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ABSTRACT: Electrospun fibres from polyvinyl alcohol (PVA), poly(styrene sulphonic acid-co-maleic acid) (PSSA-MA),
and imidazole for potential use as proton conducting membranes at elevated temperatures were prepared and characterized.
The effect of PSSA-MA content (9, 17, 25, 33, 42, and 50% by weight of PVA) on solution properties was investigated. Fibre
mats were obtained from solutions with 9–33% PSSA-MA. Solution viscosity increased with increasing PSSA-MA until
reaching a maximum at 33% PSSA-MA. The effect of PSSA-MA content on fibre size and morphology was studied using
scanning electron microscopy. Fibre diameter was found to increase with increasing solution viscosity. A solution with 25%
PSSA-MA provided uniform and bead-free fibres with an average diameter of 485 nm. Thermal crosslinking of electrospun
fibres was confirmed by attenuated total reflection Fourier transform infrared spectroscopy and thermogravimetric analysis.
Electrospun fibres were thermally stable up to 250 °C. Fibres containing 25% PSSA-MA had a proton conductivity in non-
humidified conditions comparable to that of a solvent-cast membrane with the same composition. The proton conductivity
of a solvent-cast membrane was slightly higher than that of fibres over the temperature range studied.
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INTRODUCTION

During the last decade, as a result of the decrease of
fossil fuels and the increase of emission of greenhouse
gases, many investigations for alternative environ-
mental friendly fuel and energy sources have been
conducted. Promising energy sources for vehicle and
portable electronic devices are polymer electrolyte
membrane fuel cells (PEMFCs) and direct methanol
fuel cells (DMFCs). Among acid polymers serving
as electrolytes in PEMFCs and DMFCs, Nafion, a
perfluorosulphonated membrane with a fluorocarbon
backbone and sulphonic acid pendants, is the most
commercially successful membrane. Its use, however,
is limited by high cost, high methanol permeability,
and a decrease in proton conductivity at high temper-
atures and low humidity1–3.

Reduction of methanol crossover through poly-
mer electrolyte membranes (PEMs) can be achieved
by either rational selection of membrane materials
or manipulation of membrane morphology4, 5. In
the field of membrane pervaporation for dehydra-

tion of alcohols, many hydrophilic polymers such as
polyvinyl alcohol (PVA) have been used because they
preferentially permeate water and retain alcohol6, 7.
Although high water uptake facilitates proton conduc-
tion, an excessive water swelling leads to low me-
chanical strength in PEMs. To overcome the swelling
problem in PVA-based membranes, the membranes
are either crosslinked or incorporated with inorganic
materials8–10.

The development and the commercialization of
perfluorosulphonic acid membranes are limited to op-
erating temperatures below 100 °C because the proton
transport mechanism, namely vehicular mechanism,
relies on the presence of water11, 12. Operation at
higher temperatures offers many advantages including
the increase in fuel cell efficiency13, decrease in
required platinum catalyst loading14, improvement in
CO tolerance15, and simpler heat management. Am-
photeric nitrogen-based heterocycles, such as imidaz-
ole, pyrazole, and benzimidazole, were shown to have
intrinsic conductivity16, 17. The use of these hetero-
cycles as proton solvents provided comparable proton
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conductivities to that of hydrated polymers18, 19.
Electrospinning is a simple method to produce fi-

brous materials with diameters ranging from nanome-
tres to micrometres. In recent report, Tamura and
Kawakami demonstrated that upon an introduction of
nanofibres, membrane stability was improved, and gas
permeability can be controlled20. Electrospinning of
Nafion solution was challenging due to aggregation of
ionic groups21; however, with an addition of PVA,
sprayable solutions were produced22. Our group
also reported the successful preparation of electrospun
fibres of poly(styrene sulphonic acid) (PSSA) and
PVA. The water stability of the fibres was improved
by heat-treatment at 120 °C23.

