
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2011.37.125

ScienceAsia 37 (2011): 125–129
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ABSTRACT: Our aim is to determine the general solution of the Fréchet functional equation, ∆h1,...,hm+1f(x) = 0, when
the span hi is restricted to an open interval (ai, bi) for each i = 1, . . .,m + 1.
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INTRODUCTION

The problem of functional equations with restricted
domains is one of an interesting framework. It is chal-
lenging to determine their solutions when some con-
ditions are imposed on the domains of the variables.
Some authors1–4 have described this phenomenon by
the term conditional functional equations. A classical
problem is the Cauchy functional equation,

f(x+ y) = f(x) + f(y) for all (x, y) ∈ Ω, (1)

when the variables, x and y, satisfy some conditions
or restrictions. We sometimes call the domain of
variables Ω the domain of validity1–3, 5, 6. Readers
who are interested in other functional equations with
restricted domains should refer to e.g., Refs. 1–9.

In this paper, we will determine the solutions of
the Fréchet functional equation, ∆h1,...,hm+1f(x) =
0, when the spans hi’s are restricted to the open
intervals (ai, bi) for each i = 1, . . .,m+ 1.

PRELIMINARIES

For our purposes, in this section, the related theorems
and definitions of the Fréchet functional equation will
be introduced (for further details see Refs. 10, 11).

Let f be an arbitrary function on R. We will first
define the difference operator with a span h ∈ R,
denoted by ∆h, as

∆hf(x) = f(x+ h)− f(x), for all x ∈ R.

Furthermore, for all h1, . . ., hm ∈ R where m is a
positive integer, we denote the composition of the
difference operator with difference spans h1, . . ., hm
by

∆h1,...,hm
f(x) = ∆h1

. . .∆hm
f(x).

It is possible to expand the iterative difference opera-
tors by the formula

∆h1,...,hm
f(x) =∑

ε1,...,εm∈{0,1}

(−1)m−(ε1+···+εm)f(x+ε1h1+· · ·+εmhm).

(2)

For instance, ∆h1,h2f(x) = f(x+ h1 + h2)− f(x+
h1) − f(x + h2) + f(x). From (2), it is easy to see
that ∆h1,h2

f(x) = ∆h2,h1
f(x) for all h1, h2 ∈ R.

That is, the difference operators are commutative. A
Fréchet functional equation is the generalization of
Cauchy’s equation. This functional equation has the
form

∆h1,...,hmf(x) = 0. (3)

In particular, if h1 = . . . = hm = h, h ∈ R, then (3)
can be rewritten succinctly as

∆m
h f(x) = 0. (4)

The general solution of ∆m+1
h f(x) = 0 where m

is a nonnegative integer, will be called a polynomial
function of order m and possesses some important
properties as in the following two theorems10. Let X
and Y be linear spaces over R.

Theorem 1 (Czerwik10) Let m be a nonnegative in-
teger. A function f : X → Y is a polynomial function
of orderm, that is ∆m+1

h f(x) = 0, if and only if there
exist k-additive symmetric functions Ak : Xk → Y ,
k = 0, 1, . . . ,m such that

f(x) = A0(x) +A1(x) +A2(x) + . . .+Am(x) (5)

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.125
http://www.scienceasia.org/2011.html
mailto:Paisan.N@chula.ac.th
www.scienceasia.org


126 ScienceAsia 37 (2011)

for all x ∈ X where Ak : X → Y , k = 0, 1, . . . ,m is
the diagonalization of Ak and is defined by

Ak(x) = Ak(x, . . ., x︸ ︷︷ ︸
k

), for all x ∈ X.

The following theorem encompasses the solution
to the equation ∆h1,...,hm+1

f(x) = 0.

Theorem 2 (Czerwik10) A function f : X → Y
is a polynomial function of order m if and only if
∆h1,...,hm+1

f(x) = 0 for every x, h1, . . ., hm ∈ X .

That is, the general solution of the Fréchet functional
equation, ∆h1,...,hm+1

f(x) = 0, is also a polynomial
function of order m and f takes the form as in (5).

