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ABSTRACT: Free-surface flows are very important in many fields. Compared with volume of fluid methods, level set
methods are more accurate. In this paper, we develop a coupled lattice Boltzmann and particle level set method to simulate
free-surface flows. The effectiveness of this model is verified by simulating the coalescence of two stationary droplets,
evolution of an initially circular fluid patch, and the classical breaking-dam case. Results show that this model can be
applied to real world simulations with satisfactory accuracy.
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INTRODUCTION

Numerical simulation of free-surface flows is chal-
lenging. To solve this problem, various methods,
such as the finite difference method, the finite volume
method, the smoothed particle hydrodynamics method
and the lattice Boltzmann method (LBM), have been
proposed. Among them, the newly developed LBM
shows great potential for its efficiency, natural paral-
lelism, and simple implementation of boundary con-
ditions.

With the development of the LBM, several mul-
tiphase models1–3 have been proposed. However,
these multiphase models can only deal with flows with
small density and viscosity ratios, such as free-surface
flows. As to a free-surface flow, the gas phase has
a negligible effect on the liquid phase, so it can be
ignored during the calculation. For model free-surface
flows, some single-phase free-surface models have
been developed. Ginzburg4 proposed a single-phase
free-surface model on the basis of the generalized
lattice Boltzmann method. This model requires a
complicated recolouring step during the movement of
the interface, which significantly lowers the efficiency
of the method. Another single-phase free-surface
model was proposed in Refs. 5, 6. In this model, the
movement of the interface is achieved through a mass
exchange between interface and liquid cells during
the streaming step of the LBM, and it has a simple
but efficient redistribution process. The unknown
distribution functions (DFs) from gas cells are recon-
structed through a free-surface boundary condition.

Hence this model can simulate free-surface flows with
a high computational efficiency and relatively low
memory. Since both of the models use the volumetric
fraction in the volume of fluid (VOF) method, they can
be seen as VOF-type methods.

On the other hand, as an alternative choice of
VOF method to capture moving interface, the level
set method (LSM) was proposed7. The movement of
the interface is accomplished through the evolution of
a distance function φ. Since the distance function is
continuous across the interface, high accuracy can be
achieved near the interface. Hence LSM can give a
smoother interface than VOF. The major weakness of
LSM is the loss of mass during the interface evolution.
To handle this problem, a reinitialization process8

and a velocity extension process9 were developed.
However, even with these techniques, the loss of mass
is still the main problem. Since mass conservation in a
VOF method can be obtained, a coupled level set and
volume-of-fluid method (CLSVOF) was proposed10.
Another way to eliminate the loss of mass is the
particle level set method (PLSM)11, 12. In this method,
a number of massless particles are set near both sides
of the interface and move with the flow field. Mass
conservation is assured by correcting the interface
through these particles. Compared with CLSVOF,
PLSM is easier for implementation.

In this study, to obtain a more accurate and easier-
to-implement method to simulate free-surface flows,
we combine LBM with PLSM. The effectiveness of
this model will be verified with the coalescence of
two stationary droplets, the evolution of an initially
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circular fluid patch, and the breaking dam case.

THE LATTICE BOLTZMANN METHOD

Unlike the conventional macroscopic methods, LBM
derives from the microscopic Boltzmann equation
and is often referred to as a mesoscopic method.
Through a BGK approximation and a finite difference
discretization, the Boltzmann equation leads to the
following evolution equation for LBM13:

fi(x + ei∆t, t+ ∆t)− fi(x, t) =

− 1

τ
[fi(x, t)− f (eq)i (x, t)] (1)

where fi(x, t) is the distribution function (DF) at po-
sition x and time t for particles with velocity ei along
the ith direction of the lattice, f (eq)i is the equilibrium
distribution function, τ is the dimensionless relaxation
time, and ∆t is the time step.

