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ABSTRACT : This paper investigates the performance of local searches embedded in memetic algorithms for solving
multi-objective mixed-model assembly line sequencing problems that are common in a just-in-time production system.
Two inversely related objectives, namely, setup times and production rate variation, are simultaneously considered.
We use memetic algorithms which are a type of evolutionary algorithm using a local search algorithm to exercise
exploitation. Simulation results demonstrate that memetic algorithms employed in conjunction with an appropriate local
search outperform highly meta-heuristic algorithms such as Strength Pareto Evolutionary Algorithm 2 and Non-dominated
Sorting Genetic Algorithm II in terms of ability to find Pareto-optimal solutions.

KEYWORDS : local search algorithms

INTRODUCTION

Mass production of a single standardized product
model has helped manufacturers in many industries
such as automobiles, appliances, and toys to save costs
substantially for several decades. However, intensive
competition in the current market and ever-changing
customer requirements have meant that producing a
large volume of a single product on a single assembly
line is no longer cost effective. In order to offer
more varieties of products to attract their customers,
manufacturers need to redesign their production lines
to accommodate mixed-model production which are
known as mixed model assembly lines (MMALs).

MMAL is a production line where a diversified
small-lot product models with similar characteristics
(e.g., shape, size, colour, process requirements) are
assembled. If an appropriate mixing sequence of
product models is launched into the MMAL, the line
will be operated efficiently without keeping large
inventories. MMALs are widely employed in just-
in-time (JIT) production systems. Their flexibilities
provide more opportunities for a manufacturing firm
to be responsive to changes in the external environ-
ment. To use such MMALs in an efficient manner,
line balancing and model sequencing are necessary.
Line balancing is the problem of determining the cycle
time and number and sequence of workstations on the
line to accommodate the different models of products.
Model sequencing is a problem of determining a pro-

duction sequence of mixed models introduced to the
line to achieve given objectives. These two problems
are normally solved sequentially. In this paper, we
assume that the line has already been balanced and
only the sequencing problem is considered.

Determining the intermixed sequence of intro-
ducing models to the MMAL is vital to the efficient
use of a JIT production concept. Two basic goals
for the sequencing problem were originated by Mon-
den1: (1) smoothing the workload (total operation
times at each workstation on the assembly line) and
(2) maintaining a constant rate of usage for every part
consumed by the assembly line. Toyota Corporation
developed Goal Chasing I (GC-I) and II (GC-II) meth-
ods to solve these problems. GC-I selects an order
of the models to launch in the assembly line so that
the one-stage variation at each stage is minimized, and
GC-II simplifies GC-I and is solved under special as-
sumptions regarding product structure. Here a ‘stage’
represents a position in the model launch order of a
sequence.

Miltenburg2 developed non-linear integer pro-
gramming to minimize the total deviation of actual
production rates from the desired production rates.
Since the time complexity function of the proposed
program was exponential, two heuristics were pro-
posed to solve the problem. Miltenburg et al3 pro-
posed a dynamic programming algorithm to solve the
same problem. However, the algorithm seems to be
inapplicable to large-sized problems. Kubiak and
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Sethi4 developed an optimization algorithm to solve
GC-II of Monden1. They showed that the objective
function can be represented by using penalty functions
for the deviation from most even. Moreover, the
problem can be reduced to an assignment problem if
these penalty functions are non-negative and convex.
Korkmazel and Meral5 showed that the bi-criteria
problem of Monden1 with the sum-of-deviations type
objective can be formulated and solved as an assign-
ment problem.

Recently, the sequencing problem of MMALs has
been focused on multi-objective criteria. Bard et al6

