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ABSTRACT: This paper investigates the performance of local searches embedded in memetic algorithms for solving
multi-objective mixed-model assembly line sequencing problems that are common in a just-in-time production system.
Two inversely related objectives, namely, setup times and production rate variation, are simultaneously considered.
We use memetic algorithms which are a type of evolutionary algorithm using a local search algorithm to exercise
exploitation. Simulation results demonstrate that memetic algorithms employed in conjunction with an appropriate local
search outperform highly meta-heuristic algorithms such as Strength Pareto Evolutionary Algorithm 2 and Non-dominated
Sorting Genetic Algorithm Il in terms of ability to find Pareto-optimal solutions.

KEYWORDS: local search algorithms

INTRODUCTION duction sequence of mixed models introduced to the
line to achieve given objectives. These two problems
Mass production of a single standardized produare normally solved sequentially. In this paper, we
model has helped manufacturers in many industriesssume that the line has already been balanced and
such as automobiles, appliances, and toys to save costgy the sequencing problem is considered.
substantially for several decades. However, intensive Determining the intermixed sequence of intro-
competition in the current market and ever-changinducing models to the MMAL is vital to the efficient
customer requirements have meant that producinguse of a JIT production concept. Two basic goals
large volume of a single product on a single assemblpr the sequencing problem were originated by Mon-
line is no longer cost effective. In order to offerden': (1) smoothing the workload (total operation
more varieties of products to attract their customers¢imes at each workstation on the assembly line) and
manufacturers need to redesign their production ling®) maintaining a constant rate of usage for every part
to accommodate mixed-model production which areonsumed by the assembly line. Toyota Corporation
known as mixed model assembly lines (MMALs).  developed Goal Chasing | (GC-I) and Il (GC-II) meth-
MMAL is a production line where a diversified ods to solve these problems. GC-I selects an order
small-lot product models with similar characteristicoof the models to launch in the assembly line so that
(e.g., shape, size, colour, process requirements) dhe one-stage variation at each stage is minimized, and
assembled. If an appropriate mixing sequence &C-II simplifies GC-1 and is solved under special as-
product models is launched into the MMAL, the linesumptions regarding product structure. Here a ‘stage’
will be operated efficiently without keeping largerepresents a position in the model launch order of a
inventories. MMALs are widely employed in just- sequence.
in-time (JIT) production systems. Their flexibilities Miltenburg® developed non-linear integer pro-
provide more opportunities for a manufacturing firmgramming to minimize the total deviation of actual
to be responsive to changes in the external enviroproduction rates from the desired production rates.
ment. To use such MMALSs in an efficient mannerSince the time complexity function of the proposed
line balancing and model sequencing are necessapyogram was exponential, two heuristics were pro-
Line balancing is the problem of determining the cyclgosed to solve the problem. Miltenburg ef gro-
time and number and sequence of workstations on tip@sed a dynamic programming algorithm to solve the
line to accommodate the different models of productsame problem. However, the algorithm seems to be
Model sequencing is a problem of determining a proinapplicable to large-sized problems. Kubiak and
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Sethi* developed an optimization algorithm to solveMemetic algorithms (MAs) seem to be outstanding
GC-ll of Monden'. They showed that the objective candidates for this. However, the MAs that have
function can be represented by using penalty functiorizeen developed so far have mostly focused on single-
for the deviation from most even. Moreover, theobjective or weighted sum objective optimization
problem can be reduced to an assignment problempfoblems®. Although the newer heuristics such as
these penalty functions are non-negative and conveMlOSS performs well on multi-objectives, they take
Korkmazel and Mera& showed that the bi-criteria longer to find Pareto optimal solutions than basic
problem of Monde# with the sum-of-deviations type heuristics such as SPEA 2 and NSGA Il. As a
objective can be formulated and solved as an assigresult, in this research we propose a new MA that
