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ABSTRACT : In this paper, we determine the non-abelian tensor sqaage(d, for non-abelian groups of ordgf, where
pis an odd prime.
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INTRODUCTION G4 = Mpx{w),

The non-abelian tensor products have their roots in Gs = <x,y7z|xl’2 =y =2 =1,
algebraicK -theory as well as in homotopy theory and
were introduced by Brown and Lod&y. The non- s
abelian tensor square is a special case of the non- Gg = (x,y,z[z? =y =2 =1,
abelian tensor product whete and H are the same [z,y] = 2, [z,2] = [y, 2] = 1),
group. The non-abelian tensor square of a group
G, denoted as? ® G is generated byg'®h = Where
(99'®9h)(g2h), gohh' = (goh)("gxhn'), for all
9,9 h,h' € G, wherehg = hgh~! denotes the
conjugate of by h. [z, y] = [y,2] = 1, [z,y] = 2),
In 1911, Burnsidé obtained the classification
of groups of ordenp?. Jang Ol proved that non-
abelian groups of order* satisfy the conditions in the PRELIMINARIES
following theorem.

[z, y] = [y, 2] = 1,a¥ = 2'7P),

MP = <.’L'7y,Z‘JJp = yp =2l = 17

w = (w|w? = 1), [z,y] = [y, 2] = 1, and|z,y] = 2P.

This section includes some basic results on the Schur
Theorem 1 LetG be a non-abelian group of ordef.  multiplier and non-abelian tensor square of groups

Then one of the following holds. which are used in order to prove our main theorem.
() |2(@)] = p? |G'| = p,andG’ C Z(G) In 2001, Seon Ok obtained the Schur multiplier
(i) 1Z2(G)| =p, |G| =p? andZ(G) C G". of groups of orden?, wherep is an odd prime as

stated in the following theorem.
In this paper, we focus on the non-abelian groups

of orderp* that satisfy the conditions ifiheorem {i). ~ Theorem 3 Let G be groups of ordep*, wherep is
an odd prime. Then exactly one of the following holds:

Theorem 2 Let G be a group of ordep*, wherep is _
an odd prime. Therd is isomorphic to exactly one 1, Gis Gy,
(

group in the following list. M(G) = p)2, G is Ga, G5 or Gg,
Gr = (z,yla?” = y? = 1,2¥ = 2+7°) AN
1 =T,y =y =1, = ) (Zp)4, GisGy.

Gy = (z,y, z|aP? = yP = =1, o
The following five theorems stated are used to
[z,9] = [y, 2] = 1, [2,y] = 2")
Y : v 2_ Y=, compute the non-abelian tensor square of some finite
Gs = (z,ylz? =y =1,2¥ = 2P, groups.
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In 1987, Brown et & computed the non-abelian PROOF OF MAIN THEOREM

tensor square of some groups such as quaterigh wis naner, we focus on the non-abelian tensor
groups, dihedral groups, symmetric groups and met@auare of non-abelian group of order wherep is an

cyclic groups. The non-abelian tensor square of Metgyy prime. The non-abelian tensor square of groups
cyclic group is presented in the following theorem. of orderp?, wherep is an odd prime is computed in

the next theorem.
Theorem 4 If G=(z,yly" = 2™ = 1, zyz~t = y!)

wherel™=1 mod n andn is an odd number, the@® Theorem 9 Let G be a group of ordep?, wherep is
G = Ly X Lopy X Ly X Loy Wherem; = (n,l — 1), an odd prime. Then
mo =l —1,1+1+---+1"" 1), mg=(n,(1+

)+ 4 1m 1), Lz X (Zy)3, Gis Gy,
(Z,)?, Gis Gy or G,
Brown et af also computed the non-abelian ten- ® G =1 (Z,2)?x(Z,)?, GisGs

sor square of direct product of two groups. In this
case, the non-abelian tensor square can be computed
by the use ofTheorem 5 They also determined two

roperties for Whitehead’s universal quadratic functor .
?a"s’ stated imheorem 6 g Proof: Let G be a non-abelian group of ordef,

wherep is an odd prime. ByTheorem 2there are
6 types of these groups. First, we prove @y, by
choosingn = p?, m = p, | = 1 + p?, andG, is
a metacyclic group. Then byheorem 4G ® G =
Lon X Loy X Loy X Loy, Wheremy = (p3,1 + p? —
D=p*my= @’ 1+p" =1, 14+ (1 +p*)+---+
(1+p*)P~1) =p,andmsz = (p®, (1 +1+p?)+- -+

(ZP)H, Gis G4,
Zy:x(Z,)5,  GisGs.