proposed Tabu Search (TS) approach with weighted
sum objectives to minimize the overall line length
while keeping a constant rate of part usage. The Pareto
Stratum-Niche Cubicle Genetic Algorithm (PS-NC
GA) for finding the best sequence satisfying the three
objectives of minimizing total utility work, keeping a
constant rate of part usage, and minimizing total setup
cost was proposed by Hyun et al7. McMullen8 devel-
oped the TS algorithm for the problem which consid-
ered the two objectives of minimizing the part usage
rate as defined by Miltenburg2 and minimizing the
number of setups. McMullen and Frazier9 developed
a Simulated Annealing (SA) algorithm and compared
it with TS. The results showed that SA was superior
to TS. McMullen10 developed a Genetic Algorithm
(GA) and compared it with TS and SA. They found
that the performance of TS was no better than SA and
GA. Furthermore, McMullen11 solved the same prob-
lem by using GA and Kohonen’s self-organizing map
(SOM). Ant Colony Optimization (ACO) was also
proposed by McMullen12 and was compared against
SA, TS, GA, and SOM. The results showed that
ACO had the best performance. Mansouri13 proposed
Multi-Objective Genetic Algorithm (MOGA) to solve
the problem proposed by McMullen10. Tavakkoli-
Moghaddam and Rahim-Vahed14 proposed Memetic
algorithm (MA) with a weighted sum objective and
solved the problem proposed by Hyun et al7. MA
was reported to find promising results, especially for
large-sized problems. Rahim-Vahed et al15 proposed
a new multi-objective scatter search (MOSS) to solve
the problem proposed by Hyun et al7 and compared it
with PS-NC GA, non-dominated sorting genetic algo-
rithm II (NSGA II), and strength Pareto evolutionary
algorithm 2 (SPEA 2). The computational results
showed that the proposed MOSS outperformed all of
these GAs. However, it took much longer to find
solutions, especially on large-scale problems.

Most prior research has been directed towards
the development of efficient approximation algorithms
or heuristics to find the best mixed-model sequence.

Memetic algorithms (MAs) seem to be outstanding
candidates for this. However, the MAs that have
been developed so far have mostly focused on single-
objective or weighted sum objective optimization
problems16. Although the newer heuristics such as
MOSS performs well on multi-objectives, they take
longer to find Pareto optimal solutions than basic
heuristics such as SPEA 2 and NSGA II. As a
result, in this research we propose a new MA that
combines modified SPEA 2 and NSGA II (which
are good at finding Pareto optimal solutions quickly)
with some powerful local searches (which are good at
improving solution quality) and call them Memetic-
SPEA 2 (MSPEA 2) and Memetic-NSGA II (MNSGA
II).

The objective of this paper is to study the results
of MA for solving multi-objective sequencing on
MMAL in a JIT production system. The primary
research questions are the followings: (1) Will the
solution quality of MSPEA 2 and MNSGA II be better
than SPEA 2 and NSGA II? (2) If so, which one is
better? (3) What local search applied in MSPEA 2
and MNSGA II gives the better performance? The
problem sets to be tested in this research were those
proposed by McMullen10 with two objectives to be
simultaneously optimized: (1) minimizing setup times
and (2) minimizing variation of production rates.
Although most literature assumes that setup times
between different products are negligible, in reality
there are some applications such as in electronics
industry where setup times may represent a high
proportion of the cycle time and also be dependent
on the directed preceding model. Hence, to make
the model of the MMAL more realistic, sequence-
dependent setup times are considered in this research.

MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS

A multi-objective optimization problem (MOP) is
related to the problem where two or more objec-
tives have to be optimized concurrently. Generally,
such objectives are conflicting and are represented in
different measurement units, preventing simultaneous
optimizations of each one. MOP can be formulated,
without loss of generality, as follows:

Minimize
x∈Ω

f1(x), f2(x), . . . , fk(x), (1)

where solutionx is a vector of decision variable for
the considered problem,Ω is the feasible solution
space andfi(·) is the ith objective function (i = 1,
2, . . ., k). Two approaches can be employed to solve
MOP. The first approach is to combine each objective
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function into a single composite function using e.g.,
the weighted sum method or utility theory. Two
practical problems are often experienced with this
approach: (1) selection of the suitable weights can be
very difficult even for those who are familiar with the
problem and (2) small perturbations in the weights can
sometimes lead to totally different solutions17. The
second approach, using multi-objective evolutionary
algorithms (MOEAs), is to determine a set of alter-
native solutions for (1) rather than a single optimal
solution. These solutions are optimal in the wider
sense that no other solutions in the search space are
superior to them when all objectives are considered. A
decision vectorx is said to dominate a decision vector
y (also written asx � y) if:

fi(x) 6 fi(y) for all i ∈ {1, 2, . . . , k}, (2)

fi(x) < fi(y) for at least onei ∈ {1, 2, . . . , k}. (3)

All decision vectors that are not dominated by any
other decision vector are callednon-dominated solu-
tions or Pareto-optimal solutions. If non-dominated
solutions are abundant, located close to each other,
and distributed uniformly, the contour of these non-
dominated solutions will appear as a curve. This curve
is called thePareto front or non-dominated front.
Normally, the true-Pareto front that comprises all
global-optimal non-dominated solutions is unknown.
Hence, the best Pareto front found after an extensive
search for non-dominated solutions is completed is
used as a representative for the true-Pareto front and is
called theapproximated true Pareto front. The Pareto-
optimal solutions for a two-objective minimization
problem are illustrated inFig. 1. It is obvious that
an amount of sacrifice in one objective is always
incurred to achieve a certain amount of gain in the
other while moving from one Pareto-optimal solution
to another. Providing Pareto-optimal solutions to the
decision maker is more preferable to a single solution
since practically, when considering real-life problems,
a final decision is always based on a trade-off between
conflicting objective functions.