Since only two-dimensional cases are considered
in this study, the general D2Q9 model is used. For
the standard D2Q9 model, the equilibrium distribution
function (EDF) can be expressed as14

Ei(ρ,u) = ωiρ

[
1 +

ei ·u
c2s

+
(ei ·u)2

2c4s
− u2

2c2s

]
(2)

where ρ is the fluid density, u is the fluid velocity,
ωi is the weight parameter with ωi = 4/9 (i = 0),
1/9(i = 1, 2, 3, 4), 1/36 (i = 5, 6, 7, 8), and the
particle velocity ei is defined as

(0, 0), i = 0,(
cos
[
(i−1)π

2

]
, sin

[
(i−1)π

2

])
c, i = 1− 4,

√
2
(

cos
[
(2i−1)π

4

]
, sin

[
(2i−1)π

4

])
c, i = 5− 8

(3)
where c = ∆x/∆t is the lattice speed, ∆x is the
grid space, and cs = c/

√
3 is the speed of sound.

Macroscopic variables, ρ and u, can be obtained by
the moments of DF

ρ =
∑
i

fi, ρu =
∑
i

eifi. (4)

In addition, by setting the viscosity ν

ν = (τ − 1/2)c2s∆t. (5)

LBM reduces to the Navier-Stokes equation up to
second order through a Chapman-Enskog expansion.

Body forces, such as gravity, can be modelled by
adding an additional term to (1)15:

fi(x + ei∆t, t+ ∆t)− fi(x, t) =

− 1

τ
[fi(x, t)− f (eq)i (x, t)] + Fi∆t (6)

where Fi is

Fi =

(
1− 1

2τ

)
ωi

[
ei − v

c2s
+

ei ·v
c4s

ei

]
·F (7)

with

ρ =
∑
i

fi, ρu =
∑
i

eifi + 1
2F∆t (8)

where F is the body force.
For the LBM we divide the evolution equation (6)

into collision and stream steps, respectively:

f ′i(x, t) = fi(x, t)−
fi(x, t)− f (eq)i (x, t)

τ
+ ∆tFi,

fi(x + ei∆t, t+ ∆t) = f ′i(x, t).

(9)

Through the collision and stream steps, LBM can
simulate the evolution of a fluid. Further details can
be found in Refs. 14, 15.

THE PARTICLE LEVEL SET METHOD

In the level set method, a distance function φ is defined
as16

φ(x) =


0, ∀x ∈ Γ,

−d(x), ∀x ∈ Ω,

d(x), ∀x /∈ Ω

(10)

where d(x) = min(|x− x′|) for all x′ ∈ Γ, and
Γ represents the interface, and Ω refers to the space
inside Γ. The movement of the interface is accom-
plished through the level set equation7

∂φ

∂t
+ u·∇φ = 0 (11)

where u is the velocity of the flow field. In this way,
we can simulate the evolution of a two-phase flow.

Since the level set function will not satisfy (10)
after several time steps, a reinitialization step should
be done at every time step. However, the loss of mass
occurring in the level set method can fundamentally
affect the accuracy of the interface evolution. To
address this issue, the particle level set method was
proposed.

In the particle level set method11, 12, two sets
of massless particles, plus and minus particles, are
placed near the interface (the place where φ = 0).
Once there is a minus (plus) particle leaking out to the
plus (minus) region of the flow filed, a correction step
is done to reduce the error of the evolution equation
(11). As a result, the loss of mass can be alleviated for
the most part.

The particle correction procedures in the particle
level set method are summarized as follows:
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(i) Initialization of particles. Particles are placed only
within the distance of 3 max(∆x,∆y) from the
interface. We set 16 particles (2D) in a cell. The
radius of a particle rp is given by

rp =


rmax, spφ(xp) > rmax,

spφ(xp), rmin 6 spφ(xp) 6 rmax,

rmin, spφ(xp) < rmin

where rmin = 0.1 min(∆x,∆y), rmax =
0.5 min(∆x,∆y), and sp is the sign of a particle
(for φ(xp) > 0, sp = +1; for φ(xp) < 0,
sp = −1). When this step is done, particles are
attracted to the correct side of the interface.