ment problem. combines modified SPEA 2 and NSGA Il (which
Recently, the sequencing problem of MMALSs hasare good at finding Pareto optimal solutions quickly)
been focused on multi-objective criteria. Bard €t al with some powerful local searches (which are good at
proposed Tabu Search (TS) approach with weightethproving solution quality) and call them Memetic-
sum objectives to minimize the overall line lengthSPEA 2 (MSPEA 2) and Memetic-NSGA Il (MNSGA
while keeping a constant rate of part usage. The Paréi.
Stratum-Niche Cubicle Genetic Algorithm (PS-NC  The objective of this paper is to study the results
GA) for finding the best sequence satisfying the threef MA for solving multi-objective sequencing on
objectives of minimizing total utility work, keeping a MMAL in a JIT production system. The primary
constant rate of part usage, and minimizing total setuygsearch questions are the followings: (1) Will the
cost was proposed by Hyun et aMcMullen® devel-  solution quality of MSPEA 2 and MNSGA Il be better
oped the TS algorithm for the problem which considthan SPEA 2 and NSGA 11? (2) If so, which one is
ered the two objectives of minimizing the part usagéetter? (3) What local search applied in MSPEA 2
rate as defined by Miltenbufgand minimizing the and MNSGA Il gives the better performance? The
number of setups. McMullen and FraZlateveloped problem sets to be tested in this research were those
a Simulated Annealing (SA) algorithm and comparegroposed by McMullet with two objectives to be
it with TS. The results showed that SA was superiosimultaneously optimized: (1) minimizing setup times
to TS. McMullent® developed a Genetic Algorithm and (2) minimizing variation of production rates.
(GA) and compared it with TS and SA. They foundAlthough most literature assumes that setup times
that the performance of TS was no better than SA arfietween different products are negligible, in reality
GA. Furthermore, McMullei solved the same prob- there are some applications such as in electronics
lem by using GA and Kohonen'’s self-organizing mapndustry where setup times may represent a high
(SOM). Ant Colony Optimization (ACO) was also proportion of the cycle time and also be dependent
proposed by McMullef? and was compared againston the directed preceding model. Hence, to make
SA, TS, GA, and SOM. The results showed thathe model of the MMAL more realistic, sequence-
ACO had the best performance. Mansdéiproposed dependent setup times are considered in this research.
Multi-Objective Genetic Algorithm (MOGA) to solve
the problem proposed by McMulléh Tavakkoli- MULTI-OBJECTIVE EVOLUTIONARY
Moghaddam and Rahim-Vah&dproposed Memetic ALGORITHMS
algorithm (MA) with a weighted sum objective andA multi-objective optimization problem (MOP) is
solved the problem proposed by Hyun ef.alMA related to the problem where two or more objec-
was reported to find promising results, especially fotives have to be optimized concurrently. Generally,
large-sized problems. Rahim-Vahed et°ghroposed such objectives are conflicting and are represented in
a new multi-objective scatter search (MOSS) to solvdifferent measurement units, preventing simultaneous
the problem proposed by Hyun et'and compared it optimizations of each one. MOP can be formulated,
with PS-NC GA, non-dominated sorting genetic algowithout loss of generality, as follows:
rithm 1l (NSGA Il), and strength Pareto evolutionary
algorithm 2 (SPEA 2). The computational results Minimize f1(z), f2(z), .., fi(2), 1)
showed that the proposed MOSS outperformed all of
these GAs. However, it took much longer to findwhere solutionr is a vector of decision variable for
solutions, especially on large-scale problems. the considered problent) is the feasible solution
Most prior research has been directed towardspace andf;(-) is theith objective functionq{ = 1,
the development of efficient approximation algorithmg, . . ., k). Two approaches can be employed to solve
or heuristics to find the best mixed-model sequenc®OP. The first approach is to combine each objective
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function into a single composite function using €.9. Afinimize £
the weighted sum method or utility theory. Two
practical problems are often experienced with thi
approach: (1) selection of the suitable weights can k
very difficult even for those who are familiar with the
problem and (2) small perturbations in the weights ca
sometimes lead to totally different solutidis The
second approach, using multi-objective evolutionar
algorithms (MOEAS), is to determine a set of alter- 2
native solutions for X) rather than a single optimal £
solution. These solutions are optimal in the wide,?