MOEAs have recently become popular and have
been applied to a wide rage of problems from social
to engineering problems18. In general, MOEAs are
ideally suited to MOP because they are capable of
searching multiple Pareto-optimal solutions in a single
run. The approximation of true Pareto-optimal set
involves two conflicting objectives: (1) the distance
to the true Pareto front is to be minimized, and
(2) the diversity of the evolved solutions is to be
maximized19. To achieve the first objective, a Pareto-
based fitness assignment is normally designed to guide

2
Minimize  f (x)
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Pareto-Optimal Solution = {   }
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im

Fig. 1 Pareto-optimal solutions.

the search towards the true Pareto-optimal front20,21.
In the view of the second objective, some MOEAs
successfully provide density estimation methods to
preserve the population diversity. Although several
versions of MOEAs have been developed18, SPEA
222 and NSGA II23 are among the most promising
ones in terms of convergence speed and good Pareto-
optimal solutions and even distribution of the Pareto
front.

SPEA 222 is an improved version of SPEA24 for
multi-objective optimization problems. The improve-
ments of SPEA 2 over SPEA include a fine-grained
fitness assignment scheme, a density estimation tech-
nique based on thek-nearest neighbour metric, and
an archive truncation method for preserving boundary
solutions. In SPEA 2, the size of the archive (a place
where non-dominated solutions found so far are kept)
is fixed. If the number of non-dominated individuals
exceeds the archive size, the truncation operator is
activated by evaluating thek-nearest neighbour metric
and the members that are in the most crowded areas
of the front are removed. In contrast, if the number
of non-dominated individuals is less than the archive
size, the remaining archive is filled with dominated
individuals that win the binary tournament selection.

NSGA II is similar to SPEA 2 since they both
employ an elitism algorithm, but they differ in the
elitism preservation operation. Elitism of NSGA II
does not use secondary external populations or archive
populations, whereas SPEA 2 uses archive external
list to store non-dominated solutions discovered so far
in the search. NSGA II sets the archive size equal
to the initial population size. The current archive is
determined by combining the current population and
the previous archive. Non-dominated sorting is then
used to classify the population into a number of Pareto
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fronts. The first front is the best in the combined
population. The archive is created by selecting fronts
based on their rankings. If the number of individuals
in the archive is smaller than the population size, the
next front will be selected and so on. If adding a
front would result in the number of individuals in
the archive exceeding the initial population size, a
truncation operator is applied to that front based on the
crowded tournament selection by which the winner of
two same rank solutions is the one that has the greater
crowding distance.

MAs are a type of evolutionary algorithm and
have been recognized as a powerful algorithmic
paradigm on complex search spaces for evolutionary
computing25. They apply a separate local search
algorithm to improve the fitness of individuals by
special hill-climbing. MAs are inspired by models
of adaptation in natural systems that combine evolu-
tionary adaptation of populations of individuals with
individual learning with a lifetime. Amemeis a
unit of information that reproduces itself when people
exchange ideas. Memes are adapted by the people
who transmit them before being passed on to the
next generation. MAs use evolutionary algorithms to
perform exploration and use local searches to exercise
exploitation. Local search in MAs is similar to simple
hill-climbing but with the differences that (a) the
neighbourhood of the current solutions is searched
systematically instead of randomly in the space of
all candidate solutions, and (b) the neighbourhood
search is repeated until a locally optimal solution is
found. An advantage of local search in MAs over
other heuristics is that local exploitation around an
individual can be performed much more effectively.
Hence good solutions in a small region of the search
space can be found quickly.

Tavakkoli-Moghaddam and Rahimi-Vahed14

were the first pioneers in the application of MAs
to multi-criteria sequencing problems for MMAL
in a JIT production system. Three objectives
weighted by their relative importance were optimized
simultaneously. MA with a hybrid local search
was proposed to generate suitable sequences. The
ability of MA to find promising results was reported
especially in large-sized problems. Although multi-
objective functions were considered in their paper,
they were combined to a single objective by the
weighted sum approach. This approach is highly
criticized in practice since even an experienced
decision maker will still be uncertain about how much
weight should be given to each objective. In addition,
the relative performances of individual local searches
were not examined. To answer these questions, this

paper employs a Pareto-based approach rather than
the weighted sum objective and also investigates
the contribution of several local searches applied in
several stages of different MAs.