MAIN RESULTS

In this section, we will prove that the domain of
validity of a function f : R→ R satisfying the Fréchet
functional equation can be extended to R. Before
going to the main results, some notations are defined
for use in this section. Let m be a nonnegative integer
and let εi, δi ∈ {0, 1} for every i = 1, . . .,m + 1.
For our convenience, we will denote sets Em+1 =
{ε1, . . ., εm+1}, Dm+1 = {δ1, . . ., δm+1} and the
sum∑

Em+1

g(ε1, . . ., εm+1)

=
∑

{ε1,...,εm+1}∈{0,1}

g(ε1, . . ., εm+1),

where g is a function. Define a function S by

S(A) =
∏
ε∈A

(−1)1−ε,

where A is a finite set of integers. With this notation,
(2) can be rewritten as

∆h1,...,hmf(x) =∑
Em+1

S(Em+1)f(x+ ε1h1 + · · ·+ εmhm). (6)

Lemma 1 Let m be a nonnegative integer and let
ai, bi ∈ R with ai < bi, i = 1, . . .,m+1. If a function
f : R→ R satisfies the Fréchet functional equation

∆h1,...,hm+1
f(x) = 0 (7)

for all x ∈ R and all hi ∈ (ai, bi), i = 1, . . .,m + 1,
then f also satisfies (7) for all x ∈ R and all hi ∈
(niai, nibi) for all positive integers n1, n2, . . ., nm+1.

Proof : Suppose that a function f : R → R sat-
isfies the hypothesis of the theorem. For any spans
yi ∈ (ai, bi), i = 1, . . .,m + 1. We can see that
∆y1,...,ym+1f(x+ jy1) = 0 for all x ∈ R. Let x ∈ R
and let n1 be a positive integer. Then,

n1−1∑
j=0

∆y1,...,ym+1f(x+ jy1) = 0. (8)

Applying (6) to (8) yields
n1−1∑
j=0

∑
Em+1

S(Em+1)f(x+(ε1+j)y1+

m+1∑
k=2

εkyk) = 0.

Note that in the case m = 0,
∑m+1

k=2 εkyk is under-
stood to be zero. If we evaluate the sum over ε1 in
Em+1, then we get

n1−1∑
j=0

∑
Em+1\{ε1}

S(Em+1 \ {ε1})

(
f

(
x+ (1 + j)y1 +

m+1∑
k=2

εkyk

)

−f

(
x+ jy1 +

m+1∑
k=2

εkyk

))
= 0. (9)

Swapping the order of two summations, it can be
observed that

n1−1∑
j=0

(
f

(
x+ (1 + j)y1 +

m+1∑
k=2

εkyk

)

−f

(
x+ jy1 +

m+1∑
k=2

εkyk

))

= f

(
x+ n1y1 +

m+1∑
k=2

εkyk

)
−f

(
x+

m+1∑
k=2

εkyk

)
.

Then (9) is reduced to∑
Em+1\{ε1}

S(Em+1 \ {ε1})

(
f

(
x+ n1y1 +

m+1∑
k=2

εkyk

)
− f

(
x+

m+1∑
k=2

εkyk

))
= 0

which can be rewritten as∑
Em+1\{ε1}

S(Em+1 \ {ε1}) ∑
ε1∈{0,1}

(−1)1−ε1f

(
x+ ε1n1y1 +

m+1∑
k=2

εkyk

) = 0.
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That is,

∑
Em+1

S(Em+1)f

(
x+ ε1n1y1 +

m+1∑
k=2

εkyk

)
= 0.

Using (6) again, it becomes

∆n1y1,y2,...,ym+1f(x) = 0.

Therefore, we can see that the domain of validity of
y1 can be extended from the open interval (a1, b1) to
(n1a1, n1b1). Since the order of the difference oper-
ators can be permuted; that is, ∆y1,y2,...,ym+1

f(x) =
∆y2,y1,y3,...,ym+1

f(x) for all i = 1, . . .,m + 1, the
domain of validity of each variable yi can be extended
from (ai, bi) to (niai, nibi) for each i and every
positive integers ni. Thus we obtain

∆n1y1,...,nm+1ym+1f(x) = 0.

Therefore, if we let hi = niyi, i = 1, . . .,m+ 1, then
we can conclude that

∆h1,...,hm+1f(x) = 0

for all x ∈ R and all hi ∈ (niai, nibi) for every
positive integers n1, n2, . . ., nm+1. �

Next, we will consider (7) when the domains
of validity are half-open infinite intervals (pi,∞) or
(−∞, pi) where pi ∈ R, i = 1, . . .,m + 1; that is, f
satisfies (7) for all x ∈ R and for all hi ∈ (pi,∞),
when i = 1, . . ., n and for all hi ∈ (−∞, pi), when
i = n + 1, . . .,m + 1. We note that when n = 0,
hi ∈ (−∞, pi) for all i = 1, . . .,m + 1 and when
n = m + 1, hi ∈ (pi,∞) for all i = 1, . . .,m + 1.
With this restriction of domains of the spans hi’s, we
will prove that (7) still holds for all real numbers hi’s
as in the following theorem.