A Non- dominated or
O Pareto-Optimal Solution = {@}

sense that no other solutions in the search space >
superior to them when all objectives are considered. «— Minimize f(x)
decision vector is said to dominate a decision vector mprove '

y (also written as: > y) if: Fig. 1 Pareto-optimal solutions.

filz) < fi(y) foralli e {1,2,...,k}, (2)

fi(2) < fi(y) for at leastone € {1,2,....k}. (3) the search towards the true Pareto-optimal ffoft.

In the view of the second objective, some MOEAs
All decision vectors that are not dominated by anwguccessfully provide density estimation methods to
other decision vector are callesbn-dominated solu- preserve the population diversity. Although several
tions or Pareto-optimal solutions If non-dominated versions of MOEAs have been develop&dSPEA
solutions are abundant, located close to each oth@?? and NSGA IP® are among the most promising
and distributed uniformly, the contour of these nonenes in terms of convergence speed and good Pareto-
dominated solutions will appear as a curve. This curveptimal solutions and even distribution of the Pareto
is called thePareto front or non-dominated front front.
Normally, the true-Pareto frontthat comprises all SPEA 22 is an improved version of SPEA for
global-optimal non-dominated solutions is unknownmulti-objective optimization problems. The improve-
Hence, the best Pareto front found after an extensivaents of SPEA 2 over SPEA include a fine-grained
search for non-dominated solutions is completed ifithess assignment scheme, a density estimation tech-
used as a representative for the true-Pareto front andigjue based on thg-nearest neighbour metric, and
called theapproximated true Pareto fronThe Pareto- an archive truncation method for preserving boundary
optimal solutions for a two-objective minimization solutions. In SPEA 2, the size of the archive (a place
problem are illustrated ifrig. 1L It is obvious that where non-dominated solutions found so far are kept)
an amount of sacrifice in one objective is alwayss fixed. If the number of non-dominated individuals
incurred to achieve a certain amount of gain in thexceeds the archive size, the truncation operator is
other while moving from one Pareto-optimal solutioractivated by evaluating thenearest neighbour metric
to another. Providing Pareto-optimal solutions to thand the members that are in the most crowded areas
decision maker is more preferable to a single solutioaf the front are removed. In contrast, if the number
since practically, when considering real-life problemspf non-dominated individuals is less than the archive
a final decision is always based on a trade-off betweesize, the remaining archive is filled with dominated
conflicting objective functions. individuals that win the binary tournament selection.
MOEAs have recently become popular and have NSGA Il is similar to SPEA 2 since they both
been applied to a wide rage of problems from soci@mploy an elitism algorithm, but they differ in the
to engineering problent®. In general, MOEAs are elitism preservation operation. Elitism of NSGA I
ideally suited to MOP because they are capable afoes not use secondary external populations or archive
searching multiple Pareto-optimal solutions in a singleopulations, whereas SPEA 2 uses archive external
run. The approximation of true Pareto-optimal selist to store non-dominated solutions discovered so far
involves two conflicting objectives: (1) the distancein the search. NSGA Il sets the archive size equal
to the true Pareto front is to be minimized, ando the initial population size. The current archive is
(2) the diversity of the evolved solutions is to bedetermined by combining the current population and
maximized?®. To achieve the first objective, a Paretothe previous archive. Non-dominated sorting is then
based fitness assignment is normally designed to guidsed to classify the population into a number of Pareto
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fronts. The first front is the best in the combinedbaper employs a Pareto-based approach rather than
population. The archive is created by selecting frontthe weighted sum objective and also investigates
based on their rankings. If the number of individualgshe contribution of several local searches applied in
in the archive is smaller than the population size, theeveral stages of different MAs.
next front will be selected and so on. If adding
front would result in the number of individuals inaMUL—I—l'OB‘]ECTIVE MIXED-MODEL
the archive exceeding the initial population size, §EQUENCING PROBLEM
truncation operator is applied to that front based on thEhe MMAL in this study is configured as a straight
crowded tournament selection by which the winner dline using a conveyor system to transport parts at a
two same rank solutions is the one that has the greatgwnstant speed. Materials to produce similar products
crowding distance. are introduced onto the conveyor at a fixed cycle. The
MAs are a type of evolutionary algorithm andline is properly partitioned intern. workstations and
have been recognized as a powerful algorithmitheir workloads are somewhat evenly distributed as
paradigm on complex search spaces for evolutionagy result of line balancing. Each workstation is of
computing®. They apply a separate local searctelosed type which means that a worker is restricted
algorithm to improve the fitness of individuals byto work within its boundaries and the walking time
special hill-climbing. MAs are inspired by modelsis negligible. The task times are deterministic. The
of adaptation in natural systems that combine evolwsoncept of a minimum part set which is a vector
tionary adaptation of populations of individuals withrepresenting a product mbis used in this paper.
individual learning with a lifetime. Amemeis a The two objective functions to be simultaneously
unit of information that reproduces itself when peopl@ptimized are the setup times and production smooth-
exchange ideas. Memes are adapted by the peophlg. Sequence-dependent setups are formulated using
who transmit them before being passed on to the
next generation. MAs use evolutionary algorithms to
perform exploration and use local searches to exercise hlw)=5= Z Sk—1,[k]> )
exploitation. Local search in MAs is similar to simple k=1
hill-climbing but with the differences that (a) the WhereS is the total setup time required for a produc-
neighbourhood of the current solutions is searchedPn sequences,_y) 1 is the setup time required if
systematically instead of randomly in the space dhe products in positiok — 1 andk of the launch
all candidate solutions, and (b) the neighbourhoo@irder are different, andy is the total demand (also
search is repeated until a locally optimal solution i§ePresents the number of positions in a sequence). A
found. An advantage of local search in MAs ovesequence-dependent setup is needed if the product in
other heuristics is that local exploitation around aosition — 1 is different from the one in position
individual can be performed much more effectively®- In this study, setup times are generated from a
Hence good solutions in a small region of the searcfiiscrete uniform distributior/[0,100]. ~ Since they
space can be found quickly. may affect the number of Pareto solutions obtained,
Tavakkoli-Moghaddam and Rahimi-Vahtd the coefficient of variationd,) is used to measure
were the first pioneers in the application of MAsSetup time variability and, = var(s)/s* = 1/3 for
to multi-criteria sequencing problems for MMAL obtaining more uniform distributed solutions.
in a JIT production system. Three objectives Another crucial goal for efficient sequencing of
weighted by their relative importance were optimizedMAL in a JIT production system is to keep a
simultaneously. MA with a hybrid local searchconstant consumption rate of each part on the line
was proposed to generate suitable sequences. T{#éoduction smoothing) which can be formulated
ability of MA to find promising results was reported USIng
especially in large-sized problems. Although multi- Dr n ; 5
objective functions were considered in their paper, Ny O
they were combined to a single objective by the Be)=U=>3, (x”“ B kDT> - 0
weighted sum approach. This approach is highly
criticized in practice since even an experiencewhereU is the production rates variation of a pro-
decision maker will still be uncertain about how mucltduction sequence;; ;, is the total number of units of
weight should be given to each objective. In additionproduct; produced over stagetok, k =1, ..., D, n
the relative performances of individual local searcheis the number of unique products to be produced, and
were not examined. To answer these questions, this is the demand for produét U gives the matching