Theorem 5 LetG and H be groups. The(Gx H) ®
(GxH)= (GG x(GeH)x(H®G)x(H® H).

Theorem 6 LetG and H be abelian groups. Then
() T(GxH) =TGxT'HxI'(G® H),

(i) (1+p*)P~1) = p. ThereforeG ® G = Z,2 x(Z,)>.
) Z,, nisodd For groupG-, by Theorem 8the following com-
'z, = , . ; .
Zon, niseven putations are considered. In this grod, = Z,, and

G3® = (Z,)*. AsG3* ® G§* = (Z,,)°, G4L NG =
In the following theorem, Blyth et dlcomputed 1 and G ®zce 1(G5?) = Z,. The exact se-
the non-abelian tensor square of gropwith G**  quence 1—[Gy, GF)—7(Ga, Go)—1(GE, G2P)—1

which is finitely generated. shows thatr (G2, G2)| dividesp® where[GY, G%] <
7(Go,G2) and7(GSP, G4P) = G @7 GSP. Hence
Theorem 7 LetG be a group such that“® is finitely  |[GY%, G£]| dividesp. Then from the exact sequence,

generated. 7> has no element of order two or@  we obtain7(Gy, G2) = (Z,)°. Sincet(Gy,Gy)

has no complement i thenG @ G = T(G*)xG A is abelian and\ : 7(G2,G2) — G2 is the homo-

G. morphism, it followsp divides |G, G2|. Therefore
Gy ® Gy = (Zy)°.

Nakaok# gives the conditions that can be usedto  Next, we consider the third cas#;, by choosing

compute the non-abelian tensor of a finite group. n = p?,m = p2,1 = 1 + p, G3 is metacylic group.
By using the same proof &5, thenGs ® Gs =

Theorem 8 LetG be a finite group and > 0. Then (Zp2)* % (Zy)*.

(i) there is an exact sequence For groupG4 = M, x{(w), whereM,, is isomor-
1=[Git1, G¥)=7(Gi, Gi) =T (G, GE*)—1 phic to non-abelian group of orde? of exponentp.
where[G; 41, GY|<7(G;, Gy), Then byTheorem 5G4 ® G4 = (M), x (w)) @ (M, x

(i) |G; @ Gi| <|G§* @z G*||Gita @ Gil. (w)) = (Zy)".

For groupGs, we haveGs = K x (z) whereK =
The Schur multiplier, non-abelian tensor squaréz, y|z?” = y? = 1,2 = 2!77), (z) = (z]zP = 1).

and capability of groups of ordep?q have been We know thatX is isomorphic to non-abelian group of
considered by Rashid et al in Red, wherep andg  orderp?® of exponenip?. Again by usingTheorem 5
are distinct primes. In Refl0, they also computed we haveGs; @ G5 = (K x (z)) @ (K x (2)) 2 (Z,)°.
the Schur multiplier of groups of ordé&r;, wheregq is Lastly, for group G¢, we have Gy = Z,
an odd prime. and G¢¢ = Z, x Z,. The exact sequence
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1-[Gg, GE1—7(Ge, G@—W(G%b, ng)—ﬂ. On the
other hand(Ggs A Gs) /M (Gs) = G§. By Theorem 3
M(Gg) = (Z,)?, thatis(Gs A Gg) = (Z,)* and
by Theorem 6 we havel (G&’) = ['(Z, x Z,2) =
(Zp)? x Z,2. G2 is afinitely generated abelian group
with no element of order 2. Then byheorem 7 we
haveGg ® Gg = F(ng) X Gg N Gg = sz X (ZP)S

O
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