(ii) Identification of error. When the level set function
is solved, we need to check whether the loss of
mass occurs. If the level set function φ in the
current particle position has a different sign, i.e.,
φ(xp) · sp < 0, the loss of mass occurs. Then we
proceed to the next step.

(iii) Quantification of error. In this step, for a particle
moving across the interface with radius rp and
position xp, we define the particle boundary (a
circle in 2D) using a level set function

φp(x) = sp(rp − |x− xp|). (12)

Since these local values of φp are from the predic-
tion of the level set function on cell corners, pos-
sible errors can be identified from the deviation of
φ from φp.

(iv) Reduction of error. Escaped plus (minus) parti-
cles are used to correct the φ > 0 (φ < 0) region.
For all the escaped plus particles, we calculate the
φp value on cell corners containing the escaped
particles using (12), compare each φp with the
local φ, and set φ+ as the maximum value of these
two values. For a set of escaped plus particlesE+,
we initialize φ+ with φ and set

φ+ = max
∀p∈E+

(φp, φ
+). (13)

In the same manner, for a set of escaped minus
particles E−, we also initialize φ− with φ and set

φ− = min
∀p∈E−

(φp, φ
−). (14)

Then, for each grid point (cell corners), we choose
the minimum absolute value as the final correction
for φ

φ =

{
φ+, |φ+| 6 |φ−| ,
φ−, |φ+| > |φ−| .

(15)

Further details of this method can be found in Refs.
11, 12.

THE COUPLED LATTICE BOLTZMANN AND
PARTICLE LEVEL SET METHOD FOR
FREE-SURFACE FLOWS

In this study, to model free-surface flows, three kinds
of cells are defined: liquid cells, gas cells, and inter-
face cells. Gas cells are not calculated.

When implementing this single-phase free-
surface model, because only one-phase (liquid phase)
is simulated, we need to reconstruct the unknown
DFs at interface cells from the direction of the gas
cells. To achieve this goal, we need to balance mass
and momentum between two sides of the free-surface.
Following the idea in Ref. 6, we adopt the following
free-surface boundary condition:

fI(x, t+ ∆t) = f
(eq)
i (ρf ,uB)

+ f
(eq)
I (ρf ,uB)− fi(x, t) (16)

where I denotes the inverse direction of i, ρf is the
reference density of the liquid and uB is taken as
the velocity of the interface cell for simplicity. From
(16), the liquid pressure and gas pressure at the free-
surface is the same but with opposite direction, which
means the boundary conditions on the free-surface are
fulfilled5.

Another issue when combining LBM and PLSM
is the extrapolation of velocity. The movement of
the interface through LSM requires velocities on both
sides of the interface. But for single-phase free-
surface flows, velocities in the gas phase are unknown.
This problem is solved by using the fast velocity
extension method proposed by Adalsteinsson9. This
extension method has the following form:

∇Fext · ∇φ = 0 (17)

where Fext means the velocity field to be extended.
Eq. (17) can be solved through a fast marching
method8, 9. Eq. (17) not only matches the given
velocity on the front (the moving interface), but also
preserves the signed distance function (level set func-
tion)9. Hence (17) is very suitable for the velocity
extension in the gas phase.

The level set equation (Eq. (11)) is usually solved
by high-order accurate numerical methods such as the
TVD Runge-Kutta and HJ-WENO schemes. But with
PLSM, a fast first-order semi-Lagrangian advection
method is accurate enough and more efficient12. For
a grid point xi,j = (i∆x, j∆y), this semi-Lagrangian
scheme takes the form

φn+1
i,j = αβφnr+1,s+1 + (1− α)βφnr,s+1+

α(1− β)φnr+1,s + (1− α)(1− β)φnr,s (18)
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with

r = i−
⌈
ui,j

∆t

∆x

⌉
, α =

(i− r)∆x− ui,j∆t
∆x

s = j −
⌈
vi,j

∆t

∆y

⌉
, β =

(j − s)∆y − vi,j∆t
∆y

where u(xi,j) = (ui,j , vi,j), dxe means the smallest
integer value that is not less than x, and ∆y = ∆x
in current work. According to the Lax-Richtmyer
theorem, (18) is unconditionally stable12.