D

k=11i=1

www.scienceasia.org


http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsi&5 (2009) 299

between the actual product intermixing and demanproducts of typeX to be produced in one production

for a production sequence as a metric to quantify thisycle, a feasible chromosome can be represented as

goal® 28, ABABCB. Such a representation is good at preserving

Feasible sequences for MMAL sequencing havsequence information.
ing n products can be computed using .
Local search heuristics

(2": di) ! Once a;et of new chromosomes is create_d in the initial

Feasible Sequences :‘1:1 . ©) popul_atlon, their performances may be |mpro_ved b_y
e applylng an appropriate Iocgl §earch. To deS|gq effi-
i cient MAs for continuous optimization, four questions

related to local search executions need to be con-

Mansouri® mentioned that obtaining sequences witfsidered: (1) On which solutions should local search

acceptable levels of botfy (x) and f2(z), minimum  be applied? (2) How often should local search be

setup times, and minimum usage rate variation igpplied? (3) How long should local search be run?

NP-hard. Hence finding optimal solutions within a(4) Where within the steps in the algorithm of the MA

reasonable amount of time becomes impractical fathould the local search be taken?

large-sized problems. The first question is related to the paramdigg.

The solutions for applying a local search to can be

PROPOSED MEMETIC ALGORITHM chosen from all solutions, all solutions with probabil-

Initialization ity Ppg, only first rank solutions, or first rank solutions

. o i .
Initial population generation is the first step in the/ith probability Prs . Applying the local search to

proposed MA Fig. 2. A set of N chromosomes all obtained solutions is time consuming. On the other

is generated randomly as an initial set of populaha”d’ it would be too restrictive to consider only first

tions. The chromosome comprises a sequence gk solutions. Hence, we choose all solutions with
genes (products) produced in one cycle of the mifRrobability Prs. For examplefrs = 0.8 means 80%

imum part set (MPS) demand. The position of Hf all solutions will be subjected to local search. In
gene in a sequence of the chromosome represeﬁ‘@dition* if the solutions on which the local search is

the product in the sequence and demonstrates mod@plied are randomly selected, the improved quality
launching to MMAL. For example, if the MPS is= of the new solutions may not be guaranteed. Hence, to

(da,dp,dc) = (2,3,1), wheredy is the number of select an appropriate solution to apply the local search,
T o binary tournament selection is used. The second

question is related to the interval of generations of the
S ] MA to which the local search is applied. In this paper,
the local search is applied to every generation of the
MA. The third question is related to the parameter
k which specifies the maximum number of examined
e e neighbours of the current solution. The execution of
local search is terminated when no better solution is
Fitness assignment by found amongk neighbours. If an improvement is
e found while generating neighbours, two improvement
strategies can be used. For the first improvement
strategy, the current solution is replaced immediately
Preserve elitist strategy . . . .
(oo dominete with the first neighbour that is better than the current
solution. Alternatively, the best improvement strategy
has to wait until all neighbours are generated and the
current solution is replaced with the best improved
solutior?®. It is clear that such early termination of
the first improvement strategy can help decrease the
computation time of a local search. The final question
is related to the steps in the algorithm of the MA where
the local search is applied which could be after the
initial solution, after the new solution, after crossover,
Fig. 2 Flowchart of the proposed memetic algorithm. or after mutation. The number of steps to apply local

Copy offspring to Py.;

Elitist strategy
(compare solution between
preserved elitist strategy and
improvement method)

T

Improve solution with
local search procedure

Meet stopping
criterion?

No

Use binary tournament
method to select parent

Selected
solutions <
Pop size?

Apply crossover and mutation
to create offspring populations
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search has a direct effect on the quality of solution  Parent AB| CAB | CCABA

and computation time. Hence, if computation time  Neighbour AB| CCABA | BAC

needs to be saved, local search should be taken at some Double-bridge(DB): It cuts the chromosome into

specific steps in the algorithm of MA rather than aft segments by deleting four random genes and then

all steps. In this study, we perform the local searckeinserts them in a different order to create a new

after obtaining the initial solution and after mutationchromosome. E.g..

since pilot experiments indicated that these two points ~ Parent A BC|ABC | CA|BA

were enough to find significantly improved solutions, ~ Neighbour A| CA [ ABC | BC | BA _

pull the solutions out of the local optimum, and reduce ~ We 18t LS*LS> denote the local search combina-

computational time. tion applled after initial solution and after mutation,
Here several local searches (detailed below) aféSpectively. For example, IP*PI means to generate

evaluated to demonstrate their performance in ternfd 0ffspring, the parent has to be modified first after

of improving the efficiency of such high performance'”'“al.S°|Ut'0” by the IP operator and later after

meta-heuristics as SPEA 2 and NSGA Il. The loMmutation by the Pl operator.

cal searches we use are modified from Kumar a

Singl?® to solve travelling salesman problems b

repeatedly exchanging edges of the tour until n§ any of the following 4 criteria are mét, then a

improvement is attained. neighbour solutiort’ is accepted and hence replaces
Pairwise Interchangg(Pl): Select two arbitrary the current solutiors. (1) If the setup time of” is

products located at positionsand j, i # j, and |€ss than that of5 i.e., accept(S,S) = fi(5") —

interchange them to generate a neighbouring solutiofi (5) < 0. (2) If the production rates variation 6f

All possible swaps of pairs of products in a giveriS less than that of i.e., accept(S, ") = fo(S') —

;enteria to accept a move

solution are feasible. E.g.: f2(8) < 0. (3) If S’ dominatesS accept(S,S’) =
Parent ~ AECABCCABA ((f1(8") = f1(S) < 0)(f2(S') — f2(S) < 0)) or
Neighbour AEAABCCCBA ((f1(S") = f1(S) < 0) and(f2(S") — f2(S) < 0)).