MULTI-OBJECTIVE MIXED-MODEL
SEQUENCING PROBLEM

The MMAL in this study is configured as a straight
line using a conveyor system to transport parts at a
constant speed. Materials to produce similar products
are introduced onto the conveyor at a fixed cycle. The
line is properly partitioned intom workstations and
their workloads are somewhat evenly distributed as
a result of line balancing. Each workstation is of
closed type which means that a worker is restricted
to work within its boundaries and the walking time
is negligible. The task times are deterministic. The
concept of a minimum part set which is a vector
representing a product mix7 is used in this paper.

The two objective functions to be simultaneously
optimized are the setup times and production smooth-
ing. Sequence-dependent setups are formulated using

f1(x) = S =
DT∑
k=1

s[k−1],[k], (4)

whereS is the total setup time required for a produc-
tion sequence,s[k−1],[k] is the setup time required if
the products in positionk − 1 and k of the launch
order are different, andDT is the total demand (also
represents the number of positions in a sequence). A
sequence-dependent setup is needed if the product in
position k − 1 is different from the one in position
k. In this study, setup times are generated from a
discrete uniform distributionU [0, 100]. Since they
may affect the number of Pareto solutions obtained,
the coefficient of variation (cv) is used to measure
setup time variability andcv = var(s)/s̄2 = 1/3 for
obtaining more uniform distributed solutions.

Another crucial goal for efficient sequencing of
MMAL in a JIT production system is to keep a
constant consumption rate of each part on the line
(production smoothing)1 which can be formulated
using

f2(x) = U =
DT∑
k=1

n∑
i=1

(
xi,k − k

di

DT

)2

, (5)

whereU is the production rates variation of a pro-
duction sequence,xi,k is the total number of units of
producti produced over stage1 tok, k = 1, . . ., DT, n
is the number of unique products to be produced, and
di is the demand for producti. U gives the matching
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between the actual product intermixing and demand
for a production sequence as a metric to quantify this
goal2,26.

Feasible sequences for MMAL sequencing hav-
ing n products can be computed using

Feasible Sequences=

(
n∑

i=1

di

)
!

n∏
i=1

(di!)
. (6)

Mansouri13 mentioned that obtaining sequences with
acceptable levels of bothf1(x) andf2(x), minimum
setup times, and minimum usage rate variation is
NP-hard. Hence finding optimal solutions within a
reasonable amount of time becomes impractical for
large-sized problems.

PROPOSED MEMETIC ALGORITHM

Initialization

Initial population generation is the first step in the
proposed MA (Fig. 2). A set of N chromosomes
is generated randomly as an initial set of popula-
tions. The chromosome comprises a sequence of
genes (products) produced in one cycle of the min-
imum part set (MPS) demand. The position of a
gene in a sequence of the chromosome represents
the product in the sequence and demonstrates model
launching to MMAL. For example, if the MPS isd =
(dA, dB , dC) = (2, 3, 1), wheredX is the number of

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Flowchart of the proposed MA 

Initialization  
 Initial population generation is the first step of MA. A set of N chromosomes is generated randomly 
as an initial set of populations. The chromosome comprises a sequence of genes (products) produced in 
one cycle of the minimum part set (MPS) demand. The position of gene in a sequence of the chromosome 
represents the product in the sequence and demonstrates model launching to MMAL. For example, if the 
MPS is \[d = (d_A ,d_B ,d_C ) = (2,3,1)\], where \[d_X \] is the number of product type \[X\] to be 
produced in one production cycle, a feasible chromosome can be represented as ABABCB. Such a 
representation is good at preserving sequence information.   

Local search heuristics 
 Once a set of new chromosomes is created in the initial population, their performances may be 
improved by applying an appropriate local search. To design efficient MAs for continuous optimization, 
four questions related to local search executions need to be considered including: (1) on which solutions 
should local search be applied? (2) how often should local search be applied? (3) how long should local 
search  be run? and (4) where within the steps in the algorithm of MA should local search be taken? 
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Fig. 2 Flowchart of the proposed memetic algorithm.

products of typeX to be produced in one production
cycle, a feasible chromosome can be represented as
ABABCB. Such a representation is good at preserving
sequence information.

Local search heuristics

Once a set of new chromosomes is created in the initial
population, their performances may be improved by
applying an appropriate local search. To design effi-
cient MAs for continuous optimization, four questions
related to local search executions need to be con-
sidered: (1) On which solutions should local search
be applied? (2) How often should local search be
applied? (3) How long should local search be run?
(4) Where within the steps in the algorithm of the MA
should the local search be taken?