Particles are evolved according to Ref. 12

dxp

dt
= u(xp) (19)

where xp is the position of a particle, and u(xp) is
the velocity of the particle. Velocities are interpolated
by a bilinear interpolation method (2D case). This
equation is solved by a third-order TVD Runge-Kutta
method.

In this study, the PLSM solver uses the same
uniform grid and time step as the LBM solver does. As
a result, no conversions for macro variables and DFs
are needed unlike in Kwak’s work (multi-resolution
for PLSM)17.

One step for the coupled LBM and PLSM (LB-
PLSM) is as follows:
Step 1: LBM solver implements collision and stream

step (9) and reconstructs unknown distribution
functions for interface cells (16).

Step 2: Macroscopic variables, densities ρ(x, t) and
velocities u(x, t) are calculated from (8).

Step 3: Velocities of the gas phase uext(x, t) are
extrapolated using (17).

Step 4: Using the extrapolated velocity field, the
PLSM solver computes the distance function φ
by solving the level set equation (Eq. (11), (18)).
Particles are also advected in this step (Eq. (19)).

Step 5: PLSM solver corrects the interface according
to the positions of particles (Eq. (12)–(15)).

RESULTS AND DISCUSSION

In this section, the coupled LBM and PLSM single-
phase free-surface model is implemented to simu-
late the coalescence of two stationary droplets, the
evolution of an initially circular fluid patch, and the
classical breaking dam case. The effectiveness of the
techniques presented in the previous sections will be
evaluated.

Coalescence of two stationary droplets driven by
surface tension

We now look at the coalescence process of two
adjacent circular droplets (with radius R) under the

Rb

Fig. 1 The bridge radius Rb of the coalescence problem.

influence of surface tension. According to Eggers18,
the bridge radius (defined as Rb in Fig. 1) of the
coalescence problem obeys a scaling law, Rb ∝
(σR/ρ)1/4t1/2. Hence for constant surface tension
coefficient σ, we haveRb ∝ t1/2. Wu and Ho19 prove
this scaling law through an experiment using a high-
speed imaging system. It should be noted that this
scaling law only takes effect when the bridge radius is
increasing.

To implement the case, we need to describe the
surface tension model in the level set method. The
momentum equation for incompressible flows with
surface tension can be expressed as10

ρ

[
∂u

∂t
+
∂(uu)

∂t

]
= −∇p

+ ρν∇ · [∇u + (∇u)T] + σκ∇H (20)

where σ is the surface tension coefficient, κ is the
mean curvature of the interface, H is the Heaviside
function, and ν is the shear viscosity. κ is defined as

κ = ∇·
(
∇φ
|∇φ|

)
(21)

and H is

H =


0, φ < −ε,
1
2

[
1 + φ

ε + 1
π sin(πφ/ε)

]
, |φ| 6 ε,

1, φ > ε

(22)

where ε is the thickness of the interface.
Since surface tension is treated as a discrete body

force, it can be modelled by (6)–(8).
We adopt LB-PLSM and the surface tension

model discussed above to simulate this coalescence
process. At the beginning of the case, two circular
droplets are placed at rest close to each other. Due
to the influence of surface tension, these two droplets
coalesce into a single droplet. Physical parameters
used here are liquid density ρ = 1000 kg/m3, viscosity
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Fig. 2 The bridge radius versus the square root of time for
the droplets coalescence problem with three different grid
resolutions for R.
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Fig. 3 The evolution process of the coalescence problem
with σ = 7× 10−4 kg/s2 and a grid size of 64 for R.