Adjacent Pairwise Interchang@Pl): It is a sub- (4) If both S and 5" are non-dominated solutions
set of Pl where two products located at adjacerndaccept(S,S") = wy - (f1(S") = f1(5)) + (1 —
positionsi andi +1 (1 < i < n— 1) are interchanged w1) - (f2(5") — f2(5)) < 0. The weightw; that

to generate a neighbouring solution. E.g.: determines the descent direction must be computed.
Parent AB| CA | BCCABA The aim is to improve the front, with emphasis on the
Neighbour AB| AC | BCCABA two extreme solutions, while preserving the spacing

Insertion ProcedurélP): Remove a product from between solutions. Therefore;; is defined for the
one position; and then insert it back to any positign current solutionS by
wherei # j of a given sequence. E.g.:

Parent  AB|C|ABCCABA J1(S) — f™
Neighbour ABABCCA| C|BA B fmax . fmin .
2-opt A neighbouring solution is obtained by wr= f1(S) = fm - fo(S) — ")
randomly selecting a part of the chromosome and then fmax _ fmin max _ gmin
reversing the order of all products located in this part. ! ! 2 2
E.g. where f™" and f™¥ denote the minimum and max-
Parent  AB| CABCCA | BA imum values ofith objective function in the current
Neighbour AB| ACCBAC | BA population, respectively.

3-opt A neighbouring solution is obtained by
randomly selecting two adjacent parts of the chromdSelection

some and then reversing the orders of all producigjyary tournament selection is used to obtain suitable
Iocatgd in each pAag' EA?B _ parents to further perform local search and genetic
arent | CAB | CCA | operators. For each chromosome, the rank on the

Cl)\leigr;bﬁur AE.’LBAC | ACC|:|| BA ¢ ¢ Pareto-front is computed (SPEA2 and MSPEA 2 use
-op CONSICETS a smaller percentage o eX75trength of dominators, NSGA Il and MNSGA Il use
change that would be considered by a regular 3-0

_‘ﬁ%n—dominated sorting). Two candidate chromosomes

by §electing aset of fchree _adjacent products, reversugge chosen at random and the best individual of that
their order, and moving this reversed set to the end Qht with lower rank (higher fitness) is selected as

the chromosome. E.g.: a parent. If two individuals have the same rank,
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the tournament prefers the most isolated one, using Before: CEAABDEABECD

a density mechanism (SPEA2 and MSPEA 2 use After. CBDABDEABECA

k-nearest neighbour, NS_GA 1] anq MNSGA I useDiversity mechanism

crowding distance). An important issue needs men- ) ] ] ) )

tioning on the selection scheme that combines rankl€ diversity mechanism is exercised when many
identification and density mechanism of MOEAs. Thdndividuals of the current generation do not dominate
rank identification mainly emphasizes an improving@ch other and only some of them have to be selected.
solution quality (exploitation) which has no control t calculate_s density mfor_matlon of e_ach individual.
over diversity, whereas the density mechanism focusd$'€ one with lower density has a higher chance to
on the diversity of solutions (exploration). These twd®@ Selected since less non-dominated solutions are

mechanisms are combined to round off the weakne§t/Stering around (higher diversity). The density
of each other. estimation technique for SPEA 2 and MSPEA 2 is the

kth nearest neighbour meth&d whereas NSGA |l

and MNSGA Il use the crowding distance metféd
Crossover

The order crossovét was adopted as the crossovelF!IliSM strategy

operator for all algorithms in this research. ThisElitism is the mechanism of constantly updating and
scheme tends to maintain the relative order of thkeeping the best solutions found so far. We use a
jobs. Toillustrate how it works, consider the followingstraightforward implementation of elitism in all algo-

parents. rithms. An archive with a fixed number of elitists is
Parent 1: ABH CAAD | EDBCB established. The non-dominated individuals generated
Parent 2: CCD EEBA | DBBAA by the main population are considered as a set of

A fragment of the chromosome is randomly selectegentative elitists. These individuals are added to the
as a portion of the sequences that will remain intaairiginal archive. The non-dominated solutions resid-
and become part of the offspring in the crossoveng in the archive are updated and the dominated ones
process (i.e., CAAD and EEBA for parents 1 andare discarded. At each generation, a certain number
2, respectively). A new parent is then created byf elitists are also copied into the main population to
moving all the characters appearing after the end gferform the local search (for MSPEA 2 and MNSGA
the fragment of the original parent to the beginning ofl) and genetic operations. Therefore, by this two-way

the sequence as shown below. communication method, the elitist's archive is updated
Parent 1 EDBCB| ABE | CAAD generation by generation and the valuable schemas of
Parent2 DBBAA | CCD| EEBA an elitist can be inherited by their offspring. For this

From these new sequences, the characters in Pdrentéason, the elitism scheme has the potential to help the
that match the characters of the fragments of the othentire population converge into a near-optimal Pareto
original parent (Offspring 1: CAAD) are removed. front.

