \in I_n : \nu\left(x_k - x_k^n, \frac{t}{3}\right) \diamond
$$
\n
$$
\left[\nu\left(x_k^n - L_n, \frac{t}{3}\right) \diamond \nu\left(L_n - L, \frac{t}{3}\right) \right] \ge \varepsilon \} \right|
$$
\n
$$
\le \frac{1}{\lambda_n} \left| \{k \in I_n : \nu\left(x_k^n - L_n, \frac{t}{3}\right) \ge \frac{\varepsilon}{2} \} \right|
$$

and similarly

$$
\frac{1}{\lambda_n} \left| \{ k \in I_n : \mu(x_k - L, t) \leq 1 - \varepsilon \} \right|
$$

>
$$
\frac{1}{\lambda_n} \left| \{ k \in I_n : \mu \left(x_k^n - L, \frac{t}{3} \right) \leq 1 - \frac{\varepsilon}{2} \} \right|.
$$

It follows that

$$
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \{ k \in I_n : \mu(x_k - L, t) \le 1 - \varepsilon \right. \right.
$$
\n
$$
\text{or } v(x_k - L, t) \ge \varepsilon \} \right| \ge \delta \left\}
$$
\n
$$
\subset \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \left\{ k \in I_n : \mu\left(x_k^n - L, \frac{t}{3}\right) \le \frac{\varepsilon}{1 - \frac{\varepsilon}{2}} \right\} \right| \ge \delta \right\}
$$

for any given $\delta > 0$. Hence we have $x \rightarrow$ $L(S^{(\mu,\nu)}_{\lambda})$ (\mathscr{I})).

<www.scienceasia.org>

294 *[ScienceAsia](http://www.scienceasia.org/2015.html)* 41 (2015)

CONCLUSIONS

In this paper we introduce the notions of \mathcal{I} -[*V*, λ]summability and \mathscr{I} - λ -statistical convergence with respect to the intuitionistic fuzzy norm (μ, ν) , investigate their relationship, and make some observations about these classes. We intend to unify these two approaches and use ideals to introduce the concept of $\mathcal{I} - \lambda$ -statistical convergence with respect to the intuitionistic fuzzy norm (μ, ν) . Our study of *∮*-statistical and *∮*-λ-statistical convergence convergence of sequences in intuitionistic fuzzy normed spaces also provides a tool to deal with convergence problems of sequences of fuzzy real numbers. These results can be used to study the convergence problems of sequences of fuzzy numbers having a chaotic pattern in intuitionistic fuzzy normed spaces.

Acknowledgements: The authors thank the referees for their comments.