ν = 1 × 10−5 m2/s, surface tension coefficient σ =
7 × 10−4 kg/s2, radii of droplets R = 0.002 m. The
simulations are implemented on a uniform grid with
space step ∆x = 1 and time step ∆t = 1. Three
different grid resolutions (16, 32, 64) for R with cor-
responding dimensionless relaxation time coefficient
τ (0.74, 0.98, 1.46) are adopted.

From Fig. 2, we can see that, with the lowest
grid resolution, the bridge radius does not follow the
scaling law until t0.5 > 0.3. However, with the
refinement of grid resolution, the bridge radius obeys
the scaling law even from the start of the simulation,
which suggests the convergence of the current model.
The evolution process of the coalescence problem
with a grid size of 64 for R is displayed in Fig. 3.
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 σ = 7e−3

Fig. 4 The bridge radius versus the square root of time
for the droplets coalescence problem with three different
surface tension coefficients on a grid size of 64 for R.

To further access the effect of surface tension
on the scaling law of the bridge radius, we use
three different surface tension coefficients (7× 10−5,
7× 10−4, 7× 10−3) on a grid size of 64 for R. As
shown in Fig. 4, surface tension does not significantly
influence the linear relationship of the bridge radius
and the square root of time, but only influences the
speed of coalescence. This agrees with the conclusion
in Refs. 18, 20.

Evolution of an initially circular fluid patch

To verify LB-PLSM, the evolution of an initially
circular fluid patch is investigated. This benchmark
case is designed to examine the ability of a free-
surface model to track the movement of the inter-
face21. An initially circular fluid patch is inviscid with
a prescribed velocity field

u0(x, y) = −A0x,

v0(x, y) = A0y,
(23)

and a pressure field

P0 = 1
2ρA

2
0[R2 − (x2 + y2)]. (24)

As time goes on, the position of a fluid point at time t
is

r =

(
x(t)
y(t)

)
=

(
a(t)
R x0
b(t)
R y0

)
, (25)

where a(t) and b(t) represent the semi-minor and
semi-major axes of the elliptical fluid patch, and x0
and y0 are the initial coordinates of the fluid point.
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According to the mass conservation law, we can
obtain the velocity field at time t through some nu-
merical operations:

u(x, y, t) = −A(t)x, v(x, y, t) = A(t)y, (26)

where A(0) = A0, and A(t) is

A(t) = −da

dt

1

a(t)
=

db

dt

1

b(t)
. (27)

The pressure can be obtained by solving the pressure
gradient from the Euler equation

P (x, y, t) = 1
2ρ

[
dA

dt
(x2 − y2)−

A2(x2 + y2)− a2
(

dA

dt
−A2

)]
(28)

with initial pressure (dA/dt)(0) = 0.
Finally, imposing a null pressure all over the

fluid patch, we can obtain a second-order nonlinear
ordinary differential equation (ODE) for A:

d2A

dt2
A(t)− 4

(
dA

dt

)2

+ 2A4(t) = 0,

initial conditions: A(0) = A0,
dA

dt
(0) = 0.

(29)

This ODE for A can be solved by a fourth-order
Runge-Kutta method. Since A(t) is known, a(t) and
b(t) can be obtained by solving

a(t) = R exp

(
−
∫ t

0

A(t) dt

)
(30)

and

b(t) = R exp

(∫ t

0

A(t) dt

)
. (31)

The simulation time is up to t = 2/A0 with
LB-PLSM. The radius of the circular droplet is
R = 0.005 m and A0 = 5 s−1; the viscosity is
1× 10−6 m2/s. To run the simulation, physical pa-
rameters are converted to dimensionless parameters.
The simulations are implemented on a uniform grid
with space step ∆x = 1 and time step ∆t = 1. Four
different grid resolutions for R (50, 100, 150, 200)
with corresponding dimensionless relaxation time co-
efficient τ (0.560, 0.596, 0.608, 0.620) are adopted.