Offspring 1: XXX | CAAD | XXXXX

Parent2  XBBXX | XCD | EEBA Performance measurement
This mechanism applies to Offspring 2 and Parént e use three metrics to assess the achievement of
as well. The sequence of the remaining characters iwo goals of a multi-objective optimization as rec-
Parent 2is BBCDEEBA. This sequence is used toommended by Kumar and Singh (1) convergence
fill in the blank positions of the Offspring 1 to obtainto the Pareto-optimal set, and (2) maintenance of
the Offspring 1. Using this technique, the followingdiversity in the solutions of Pareto-optimal set. The

offsprings are generated. convergence of the obtained Pareto-optimal solution
Offspring 1: BBC| CAAD | DEEBA towards a true Pareto-sefi{) is the difference be-
Offspring 2: DCB| EEBA | BCAAD tween the obtained solution set and the true-Pareto set.
Mathematically, it is defined as
Mutation 1A
Mutation is performed irregularly so that a solution Z ti
could have an occasional trait that is absent from its convergence(A4) = "E*H (8)

parent. It plays an important role in preserving the
diversity of the population. Mutation for this study where where| A*|| is the number of elements in sét
is the swapping of two unique elements randomlandt; is the Euclidean distance between ke non-
selected in the sequence of interest. E.g.: dominated solution in the true-Pareto frogf &nd the

www.scienceasia.org


http://www.scienceasia.org/2009.html
www.scienceasia.org

302 ScienceAsi&5 (2009)

obtained solutionsx) and is given by Experimental Design

i 5 5 In this paper, the relative performance of four MOEA,
Al 3 (fk(x) - fk(y)) (9) €. SPEA 2 NSGA Il, MSPEA 2, and MNSGA Il,
B — max _ fmin J are evaluated. Different local searches are added into
original algorithms of SPEA 2 and NSGA 1l. To find
where ™ and fM" are maximum and minimum an appropriate local search for our proposed MA, the
values ofkth objective functions in the true-Pareto sesame genetic parameters are used in all four algo-
respectively. For this metric, a lower value indicatesithms including population size, elitism probability,
superiority of the solution set. When all solutionscrossover probability, inversion probability, and muta-
converge to the Pareto-optimal front, this metric igion probability which were set at 200, 1.0, 1.0, 0.5,
zero indicating that the obtained solution set has adind 0.005, respectively. For MSPEA 2 and MNSGA
solutions in the true Pareto set. The approximateld, the archive size was set at 200. In the proposed
true Pareto-optimal front is the result of combining aIMA, the local search probabilityFs) is set to 0.8
non-dominated solutions obtained from of all four al-and the number of neighbours to be examingdg 4.
gorithms (SPEA 2, NSGA I, MSPEA 2, and MNSGA These settings were obtained from the results of pilot
II) and recalculating a combined front. experiments. To evaluate the performance of SPEA 2,
The second measure is a spread metric. This medSGA I, MSPEA 2, and MNSGA I, three measures
sure computes the distribution of the obtained Paretarere employed including convergence, spread, and
solution by calculating a relative distance betweenatio of non-dominated solutions. Each algorithm was

consecutive solutions using applied to each tested problem 10 times with different
initial populations. The problem sets tested in this
I dopted from McMulldhas shown |
rrr4 S -7 paper were adopted from McMullehas shown in
_ i=1 Table 1 Problem sets 1-3 and 4-5 are considered as
spread(A) = (20)

rr+r+ (JJA]| - 1)F small-sized and large-sized problems, respectively.

2 (fk:(xl) _ fk(l'i+1)>27 1) EXPERIMENTAL RESULTS

r= S

max min
pt it

Table 2summarizes the performance of local searches

. . that were applied to strengthen the original MOEAS
wherer; andr; are the Euclidean distances betwee SPEA 2 and NSGA II). The element in the table

the extreme solutions and boundary solutions of thI the local search combination that shows high or