The first question is related to the parameterPLS.
The solutions for applying a local search to can be
chosen from all solutions, all solutions with probabil-
ity PLS, only first rank solutions, or first rank solutions
with probabilityPLS

27. Applying the local search to
all obtained solutions is time consuming. On the other
hand, it would be too restrictive to consider only first
rank solutions. Hence, we choose all solutions with
probabilityPLS. For example,PLS = 0.8 means 80%
of all solutions will be subjected to local search. In
addition, if the solutions on which the local search is
applied are randomly selected, the improved quality
of the new solutions may not be guaranteed. Hence, to
select an appropriate solution to apply the local search,
binary tournament selection is used. The second
question is related to the interval of generations of the
MA to which the local search is applied. In this paper,
the local search is applied to every generation of the
MA. The third question is related to the parameter
k which specifies the maximum number of examined
neighbours of the current solution. The execution of
local search is terminated when no better solution is
found amongk neighbours. If an improvement is
found while generating neighbours, two improvement
strategies can be used. For the first improvement
strategy, the current solution is replaced immediately
with the first neighbour that is better than the current
solution. Alternatively, the best improvement strategy
has to wait until all neighbours are generated and the
current solution is replaced with the best improved
solution28. It is clear that such early termination of
the first improvement strategy can help decrease the
computation time of a local search. The final question
is related to the steps in the algorithm of the MA where
the local search is applied which could be after the
initial solution, after the new solution, after crossover,
or after mutation. The number of steps to apply local
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search has a direct effect on the quality of solution
and computation time. Hence, if computation time
needs to be saved, local search should be taken at some
specific steps in the algorithm of MA rather than at
all steps. In this study, we perform the local search
after obtaining the initial solution and after mutation
since pilot experiments indicated that these two points
were enough to find significantly improved solutions,
pull the solutions out of the local optimum, and reduce
computational time.

Here several local searches (detailed below) are
evaluated to demonstrate their performance in terms
of improving the efficiency of such high performance
meta-heuristics as SPEA 2 and NSGA II. The lo-
cal searches we use are modified from Kumar and
Singh29 to solve travelling salesman problems by
repeatedly exchanging edges of the tour until no
improvement is attained.

Pairwise Interchange(PI): Select two arbitrary
products located at positionsi and j, i 6= j, and
interchange them to generate a neighbouring solution.
All possible swaps of pairs of products in a given
solution are feasible. E.g.:

Parent ABCABCCABA
Neighbour ABAABCCCBA

Adjacent Pairwise Interchange(API): It is a sub-
set of PI where two products located at adjacent
positionsi andi+1 (1 6 i 6 n−1) are interchanged
to generate a neighbouring solution. E.g.:

Parent AB| CA | BCCABA
Neighbour AB| AC | BCCABA

Insertion Procedure(IP): Remove a product from
one positioni and then insert it back to any positionj
wherei 6= j of a given sequence. E.g.:

Parent AB| C | ABCCABA
Neighbour ABABCCA| C | BA

2-opt: A neighbouring solution is obtained by
randomly selecting a part of the chromosome and then
reversing the order of all products located in this part.
E.g.:

Parent AB| CABCCA | BA
Neighbour AB| ACCBAC | BA

3-opt: A neighbouring solution is obtained by
randomly selecting two adjacent parts of the chromo-
some and then reversing the orders of all products
located in each part. E.g.:

Parent AB| CAB | CCA | BA
Neighbour AB| BAC | ACC | BA

Or-opt: It considers a smaller percentage of ex-
change that would be considered by a regular 3-opt
by selecting a set of three adjacent products, reversing
their order, and moving this reversed set to the end of
the chromosome. E.g.:

Parent AB| CAB | CCABA
Neighbour AB| CCABA | BAC

Double-bridge(DB): It cuts the chromosome into
4 segments by deleting four random genes and then
reinserts them in a different order to create a new
chromosome. E.g.:

Parent A| BC | ABC | CA | BA
Neighbour A| CA | ABC | BC | BA

We let LS1*LS2 denote the local search combina-
tion applied after initial solution and after mutation,
respectively. For example, IP*PI means to generate
an offspring, the parent has to be modified first after
initial solution by the IP operator and later after
mutation by the PI operator.