In Fig. 5, at dimensionless time tA0 = 0 and 0.5,
as to the position of the free-surface, the numerical
result by LB-PLSM agrees well with the analytic
solution. However, at tA0 = 1.0 and 1.5, the discrep-
ancy between LB-PLSM and the analytical solution

��� ������	


���
�����

���

��� ���

Fig. 5 Evolution of the initial circular fluid patch (case 4
with grid 200 for R) at dimensionless time (a) 0, (b) 0.5,
(c) 1.0, (d) 1.5.

becomes bigger. The cause for this discrepancy may
be the viscosity which will slow down the evolution
of the free-surface. Since the analytical solution is
obtained with an inviscid condition, even with very
low viscosity (1× 10−6 m2/s here), the numerical re-
sult can still have a large difference with the analytical
solution due to accumulation after a long simulation.

Fig. 6 displays the time history of the fluid ve-
locity at points (0.5R, 0) and (0, 0.5R) during the
evolution of the fluid patch with four different grid
resolutions. The numerical result by LB-PLSM is
compared with the analytical solution. Although
oscillating, vertical velocities for point (0, 0.5R) and
horizontal velocities for point (0.5R, 0) of all the
four cases are in good agreement with the analytical
solutions. In addition, with the increment of the grid
resolution, the oscillating amplitudes decrease, which
shows the convergence of the LB-PLSM model.

Breaking dam

The classical breaking dam case22, 23 is simulated by
LB-PLSM. To make a comparison, the lattice Boltz-
mann based single-phase free-surface model (LB-SP)
proposed in Refs. 5, 6 is also adopted to simulate
this breaking dam case. The setup of the breaking
dam case is similar to that in Janssen’s work23. The
physical model of the breaking dam is shown in Fig. 7
(a = 0.01 m). Density of the water column is
1000 kg/m3, viscosity is 1× 10−6 m2/s, and gravity
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Fig. 6 Dimensionless velocity of the fluid patch at points (0, 0.5R) and (0.5R, 0) from dimensionless time 0–2 with grids
(for circular radius R) of (a) 50, (b) 100, (c) 150, (d) 200. v(0, 0.5R) is in the higher part of this figure, while u(0.5R, 0) is
in the lower part.
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Fig. 7 The physical model of the breaking dam case (a =

0.01 m).

g is 9.81 m/s2. The dimensionless LB parameters are
space step (∆x = 1) and time step (∆t = 1); three
grid resolutions (100×25, 200×50, 300×75) with
corresponding relaxation time coefficient τ (0.509,
0.536, 0.581); and gravity (8.83× 10−5, 1.77× 10−4,
2.65× 10−4). Gravity is considered as a body force
and is simulated by Guo’s method (Eq. (6)–(8))15.
Slip boundary conditions are imposed on the front,
bottom, and back walls. Simulations are stopped when
water touches the front wall.

The evolutionary processes of the breaking dam
(grid 300×75) of LB-PLSM and LB-SP are shown
in Fig. 8. From Fig. 8, the free-surface simulated by
LB-PLSM is much smoother than LB-SP. In Fig. 9
and Fig. 10, comparison between the experimental
results from Ref. 22 and the numerical results of three
different grid resolutions are made. The numerical
results agree well with the experimental results, except
at the surge front position with the 100×25 grid at the
last few steps for LB-PLSM. This discrepancy results
from the failure of capturing the high speed flow at the
last few steps with a grid which is too small.

To further analyse the accuracy of LB-PLSM and
LB-SP, we use two statistical parameters: amplitude
AF and phase PF 24.

AF =

√√√√ N∑
i=1

(F num
i )2

/
N∑
i=1

(F exp
i )2 (32)

PF =

√√√√ N∑
i=1

(F num
i − F exp

i )2

/
N∑
i=1

(F exp
i )2 (33)
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Fig. 8 The process of the breaking dam (grid: 300×75) at time step (a) 0 (b) 400 (c) 1000 (d) 1600. Left: LB-PLSM; right:
LB-SP.
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Fig. 9 Comparison of numerical and experimental results for the position of the water column top: (a) LB-PLSM, (b) LB-SP.

where Fi is the magnitude to be examined (water top
and surge front in this breaking dam case), F num

i are
numerical results, F exp

i are experimental results, and
N is the number of points to be analysed.