obtaine_d Pareto—o_ptimaHAH is the _num_ber of ele- poor performances among those considered. ANOVA
m.ents ln'the obtained-Pareto SOIUI',OMJS the Eg- was conducted to test significant difference at 0.05
clidean distance between consecutive solutions in t@?gnificant level among different local search combi-
obgaln_ed;]Pareto solu;fonsTLor: ll 2, '%'E_HAH -1 nations applied to MNSGA Il and MSPEA 2. Those
andr 1S the average of;. 1he value O.t IS measure showing outstanding performances appearahble 2
is zero for a uniform distribution, but it can be moreg, example, under the problem set 2.2 of MNSGA I
than_rlhwh(ra]p; bad d|str|put|r(1)n IS f_ounfd. domi éhe combination of local searches PI*IP outperforms
ne thir } measure 15 the ratio of non-dominateqe ihers. |ts detailed performances in terms of con-
solutions which indicates the coverage of one set Ov%rgence, spread, and ratio of non-dominated solution
another. Let4; be a solution setj(= 1,2, ..., J). For metrics can be seen Fable 3
comparing each solution sed = A, UA, ... U Ay), For small-sized problems (problem sets 1-3), the
the ratio of non-dominated measure of the solution S&lcal searches PI. IP. and AP| often appear as high
A to the J solution sets is the ratio of solutions inperformance local searches They show better per-
Aﬁ.tT]a.t adref_not ddomlnated by any other solutiodin - 5 ance in all aspects than the others both when
which is defined as. applying after obtaining initial solution and after mu-
Raps(4;) |4, —{x € A;|Fy e A:y <z} tation. Double-bridge always shows poor convergence
NDSLAG) = 4] ’  to true-Pareto set especially when it is applied after
(12) mutation. Interaction between local searches applied
wherey < 1z means the obtained solution is after initial solution and after mutation is found since
dominated by the true-Pareto solutign The higher the best combination of local searches is changed
ratio indicates superiority of one solution set ovefrom problem to problem, e.g., PI*IP and API*IP for
another. problem sets 2.2 and 2.3 respectively. However, it is
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Table 1 Problem sets for MMAL sequencing.

Problem set 1: 5 Product types

MPS Solutions
1.1 (5,3,2,11) 332640
1.2 (4,3,2,21) 831600
1.3 (3,3,2,2,2) 1663200

Problem set 2: 5 Product types

MPS Solutions
21 (7,3,2,2,1) 10810800
22 (5,3,331) 50450400
2.3 (3,3,3,3,3) 168168 000

Problem set 3: 5 Product types

MPS Solutions
3.1 (8,7,2,2,1) 2.993 10°
3.2 (55532 1.17% 10"
3.3 (4,4,4,4,4) 3.055 10"

Problem set 4: 10 Product types

MPS Solutions
41 (7,51,1,11,1,11,1) 4.02310°
42 (553111,1,11,1) 2.81610'
4.3 (2,2,2,2,2,2,2,2,2,2) 2.3%610'°

Problem set 5: 15 Product types

MPS Solutions
5.1 (20,20,20,15,15,1,1,1,1,1,1,1,1,1,1)  3.%900®
5.2 (15,15,15,10,10,10,10,5,4,1,1,1,1,1,1) 8.830"
53 (7,7,7,7,7,7,7,7,7,7,7,6,6,6,6,6) 6.3340'%3

5.3
Table 2 Performance comparison of local searches used in
MNSGA Il and MSPEA 2 for the various problem sets (PS).

PS MNSGAII MSPEA 2
HPLS PPLS HPLS PPLS
1.1 API*2-Opt, PI*Or-Opt DB*3-Opt 2-Opt*DB
2-Opt*IP,
Or-Opt*API
1.2 DB*IP DB*DB IP*IP 2-Opt*Or-Opt
1.3 DB*IP Or-Opt*DB  Or-Opt*IP 3-Opt*DB
2.1 API*2-Opt DB*Or-Opt  Or-Opt*APl Or-Opt*DB
2.2 PIFIP DB*DB 3-Opt*IP Or-Opt*DB
2.3 PI*API 2-Opt*DB API*2-Opt  PI*DB
3.1 API*IP DB*DB API*IP PI*DB
3.2 PI*IP 3-Opt*DB API*3-Opt  API*DB
3.3 API*IP DB*Or-Opt  2-Opt*IP 3-Opt*DB
4.1 2-Opt*APl  3-Opt*DB 2-Opt*DB Or-Opt*DB
4.2 PI*IP API*Or-Opt  PI*IP 3-Opt*DB
4.3 Or-Opt*IP  3-Opt*DB IP*IP 3-Opt*DB
5.1 PI*PI 2-Opt *3-Opt  PI*PI Or-Opt* DB
5.2 PI*IP 2-Opt*2-Opt  Or-Opt*API  IP*3-Opt
53 PI*IP DB*Or-Opt  2-Opt*3-Opt  2-Opt*Or-Opt

HPLS = high performance local search
PPLS = poor performance local search
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Table 3 Performance comparison between MAs and origi-

nal MOEAs.

PS  MNSGAII MSPEA 2 NSGA Il SPEA 2

1.1 0.0007(0) 0.0017 (1)  0.0357 (0)  0.0241 (13)
0.0177 (2) 0.0200(5)  0.0322(18) 0.0222 (11)
95.65 100.00 5.56 73.68

1.2 0.0062 (1) 0.0140 (1)  0.0429 (0)  0.0244 (0)
0.0202 (2) 0.0269(3)  0.0232 (15) 0.0200 (5)
90.91 84.21 0.00 24.00

1.3 0.0034 (0) 0.0071(0)  0.0567 (1)  0.0169 (0)
0.0257 (1) 0.0263(2) 0.0175(3)  0.0179 (2)
82.61 85.00 0.00 21.43

2.1 0.0183(0) 0.0255(4)  0.0418 (0)  0.0315 (1)
0.0229 (6) 0.0237(8)  0.0287 (6)  0.0266 (18)
66.67 45.83 0.00 7.69