Criteria to accept a move

If any of the following 4 criteria are met30, then a
neighbour solutionS′ is accepted and hence replaces
the current solutionS. (1) If the setup time ofS′ is
less than that ofS i.e., accept(S, S′) = f1(S′) −
f1(S) < 0. (2) If the production rates variation ofS′

is less than that ofS i.e., accept(S, S′) = f2(S′) −
f2(S) < 0. (3) If S′ dominatesS accept(S, S′) =
((f1(S′) − f1(S) 6 0)(f2(S′) − f2(S) < 0)) or
((f1(S′) − f1(S) < 0) and(f2(S′) − f2(S) 6 0)).
(4) If both S and S′ are non-dominated solutions
andaccept(S, S′) = w1 · (f1(S′) − f1(S)) + (1 −
w1) · (f2(S′) − f2(S)) 6 0. The weightw1 that
determines the descent direction must be computed.
The aim is to improve the front, with emphasis on the
two extreme solutions, while preserving the spacing
between solutions. Therefore,w1 is defined for the
current solutionS by

w1 =

f1(S)− fmin
1

fmax
1 − fmin

1

f1(S)− fmin
1

fmax
1 − fmin

1

+
f2(S)− fmin

2

fmax
2 − fmin

2

, (7)

wherefmin
i andfmax

i denote the minimum and max-
imum values ofith objective function in the current
population, respectively.

Selection

Binary tournament selection is used to obtain suitable
parents to further perform local search and genetic
operators. For each chromosome, the rank on the
Pareto-front is computed (SPEA2 and MSPEA 2 use
strength of dominators, NSGA II and MNSGA II use
non-dominated sorting). Two candidate chromosomes
are chosen at random and the best individual of that
set with lower rank (higher fitness) is selected as
a parent. If two individuals have the same rank,
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the tournament prefers the most isolated one, using
a density mechanism (SPEA2 and MSPEA 2 use
k-nearest neighbour, NSGA II and MNSGA II use
crowding distance). An important issue needs men-
tioning on the selection scheme that combines rank
identification and density mechanism of MOEAs. The
rank identification mainly emphasizes an improving
solution quality (exploitation) which has no control
over diversity, whereas the density mechanism focuses
on the diversity of solutions (exploration). These two
mechanisms are combined to round off the weakness
of each other.

Crossover

The order crossover31 was adopted as the crossover
operator for all algorithms in this research. This
scheme tends to maintain the relative order of the
jobs. To illustrate how it works, consider the following
parents.

Parent 1: ABE| CAAD | EDBCB
Parent 2: CCD| EEBA | DBBAA

A fragment of the chromosome is randomly selected
as a portion of the sequences that will remain intact
and become part of the offspring in the crossover
process (i.e., CAAD and EEBA for parents 1 and
2, respectively). A new parent is then created by
moving all the characters appearing after the end of
the fragment of the original parent to the beginning of
the sequence as shown below.

Parent 1′: EDBCB | ABE | CAAD
Parent 2′: DBBAA | CCD | EEBA

From these new sequences, the characters in Parent 2′

that match the characters of the fragments of the other
original parent (Offspring 1: CAAD) are removed.

Offspring 1: XXX | CAAD | XXXXX
Parent 2′: XBBXX | XCD | EEBA

This mechanism applies to Offspring 2 and Parent 1′

as well. The sequence of the remaining characters in
Parent 2′ is BBCDEEBA. This sequence is used to
fill in the blank positions of the Offspring 1 to obtain
the Offspring 1. Using this technique, the following
offsprings are generated.

Offspring 1: BBC| CAAD | DEEBA
Offspring 2: DCB| EEBA | BCAAD

Mutation

Mutation is performed irregularly so that a solution
could have an occasional trait that is absent from its
parent. It plays an important role in preserving the
diversity of the population. Mutation for this study
is the swapping of two unique elements randomly
selected in the sequence of interest. E.g.:

Before: CBAABDEABECD
After: CBDABDEABECA

Diversity mechanism

The diversity mechanism is exercised when many
individuals of the current generation do not dominate
each other and only some of them have to be selected.
It calculates density information of each individual.
The one with lower density has a higher chance to
be selected since less non-dominated solutions are
clustering around (higher diversity). The density
estimation technique for SPEA 2 and MSPEA 2 is the
kth nearest neighbour method22, whereas NSGA II
and MNSGA II use the crowding distance method23.