Lemma 2 Let m and n be nonnegative integers with
n 6 m+ 1 and for each i = 1, . . .,m+ 1, let pi ∈ R.
If a function f : R → R satisfies (7) for all x ∈ R
and for all hi ∈ (pi,∞) when i = 1, . . ., n and for all
hi ∈ (−∞, pi) when i = n + 1, . . .,m + 1, then (7)
also holds for all x, hi ∈ R, i = 1, . . .,m+ 1.

Proof : Let a function f : R→ R satisfy equation

∆h1,...,hm+1
f(x) = 0 (10)

for all x ∈ R and for all hi ∈ (pi,∞) when i =
1, . . ., n and for all hi ∈ (−∞, pi) when i = n +
1, . . .,m+1. Let x, hi ∈ R, i = 1, . . .,m+1. Choose

ti =

{
max {pi, pi + hi}+ 1 if i = 1, . . ., n,

min {pi, pi + hi} − 1 if i = n+ 1, . . .,m+ 1.

Then for all εi ∈ {0, 1}, i = 1, . . .,m + 1, we
obtain that for all i = 1, . . ., n, ti − εihi > pi
which means ti − εihi ∈ (pi,∞). Similarly, for
all i = n + 1, . . .,m + 1, ti − εihi < pi which
means ti − εihi ∈ (−∞, pi). Consider (10) at point
x+

∑m+1
i=1 εihi with spans ti − εihi’s. It follows that

∆(t1−ε1h1),...,(tm+1−εm+1hm+1)

f

(
x+

m+1∑
i=1

εihi

)
= 0,

and then for Em+1 = {ε1, . . ., εm+1},∑
Em+1

S(Em+1)∆(t1−ε1h1),...,(tm+1−εm+1hm+1)

f

(
x+

m+1∑
i=1

εihi

)
= 0 (11)

where S(Em+1) =
∏

εi∈Em+1
(−1)1−εi , i =

1, . . .,m+ 1. From (6), we can rewrite (11) as∑
Em+1

S(Em+1)
∑

Dm+1

S(Dm+1)

f

(
x+

m+1∑
i=1

εihi +

m+1∑
i=1

δi(ti − εihi)

)
= 0

where δi ∈ {0, 1} , i = 1, . . .,m + 1 and Dm+1 =
{δ1, . . ., δm+1}. Swapping two summations, it yields∑

Dm+1

S(Dm+1)
∑
Em+1

S(Em+1)

f

(
x+

m+1∑
i=1

εihi +

m+1∑
i=1

δi(ti − εihi)

)
= 0. (12)

We consider the term

∑
Em+1

S(Em+1)f

(
x+

m+1∑
i=1

εihi +

m+1∑
i=1

δi(ti − εihi)

)

in the cases that there exist δj = 1 for some j ∈
{1, . . .,m+ 1}. If we choose the smallest number
j ∈ {1, . . .,m+ 1} such that δj = 1, then we obtain

∑
Em+1

S(Em+1)f

(
x+

m+1∑
i=1

εihi+

m+1∑
i=1

δi(ti − εihi)

)

=
∑
Em+1

S(Em+1)f

x+tj+

m+1∑
i=1
i 6=j

((1− δi)εihi + δiti)

 .
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We then separate the sum over εj to yield;∑
Em+1

S(Em+1)

f

x+ tj +

m+1∑
i=1
i 6=j

((1− δi)εihi + δiti)


=

∑
Em+1\{εj}

S(Em+1 \ {εj})
∑

εj∈{0,1}

(−1)1−εj

f

x+ tj +

m+1∑
i=1
i 6=j

((1− δi)εihi + δiti)

 .

Since the term

f

x+ tj +

m+1∑
i=1
i 6=j

((1− δi)εihi + δiti)


does not depend on εj ,

∑
εj∈{0,1}

(−1)1−εj

f

x+ tj +

m+1∑
i=1
i 6=j

((1− δi)εihi + δiti)

 = 0.