2.2 0.0097 (2) 0.0175(1)  0.0429(0)  0.0244 (0)
0.0199 (3) 0.0265(6)  0.0232 (15)  0.0200 (5)
60.00 50.00 0.00 3.45

2.3 0.0181(0) 0.0200 (0)  0.0997 (1)  0.0336 (0)
0.0256 (4) 0.0405 (26) 0.0343(9)  0.0222 (6)
57.14 53.85 0.00 33.33

3.1  0.0159 (0) 0.0233(1)  0.0628 (0)  0.0350 (2)
0.0200 (2) 0.0222(5)  0.0303 (30)  0.0246 (4)
25.00 9.09 0.00 3.85

3.2 0.0225(0) 0.0288(0)  0.1090 (0)  0.0441 (1)
0.0170 (24)  0.0212(13) 0.0352(22) 0.0253(7)
5.13 12.50 0.00 8.33

3.3 0.0220 (1) 0.0301(2) 0.2114(7)  0.0468 (0)
0.0253 (7) 0.0304 (17) 0.0497 (40)  0.0291 (9)
47.06 5.26 0.00 5.26

4.1 0.0505 (4) 0.0912(18) 0.1696 (1)  0.0738(7)
0.0365(26)  0.0292 (15) 0.0293(7)  0.0268 (14)
25.00 0.00 0.00 0.00

4.2 0.0299 (0) 0.0470 (0)  0.2068 (6)  0.0701 (0)
0.0254 (13)  0.0377(27) 0.0323(7)  0.0329 (13)
20.83 0.00 0.00 0.00

43 0.1158(4) 0.1933(11) 0.4680(22) 0.1823(5)
0.0481 (42)  0.0507 (19) 0.0828 (68) 0.0360 (9)
20.00 0.00 0.00 0.00

5.1 0.0584 (0) 0.1051 (1) 0.3817(31) 0.0845 (1)
0.0261 (6) 0.0251 (15) 0.0269(7)  0.0257 (6)
41.67 0.00 0.00 0.00

5.2 0.0299 (1) 0.1473(4)  0.4059 (31) 0.0835 (0)
0.0214 (9) 0.0327(8)  0.0295(8)  0.0230 (5)
47.50 0.00 0.00 0.00
0.0915 (1) 0.1025(1) 05113 (31) 0.2043 (2)
0.0292 (10)  0.0341(42) 0.0312(7)  0.0306 (34)
47.50 0.00 0.00 0.00

For each problem set, first row = convergence, second
row = spread, third row = ratio of solution (%)
* = mean; ** = variancex 10~*

noticeable that IP often shows high performance when
applied after mutation.
For large-sized problems (problem sets 4-5), PI
and IP still show outstanding performances, whereas
the local search that performs poorly is still the
double-bridge especially when it is applied after mu-
tation. Often, IP still shows better performance when
Interaction between
local searches applied after initial solution and after
mutation is still noticeable. Notice that PI*IP appears
very often as the best contestant.
Table 3illustrates the relative performances of
MNSGA Il, MSPEA 2, NSGA Il, and SPEA 2 as
gauged by the convergence, spread, and ratio of non-

it is applied after mutation.
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dominated solution metrics. A lower value of thea better solution and terminated when no better solu-
convergence metric is better, whereas higher values toén is found among neighbours randomly generated
spread and ratio of non-dominated solution metrics afeom the current solution. Moreover, local search
better. It is obvious that SPEA2 outperforms NSGA llis not applied to all the selected solutions but with
for convergence and ratio of non-dominated solutioprobability P s for decreasing the number of solutions
metrics. For spread metric, the value obtained frorto apply local search. We found that MNSGA 1l and
SPEA 2 and NSGA Il is not substantially different. MSPEA 2 outperform the original MOEAs. MNSGA
This means the non-dominated fronts of SPEA 2 anld shows better performances than MSPEA 2, whereas
NSGA Il are more or less evenly distributed. Simi-SPEA 2 outperforms NSGA Il. Local searches PI
larly, the spread metrics of MSPEA 2 and MNSGAand IP perform better than the others. Comparing
Il are quite similar and are not much different fromthe performances of some appropriate local search,
those of the non-MA algorithms. This means the pefin practice, decision makers should give high priority
formance of diversity mechanisms of MA algorithmsto the one that can give significant improvement on
and non-MA algorithms are not significantly different.performances and consumes less computation time.
When the appropriate local search is applied t&ortunately, in this study, both Pl and IP local searches
MAs, their performances are improved significantlyperform well with a short CPU time. However, if
For example, under the problem set 2.3, the ratio dhe situation is not the same as in this study, decision
non-dominated solutions increases from 0.00 (no nomakers have to trade off between time (cost) and
dominated solution found) for NSGA 1l to 57.14% quality of solutions which depend on which goal is
for MNSGA II. As a result, it is obvious that MAs much more important at that time.
(MSPEA 2 and MNSGA Il) with appropriate local
searches can help improve the performances of suEFERENCES
original MOEAs as SPEA 2 and NSGA I1. 1. Mondon Y (1983)Toyota Production Systermstitute
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