Elitism strategy

Elitism is the mechanism of constantly updating and
keeping the best solutions found so far. We use a
straightforward implementation of elitism in all algo-
rithms. An archive with a fixed number of elitists is
established. The non-dominated individuals generated
by the main population are considered as a set of
tentative elitists. These individuals are added to the
original archive. The non-dominated solutions resid-
ing in the archive are updated and the dominated ones
are discarded. At each generation, a certain number
of elitists are also copied into the main population to
perform the local search (for MSPEA 2 and MNSGA
II) and genetic operations. Therefore, by this two-way
communication method, the elitist’s archive is updated
generation by generation and the valuable schemas of
an elitist can be inherited by their offspring. For this
reason, the elitism scheme has the potential to help the
entire population converge into a near-optimal Pareto
front.

Performance measurement

We use three metrics to assess the achievement of
two goals of a multi-objective optimization as rec-
ommended by Kumar and Singh29: (1) convergence
to the Pareto-optimal set, and (2) maintenance of
diversity in the solutions of Pareto-optimal set. The
convergence of the obtained Pareto-optimal solution
towards a true Pareto-set (A∗) is the difference be-
tween the obtained solution set and the true-Pareto set.
Mathematically, it is defined as

convergence(A) =

‖A∗‖∑
i=1

ti

‖A∗‖
(8)

where where‖A∗‖ is the number of elements in setA,
andti is the Euclidean distance between theith non-
dominated solution in the true-Pareto front (y) and the
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obtained solutions (x) and is given by

ti =
‖A∗‖
min
j=1

√√√√ 2∑
k=1

(
fk(x)− fk(y)
fmax

k − fmin
k

)2

, (9)

where fmax
k and fmin

k are maximum and minimum
values ofkth objective functions in the true-Pareto set
respectively. For this metric, a lower value indicates
superiority of the solution set. When all solutions
converge to the Pareto-optimal front, this metric is
zero indicating that the obtained solution set has all
solutions in the true Pareto set. The approximated
true Pareto-optimal front is the result of combining all
non-dominated solutions obtained from of all four al-
gorithms (SPEA 2, NSGA II, MSPEA 2, and MNSGA
II) and recalculating a combined front.

The second measure is a spread metric. This mea-
sure computes the distribution of the obtained Pareto-
solution by calculating a relative distance between
consecutive solutions using

spread(A) =
rf + rl +

‖A‖−1∑
i=1

|ri − r̄|

rf + rl + (‖A‖ − 1)r̄
(10)

ri =

√√√√ 2∑
k=1

(
fk(xi)− fk(xi+1)

fmax
k − fmin

k

)2

, (11)

whererf andrl are the Euclidean distances between
the extreme solutions and boundary solutions of the
obtained Pareto-optimal,‖A‖ is the number of ele-
ments in the obtained-Pareto solutions,ri is the Eu-
clidean distance between consecutive solutions in the
obtained-Pareto solutions fori = 1, 2, . . . , ‖A‖ − 1,
and r̄ is the average ofri. The value of this measure
is zero for a uniform distribution, but it can be more
than1 when a bad distribution is found.

The third measure is the ratio of non-dominated
solutions which indicates the coverage of one set over
another. LetAj be a solution set (j = 1, 2, . . ., J). For
comparing each solution set (A = A1 ∪A2 . . .∪AJ ),
the ratio of non-dominated measure of the solution set
AJ to theJ solution sets is the ratio of solutions in
AJ that are not dominated by any other solution inA,
which is defined as:

RNDS(Aj) =
‖Aj − {x ∈ Aj |∃ y ∈ A : y ≺ x}‖

‖Aj‖
,

(12)
where y ≺ x means the obtained solutionx is
dominated by the true-Pareto solutiony. The higher
ratio indicates superiority of one solution set over
another.

Experimental Design

In this paper, the relative performance of four MOEA,
i.e., SPEA 2, NSGA II, MSPEA 2, and MNSGA II,
are evaluated. Different local searches are added into
original algorithms of SPEA 2 and NSGA II. To find
an appropriate local search for our proposed MA, the
same genetic parameters are used in all four algo-
rithms including population size, elitism probability,
crossover probability, inversion probability, and muta-
tion probability which were set at 200, 1.0, 1.0, 0.5,
and 0.005, respectively. For MSPEA 2 and MNSGA
II, the archive size was set at 200. In the proposed
MA, the local search probability (PLS) is set to 0.8
and the number of neighbours to be examined (k) is 4.
These settings were obtained from the results of pilot
experiments. To evaluate the performance of SPEA 2,
NSGA II, MSPEA 2, and MNSGA II, three measures
were employed including convergence, spread, and
ratio of non-dominated solutions. Each algorithm was
applied to each tested problem 10 times with different
initial populations. The problem sets tested in this
paper were adopted from McMullen10 as shown in
Table 1. Problem sets 1–3 and 4–5 are considered as
small-sized and large-sized problems, respectively.