In this work, electrospun fibres of PVA, poly(sty-
rene sulphonic acid -co -maleic acid) (PSSA-MA),
and imidazole were prepared and characterized.
PSSA-MA was chosen as proton source because of its
low cost and relative high proton conductivity. PVA
would enhance the spinnability of PSSA-MA into
fibres, and provide hydrophilic properties, high den-
sity of hydroxyl groups for crosslinking reaction and
excellent methanol barrier. Imidazole was employed
as proton solvent. The effect of PSSA-MA content on
solution properties, shape, and size of the fibres was
studied. Surface morphology was characterized using
scanning electron microscopy. Thermal properties of
fibres were also investigated. Proton conductivity of
fibres was measured using impedance spectroscopy
in non-humidified condition, and the result was com-
pared with that of solvent-cast membrane with the
same PSSA-MA content.

MATERIALS AND METHODS

Materials

Poly (vinyl alcohol) (PVA, 95% hydrolysed, aver-
age MW 95 000) was purchased from Acros Organ-
ics. Poly(4-styrenesulphonic acid-co-maleic acid)
(PSSA-MA, SSA:MA = 3:1, MW 20 000), and imid-
azole (99%) were purchased from Sigma-Aldrich. All
chemicals were used as received.

Characterization

Surface morphology was studied using a scanning
electron microscope (LEO 1450VP, UK). The average
diameter of the fibres was determined by analysing
200 fibres in micrograph using WCIF ImageJ pro-
gram. The viscosities of polymer solutions were
measured at room temperature at a speed of 20 rpm
using a digital viscometer (Brookfield, model DV-II).
The reported values were the means of three mea-
surements. Fourier transform infrared (FTIR) spec-
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Fig. 1 Crosslinking reaction between PSSA-MA and PVA.

tra were measured on a Bruker FTIR spectrometer
(Tensor 27) with Opus 7.0 measuring in the range
of 4000–450 cm−1. Thermogravimetric-differential
thermal analysis (TGA-DTA) was carried out using
Pyris Diamond TGA/DTA (PerkinElmer) system with
a heating rate of 10 °C/min from 35–700 °C under
nitrogen atmosphere. Glass transition temperature
(Tg), melting temperature (Tm) and crystallization
temperature (Tc) were obtained by differential scan-
ning calorimetry (DSC) using a PerkinElmer Pyris 1
DSC. Samples were analysed with a heating rate of
10 °C/min from 50–250 °C under nitrogen flow.

Fibre preparation by electrospinning

Desired amounts of PSSA-MA, 9, 17, 25, 33, 42, and
50% by weight of PVA, were added to a 10 wt.%
aqueous PVA solution. Imidazole was then added to
the solution. The amount of imidazole used was fixed
at 44% by weight of PSSA-MA to isolate the doping
effect. The solutions were stirred overnight to ensure
adequate mixing before electrospinning process prior
to loading into a plastic syringe equipped with a
22-gauge stainless steel needle, connected to a high-
voltage supply (DEL High-Voltage (0–100 kV), DEL
Electronics Corp.). The polymer solutions were spun
at a flow rate of 0.5 ml/h using a syringe pump
(TERUMO Terufusion syringe pump TE-331, Japan).
A piece of flat aluminium foil was placed 20 cm below
the tip of the needle. The positive voltage applied
was 19.4 kV. All experiments were performed at room
temperature. The obtained fibres were later heated on
a glass plate at 120 °C for 1 h to induce crosslinking
reaction (Fig. 1)24.

Membrane preparation

PSSA-MA (25% by weight of PVA) and imidazole
(44% by weight of PSSA-MA) were added to a 10
wt.% PVA solution. The solution was stirred for
20 min prior to casting on a plastic plate, and drying at
80 °C for 18 h. The dried membrane was peeled off,
and then heated on a glass plate at 120 °C for 1 h to
induce crosslinking reaction.
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Table 1 Electrospinning of PVA/PSSA-MA/imidazole so-
lutions.