Therefore, we can conclude that∑
Em+1

S(Em+1)

f

(
x+

m+1∑
i=1

εihi +
m+1∑
i=1

δi(ti − εihi)

)
= 0 (13)

for every case which there exists δi = 1 for some i ∈
{1, . . .,m+ 1}. We evaluate the sum over Dm+1 in
(12) and apply (13). Then we arrive at

∑
Em+1

(−1)(ε1+···+εm+1)f

(
x+

m+1∑
i=1

εihi

)
= 0,

that is, ∆h1,...,hm+1
f(x) = 0. �

Theorem 3 Let m be a nonnegative integer and let
ai, bi ∈ R with ai < bi, i = 1, . . .,m + 1. If f :
R → R is a function fulfilling (7) for all x ∈ R and
all hi ∈ (ai, bi), i = 1, . . .,m+ 1, then (7) also holds
for all x, hi ∈ R, i = 1, . . .,m+ 1.

Proof : Let f : R → R be a function satisfying (7)
for all x ∈ R and all hi ∈ (ai, bi), i = 1, . . .,m + 1.
We apply Lemma 1 to get that (7) holds for all x ∈ R
and for all hi ∈ (niai, nibi), i = 1, . . .,m + 1 for
every positive integers n1, n2, . . ., nm+1. Defining
Hi =

⋃∞
k=1(kai, kbi), i = 1, . . .,m + 1, then f also

fulfils
∆h1,...,hm+1f(x) = 0 (14)

for all x ∈ R and for all hi ∈ Hi, i = 1, . . .,m + 1.
For each i = 1, . . .,m + 1, the interval (ai, bi) will
satisfy one of the following three cases.
Case 1: ai < 0 < bi. Then Hi = (−∞,∞). We note
that if ai < 0 < bi for all i = 1, . . .,m + 1, then f
satisfies (7) for all x, hi ∈ R, i = 1, . . .,m+ 1.
Case 2: 0 6 ai < bi. Choose an integer Mi >

ai

bi−ai
.

Then jbi − (j + 1)ai = j(bi − ai) − ai > 0 for all
j > Mi. It follows that (Miai,∞) ⊂ Hi.
Case 3: ai < bi 6 0. Choose an integer mi >

−bi
bi−ai

.
Thus we get that (j+1)bi−jai = j(bi−ai)+bi > 0
for all j > mi; consequently, (−∞,mibi) ⊂ Hi.
For each i = 1, . . .,m+ 1, let

pi =


0 if ai < 0 < bi,

Miai if 0 6 ai < bi,

mibi if ai < bi 6 0.

Thus it follows that, from (14) and the cases, (7) holds
for all x ∈ R and for each i = 1, . . .,m + 1, for all
hi ∈ (pi,∞) or for all hi ∈ (−∞, pi). Since the
order of the difference operators can be permuted, we
can rearrange the order of the difference operators to

∆hj1 ,...,hjm+1
f(x) = 0,

where hji ∈ (pji ,∞) if i = 1, . . ., n and hji ∈
(−∞, pji) if i = n + 1, . . .,m + 1 for some non-
negative integer n with n 6 m+ 1. Therefore, we can
apply Lemma 2, which then yields that f also fulfills
(7) for all x, hi ∈ R, i = 1, . . .,m+ 1 as desired. �

The following corollary will prove that the gen-
eral solution of the Fréchet functional equation with
restricted spans to the open interval (ai, bi), i =
1, . . .,m + 1, is also a polynomial function of order
m.

Corollary 1 Let m be a nonnegative integer and let
ai, bi ∈ R with ai < bi, i = 1, . . .,m + 1. A function
f : R → R satisfies (7) for all x ∈ R and all hi ∈
(ai, bi), i = 1, . . .,m+ 1 if and only if the function f
is given by (5).

Proof : Let f : R → R satisfy an (7) for all x ∈ R
and all hi ∈ (ai, bi), i = 1, . . .,m + 1. Applying
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Theorem 3, we obtain that (7) also holds for all x, hi ∈
R, i = 1, . . .,m+ 1. Thus it follows from Theorem 2
that f takes the same form as (5). Conversely, from
Theorems 1 and 2, it is obvious that f satisfies (7) for
all x ∈ R and all hi ∈ (ai, bi), i = 1, . . .,m+ 1. �
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