The values of these parameters for water top and
surge front by LB-PLSM and LB-SP are displayed in
Table 1. An exact agreement between numerical and
experimental values requires AF = 1 and PF = 0.
For LB-PLSM, from Table 1, all amplitude values are
close to 1.0 and the finest grid resolution case (case

3) gives the best results, which shows the convergence
of LB-PLSM with increasing grid resolution. Phase
parameters of the surge front by LB-PLSM also show
the convergence. As to LB-SP, the amplitude values
of the water top shown in Table 1 are slightly better
than LB-PLSM, but the phase values are worse. In
general, results from both methods are very close to
experimental results, which means that the accuracy
of both methods is good. In addition, the amplitude
values of the surge front from both methods are not
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Fig. 10 Comparison of numerical and experimental results for the position of the surge front: (a) LB-PLSM, (b) LB-SP.

Table 1 Comparison of the water top and the surge front
of the breaking dam case between experiment (exp) and
calculation (num) by LB-PLSM and LB-SP.

Grid Water top Surge front

resolution AF PF AF PF

LB-PLSM 100×25 0.977 0.032 0.627 0.519
200×50 0.981 0.026 0.821 0.377
300×75 0.982 0.024 0.873 0.199

LB-SP 100×25 0.988 0.051 0.733 0.408
200×50 0.990 0.042 0.856 0.203
300×75 0.986 0.031 0.841 0.228

as good as those of the water top, but these amplitude
values are still close to 0.9 (at finest grid resolution).
When the grid is 100×25, the amplitude values of
the surge front from LB-PLSM are worse than LB-
SP. But with the increase of the grid resolution, the
accuracy of LB-PLSM is better than that of LB-SP.

To test the efficiency of both methods, the total
running time of each case for LB-PLSM and LB-
SP was noted. All the cases were implemented
on the same PC (Intel Core i3-2100 CPU) without
output operations. Each case was run six times and
the final time for each case is the average of these
six values. For different grid resolutions, 100×25,
200×50, 300×75, the total running time (in seconds)
of LB-PLSM was 3, 9, 19 and LB-SP is 1.2, 4.3, 9.5.
It is shown that LB-SP is nearly twice as fast as LB-
PLSM. Hence we could conclude that with enough
grid resolution, LB-PLSM has a better accuracy but
lower efficiency than LB-SP. If higher accuracy is
required, LB-PLSM is a better choice.

CONCLUSIONS

In this paper, a coupled lattice Boltzmann and particle
level set single-phase free-surface model has been
developed and used to simulate the coalescence of
two stationary droplets, the evolution of an initially
circular fluid patch, and the classical breaking dam
case. Coalescence of two stationary droplets shows
that LB-PLSM can model surface tension for real free-
surface problems. Evolution of an initially circular
fluid patch suggests that the LB-PLSM can track
the free-surface accurately. As to the breaking dam
case, numerical results by LB-PLSM are compared
with experimental results and the results by LB-SP,
which shows that LB-PLSM has better accuracy but
lower efficiency than LB-SP. However, to get more
stable and accurate results, the large eddy model
(LES) and multiple relaxation time model can be used.
Furthermore, to improve the efficiency of LB-PLSM,
parallelism of CPU and GPU can be implemented.
These improvements and the extension of LB-PLSM
to three dimensions will be presented elsewhere.
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6. Thürey N, Rüde U, Körner C (2005) Interactive free
surface fluids with the lattice Boltzmann method. Tech-
nical Report 05-4, Univ of Erlangen-Nuremberg, Ger-
many.

7. Osher S, Sethian JA (1988) Fronts propagating with
curvature-dependent speed: algorithms based on Ham-
ilton-Jacobi formulations. J Comput Phys 79, 12–49.