PSSA-MA content (wt.%) Observations

9 Fibre mat
17 Fibre mat
25 Fibre mat
33 Fibre mat
42 Solution droplets
50 Solution droplets

Proton conductivity

Proton conductivity measurements were made using
impedance spectroscopy (Agilent E4980A Precision
LCR Meter). The goal-coated membranes were
placed between two electrodes followed by an appli-
cation of 500 mV excitation voltage with a logarithmic
frequency sweep from 1× 102 Hz to 1× 106 Hz. All
measurements were conducted from 120–200 °C at
40 °C intervals. Resistance values were taken at the
minimum imaginary response in a Z ′ versus Z ′′ plot
to determine conductivity. The membrane conductiv-
ity was calculated from the membrane resistance, R,
using σ = l/RA, where σ is the proton conductivity,
l is the membrane thickness, and A is the cross-
sectional area of the membrane sample.

RESULTS AND DISCUSSION

Electrospinning of polymer solutions

Electrospinning of solutions of PVA, PSSA-MA, and
imidazole with various PSSA-MA contents, that is,
9, 17, 25, 33, 42, and 50%, was conducted at room
temperature and constant electrospinning conditions
(19.4 kV, 0.5 ml/h, 20 cm tip-to-target distance). Fibre
mats were obtained from solutions with 9, 17, 25,
and 33% PSSA-MA, while solution droplets were ob-
served at higher PSSA-MA concentrations (Table 1).
Solution properties play important roles in the synthe-
sis of fibre via electrospinning. Fibre formation de-
pends highly on viscosity, charge density, and surface
tension25–27. Solution viscosities were plotted against
PSSA-MA content (Fig. 2). It was found that solution
viscosities increased with increasing PSSA-MA up to
33%. A drastic drop in viscosity at higher PSSA-MA
concentrations, resulting from phase separation, is
likely responsible for the non-spinnability of polymer
solutions with 42 and 50% PSSA-MA.

SEM images of filers with 9–33% PSSA-MA
show the increase in fibre size with increasing
PSSA-MA (Fig. 3). The high viscosity results in a
larger polymer jet and a consequent deposition of
fibres with a larger diameter28. Only solution with
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Fig. 2 Viscosities of polymer solutions as a function of
PSSA-MA content.

(a) (b)

(c) (d)

Fig. 3 SEM images (10 000× magnification) of electrospun
fibres with various PSSA-MA contents. (a) 9, (b) 17, (c) 25,
and (d) 33%.

25% PSSA-MA provided uniform and untangled fi-
bres with an average diameter of 485± 39 nm (Fig. 4).
The thickness of the fibre mat was 0.32 mm.

Membrane preparation

Proton conducting membrane containing 25%
PSSA-MA was prepared from casting aqueous
solution of PVA, PSSA-MA and imidazole on a plate.
The membrane was allowed to dry at 80 °C prior to
crosslinking reaction at 120 °C for 1 h. Free standing
membrane with a thickness of 0.41 mm was obtained.

Fibre and membrane compositions

ATR-FTIR spectra of fibres comprising PVA,
PSSA-MA and imidazole with four PSSA-MA
concentrations after heat treatment were shown in
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Fig. 4 Size distribution of electrospun fibres with 25%
PSSA-MA.
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Fig. 5 FTIR spectra of heat-treated electrospun fibres with
various PSSA-MA contents.

Fig. 5. The C−N stretching band of imidazole ring29

was shown at 1577 cm−1. The characteristic bands
of PVA at 3317, 1418, and 1090 cm−1 could be
designated to O−H stretching, O−H bending, and
C−OH stretching, respectively8. Weak absorption
bands corresponding to C−−O of ester and C−O−C
from polyvinyl acetate residue (5%) were also
observed at 1713 and 1234 cm−1, respectively.
Absorption bands corresponding to PSSA-MA at
1188 and 1040 cm−1 were assigned to the S−−O
asymmetric and symmetric stretches, respectively8.
The wagging vibration of C−H in 1,4-substituted
benzene ring30 of PSSA-MA was shown at 840 cm−1.
Although the increment in C−O−C peak intensity
at 1234 cm−1 was not clearly observed due to the
presence of relatively large amount of C−O−C
linkage in pristine PVA, a decrease in C−OH peak
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Fig. 6 TGA thermograms of electrospun fibres with 9, 17,
25, and 33% PSSA-MA, and of solvent-cast membrane with
25% PSSA-MA.

intensity at 1090 cm−1 with increasing PSSA-MA
concentration implied crosslinking reaction between
PVA and PSSA-MA. Degree of crosslinking was
found to increase as the wt.% of PSSA-MA increased.
Similar peaks were observed for solvent-cast
membrane with 25% PSSA-MA (data not shown).