REFERENCES

- 1. Fast H (1951) Sur la convergence statistique. *Colloq Math* **2**, 241–4.
- 2. [Fridy JA \(1985\) On statistical convergence.](http://dx.doi.org/10.1524/anly.1985.5.4.301) *Analysis* **5**[, 301–13.](http://dx.doi.org/10.1524/anly.1985.5.4.301)
- 3. Šalát T (1980) On statistically convergent sequences of real numbers. *Math Slovaca* **30**, 139–50.
- 4. Kostyrko P, Šalát T, Wilczynki W (2000-2001) \mathcal{I} convergence. *Real Anal Exchange* **26**, 669–85.
- 5. [Das P, Ghosal S \(2010\) Some further results on](http://dx.doi.org/10.1016/j.camwa.2010.01.027) \mathcal{I} -[Cauchy sequences and condition \(AP\).](http://dx.doi.org/10.1016/j.camwa.2010.01.027) *Comput Math Appl* **59**[, 2597–600](http://dx.doi.org/10.1016/j.camwa.2010.01.027)
- 6. Das P, Savaş E, Ghosal SKr (2011) On generalizations [of certain summability methods using ideals.](http://dx.doi.org/10.1016/j.aml.2011.03.036) *Appl Math Lett* **24**[, 1509–14.](http://dx.doi.org/10.1016/j.aml.2011.03.036)
- 7. Savaş E, Das P (2011) A generalized statistical con[vergence via ideals.](http://dx.doi.org/10.1016/j.aml.2010.12.022) *Appl Math Lett* **24**, 826–30.
- 8. Mursaleen M (2000) *λ*-statistical convergence. *Math Slovaca* **50**, 111–5.
- 9. [Leindler L \(1965\) Über die verallgemeinerte de la](http://dx.doi.org/10.1007/BF01904844) [Vallée-Poussinsche summierbarkeit allgemeiner Or](http://dx.doi.org/10.1007/BF01904844)thogonalreihen. *[Acta Math Acad Sci Hungar](http://dx.doi.org/10.1007/BF01904844)* **16**, [375–87.](http://dx.doi.org/10.1007/BF01904844)
- 10. Kolk E (1991) The statistical convergence in Banach spaces. *Acta Comment Univ Tartu* **928**, 41–52.
- 11. [Zadeh LA \(1965\) Fuzzy sets.](http://dx.doi.org/10.1016/S0019-9958(65)90241-X) *Inform Contr* **8**, 338–53.
- 12. [Atanassov KT \(1986\) Intuitionistic fuzzy sets.](http://dx.doi.org/10.1016/S0165-0114(86)80034-3) *Fuzzy Set Syst* **20**[, 87–96.](http://dx.doi.org/10.1016/S0165-0114(86)80034-3)
- 13. [Atanassov K, Pasi G, Yager R \(2002\) Intuitionistic](http://dx.doi.org/10.1109/IS.2002.1044238) [fuzzy interpretations of multi-person multicriteria](http://dx.doi.org/10.1109/IS.2002.1044238) decision making. *[Proceedings of the 1st International](http://dx.doi.org/10.1109/IS.2002.1044238) [IEEE Symposium on Intelligent Systems](http://dx.doi.org/10.1109/IS.2002.1044238)* **1**, 115–9.
- 14. [Park JH \(2004\) Intuitionistic fuzzy metric spaces.](http://dx.doi.org/10.1016/j.chaos.2004.02.051) *[Chaos Soliton Fract](http://dx.doi.org/10.1016/j.chaos.2004.02.051)* **22**, 1039–46.
- 15. [Saadati R, Park JH \(2006\) On the intuitionistic fuzzy](http://dx.doi.org/10.1016/j.chaos.2005.03.019) topological spaces. *[Chaos Soliton Fract](http://dx.doi.org/10.1016/j.chaos.2005.03.019)* **27**, 331–44.
- 16. [Debnath P \(2012\) Lacunary ideal convergence in](http://dx.doi.org/10.1016/j.camwa.2011.11.034) [intuitionistic fuzzy normed linear spaces.](http://dx.doi.org/10.1016/j.camwa.2011.11.034) *Comput [Math Appl](http://dx.doi.org/10.1016/j.camwa.2011.11.034)* **63**, 708–15.
- 17. Debnath P, Sen M (2014) Some completeness results in terms of infinite series and quotient spaces in intuitionistic fuzzy *n*-normed linear spaces. *J Intell Fuzzy Syst* **26**, 975–82.
- 18. Debnath P, Sen M (2014) Some results of calculus for functions having values in an intuitionistic fuzzy *n*normed linear space. *J Intell Fuzzy Syst* **26**, 2983–91.
- 19. Debnath P (2015) Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces. *J Intell Fuzzy Syst* **28**, 1299–306.
- 20. [Schweizer B, Sklar A \(1960\) Statistical metric spaces.](http://dx.doi.org/10.2140/pjm.1960.10.313) *[Pac J Math](http://dx.doi.org/10.2140/pjm.1960.10.313)* **10**, 313–34.
- 21. Savaş E, Gürdal M (2014) Certain summability methods in intuitionistic fuzzy normed spaces. *J Intell Fuzzy Syst* **27**, 1621–9.
- 22. [Karakus S, Demirci K, Duman O \(2008\) Statistical](http://dx.doi.org/10.1016/j.chaos.2006.05.046) [convergence on intuitionistic fuzzy normed spaces.](http://dx.doi.org/10.1016/j.chaos.2006.05.046) *[Chaos Soliton Fract](http://dx.doi.org/10.1016/j.chaos.2006.05.046)* **35**, 763–9.