8. Sethian JA (1996) Level Set Methods and Fast March-
ing Methods, Cambridge Univ Press, Cambridge.

9. Adalsteinsson D, Sethian JA (1999) The fast con-
struction of extension velocities in level set methods.
J Comput Phys 148, 2–22.

10. Sussman M, Puckett EG (2000) A coupled level set and
volume-of-fluid method for computing 3D and axisym-
metric incompressible two-phase flows. J Comput Phys
162, 301–37.

11. Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A
hybrid particle level set method for improved interface
capturing. J Comput Phys 183, 83–116.

12. Enright D, Losasso F, Fedkiw R (2005) A fast and
accurate semi-Lagrangian particle level set method.
Comput Struct 83, 479–90.

13. Bhatnagar PL, Gross EP, Krook M (1954) A model for
collision processes in gases. I. Small amplitude pro-
cesses in charged and neutral one-component systems.
Phys Rev 94, 511–25.

14. Qian YH, D’Humieres D, Lallemand P (1992) Lattice
BGK models for Navier-Stokes equation. Europhys
Lett 17, 479–84.

15. Guo Z, Zheng C, Shi B (2002) Discrete lattice effects
on the forcing term in the lattice Boltzmann method.
Phys Rev E 65, 046308.
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Gesteira M, Rogers BD (2011) GPUs, a new tool
of acceleration in CFD: Efficiency and reliability on
smoothed particle hydrodynamics methods. PLoS ONE
6, e20685.

www.scienceasia.org

http://www.scienceasia.org/2014.html
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1016/S0021-9991(02)00048-7
http://dx.doi.org/10.1016/S0021-9991(02)00048-7
http://dx.doi.org/10.1016/S0021-9991(02)00048-7
http://dx.doi.org/10.1007/s10955-005-8879-8
http://dx.doi.org/10.1007/s10955-005-8879-8
http://dx.doi.org/10.1007/s10955-005-8879-8
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.1006/jcph.2000.6537
http://dx.doi.org/10.1006/jcph.2000.6537
http://dx.doi.org/10.1006/jcph.2000.6537
http://dx.doi.org/10.1006/jcph.2000.6537
http://dx.doi.org/10.1006/jcph.2002.7166
http://dx.doi.org/10.1006/jcph.2002.7166
http://dx.doi.org/10.1006/jcph.2002.7166
http://dx.doi.org/10.1016/j.compstruc.2004.04.024
http://dx.doi.org/10.1016/j.compstruc.2004.04.024
http://dx.doi.org/10.1016/j.compstruc.2004.04.024
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1017/S002211209900662X
http://dx.doi.org/10.1017/S002211209900662X
http://dx.doi.org/10.1063/1.1756928
http://dx.doi.org/10.1063/1.1756928
http://dx.doi.org/10.1063/1.1756928
http://dx.doi.org/10.1016/j.jcis.2007.02.088
http://dx.doi.org/10.1016/j.jcis.2007.02.088
http://dx.doi.org/10.1016/j.jcis.2007.02.088
http://dx.doi.org/10.1016/j.jcis.2007.02.088
http://dx.doi.org/10.1098/rsta.1952.0006
http://dx.doi.org/10.1098/rsta.1952.0006
http://dx.doi.org/10.1098/rsta.1952.0006
http://dx.doi.org/10.1016/j.camwa.2009.08.064
http://dx.doi.org/10.1016/j.camwa.2009.08.064
http://dx.doi.org/10.1016/j.camwa.2009.08.064
http://dx.doi.org/10.1016/j.camwa.2009.08.064
http://dx.doi.org/10.1371/journal.pone.0020685
http://dx.doi.org/10.1371/journal.pone.0020685
http://dx.doi.org/10.1371/journal.pone.0020685
http://dx.doi.org/10.1371/journal.pone.0020685
http://dx.doi.org/10.1371/journal.pone.0020685
www.scienceasia.org