Thermal properties

High thermal stability of membranes is required for
good performances at elevated operating tempera-
tures. TGA thermograms of heat-treated fibres were
shown in Fig. 6. All samples were thermally stable up
to approximately 250 °C, indicating sufficient thermal
stability in the temperature range of proton conduc-
tivity measurements. Three main degradation stages
were observed. The first weight loss below 140 °C
could be attributed to the loss of absorbed water. The
second loss between 140 and 380 °C was related to
the losses of sulphonic acid pendants of PSSA-MA
and PVA main and side chains. The third loss above
380 °C corresponded to the loss of PSSA-MA main
chain31–33. A gradual increase in weight residue with
increasing PSSA-MA suggested the increase in degree
of crosslinking. Solvent-cast membrane with 25%
PSSA-MA showed similar TGA thermogram to that
of fibres.

Glass transition temperatures (Tg) and melting
temperatures (Tm), obtained from DSC on the second
heating cycle, of all fibres and membrane with 25%
PSSA-MA were reported in Table 2. Crystallization
temperature (Tc) on the first cooling cycle was also
reported. All samples showed similar Tg values of
approximately 81 °C. Slightly lower Tm and Tc values
were observed for fibres, indicating the increase in
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Table 2 DSC values of electrospun fibres and solvent-cast
membrane with 25% PSSA-MA.

Sample PSSA-MA Tg Tm Tc
(%) (°C) (°C) (°C)

Electrospun fibres 9 82.2 207.8 176.1
17 81.9 209.1 177.8
25 81.4 207.8 171.3
33 82.7 210.7 176.3

Solvent-cast membrane 25 80.4 215.1 185.0
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Fig. 7 Proton conductivities of electrospun fibres and
solvent-cast membrane with 25% PSSA-MA.

interruption of the crystallization of PVA.

Proton conductivity

Proton conductivities of fibres and membrane with
25% PSSA-MA were determined from 120–200 °C
on cooling down cycle in non-humidified condition.
Fig. 7 showed the temperature dependence of proton
conductivity as a function of reciprocal temperature.
It was found that proton conductivity of solvent-cast
membrane was slightly higher than that of fibres. In
general, bulk conductivity is predominately governed
by segmental mobility and charge carrier density34.
A small difference in conductivities of fibrous mem-
brane and solvent-cast membrane with similar Tg and
identical charge carrier content suggests that there is at
least one more factor that influences proton conductiv-
ity. Since the measurement of proton conductivity was
conducted in the direction of membrane thickness,
a denser membrane, that is solvent-cast membrane,
might provide a more continuous hydrogen pathway
for proton transport. A maximum conductivity of
121 µS/cm was achieved from solvent-cast membrane
at 200 °C.

CONCLUSIONS

Proton conducting membranes based on crosslinked
PVA, PSSA-MA, and imidazole for use at elevated
temperatures were successfully prepared via electro-
spinning and solvent-cast methods. Fibre mats were
obtained from most compositions; however, uniform
fibres were only produced from solution with 25%
PSSA-MA. Fibre diameter was found to increase with
increasing solution viscosity. All membranes were
thermally stable up to 250 °C under nitrogen atmo-
sphere. The increase in PSSA-MA content resulted in
an enhancement in thermal stability probably due to
higher degree of crosslinking. Proton conductivity in-
creased with increasing temperature. Besides mobility
and charge carrier density in polymeric membranes,
membrane density would likely be accounted for the
small increment in conductivity of the solvent-cast
membrane.
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