EXPERIMENTAL RESULTS

Table 2summarizes the performance of local searches
that were applied to strengthen the original MOEAs
(SPEA 2 and NSGA II). The element in the table
is the local search combination that shows high or
poor performances among those considered. ANOVA
was conducted to test significant difference at 0.05
significant level among different local search combi-
nations applied to MNSGA II and MSPEA 2. Those
showing outstanding performances appear inTable 2.
For example, under the problem set 2.2 of MNSGA II,
the combination of local searches PI*IP outperforms
the others. Its detailed performances in terms of con-
vergence, spread, and ratio of non-dominated solution
metrics can be seen inTable 3.

For small-sized problems (problem sets 1–3), the
local searches PI, IP, and API often appear as high
performance local searches. They show better per-
formance in all aspects than the others both when
applying after obtaining initial solution and after mu-
tation. Double-bridge always shows poor convergence
to true-Pareto set especially when it is applied after
mutation. Interaction between local searches applied
after initial solution and after mutation is found since
the best combination of local searches is changed
from problem to problem, e.g., PI*IP and API*IP for
problem sets 2.2 and 2.3 respectively. However, it is
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Table 1 Problem sets for MMAL sequencing.

Problem set 1: 5 Product types

MPS Solutions

1.1 (5,3,2,1,1) 332 640
1.2 (4,3,2,2,1) 831 600
1.3 (3,3,2,2,2) 1 663 200

Problem set 2: 5 Product types

MPS Solutions

2.1 (7,3,2,2,1) 10 810 800
2.2 (5,3,3,3,1) 50 450 400
2.3 (3,3,3,3,3) 168 168 000

Problem set 3: 5 Product types

MPS Solutions

3.1 (8,7,2,2,1) 2.993× 109

3.2 (5,5,5,3,2) 1.173× 1011

3.3 (4,4,4,4,4) 3.055× 1011

Problem set 4: 10 Product types

MPS Solutions

4.1 (7,5,1,1,1,1,1,1,1,1) 4.023× 107

4.2 (5,5,3,1,1,1,1,1,1,1) 2.816× 1013

4.3 (2,2,2,2,2,2,2,2,2,2) 2.376× 1015

Problem set 5: 15 Product types

MPS Solutions

5.1 (20,20,20,15,15,1,1,1,1,1,1,1,1,1,1) 3.790× 1078

5.2 (15,15,15,10,10,10,10,5,4,1,1,1,1,1,1) 8.357× 1091

5.3 (7,7,7,7,7,7,7,7,7,7,7,6,6,6,6,6) 6.334× 10103

Table 2 Performance comparison of local searches used in
MNSGA II and MSPEA 2 for the various problem sets (PS).

PS MNSGA II MSPEA 2

HPLS PPLS HPLS PPLS

1.1 API*2-Opt, PI*Or-Opt DB*3-Opt 2-Opt*DB
2-Opt*IP,
Or-Opt*API

1.2 DB*IP DB*DB IP*IP 2-Opt*Or-Opt
1.3 DB*IP Or-Opt*DB Or-Opt*IP 3-Opt*DB
2.1 API*2-Opt DB*Or-Opt Or-Opt*API Or-Opt*DB
2.2 PI*IP DB*DB 3-Opt*IP Or-Opt*DB
2.3 PI*API 2-Opt*DB API *2-Opt PI*DB
3.1 API*IP DB*DB API*IP PI*DB
3.2 PI*IP 3-Opt*DB API*3-Opt API*DB
3.3 API*IP DB*Or-Opt 2-Opt*IP 3-Opt*DB
4.1 2-Opt*API 3-Opt*DB 2-Opt*DB Or-Opt*DB
4.2 PI*IP API*Or-Opt PI*IP 3-Opt*DB
4.3 Or-Opt*IP 3-Opt*DB IP*IP 3-Opt*DB
5.1 PI*PI 2-Opt *3-Opt PI*PI Or-Opt* DB
5.2 PI*IP 2-Opt*2-Opt Or-Opt*API IP*3-Opt
5.3 PI*IP DB*Or-Opt 2-Opt*3-Opt 2-Opt*Or-Opt

HPLS = high performance local search
PPLS = poor performance local search

Table 3 Performance comparison between MAs and origi-
nal MOEAs.

PS MNSGA II MSPEA 2 NSGA II SPEA 2

1.1 0.0007* (0)** 0.0017 (1) 0.0357 (0) 0.0241 (13)
0.0177 (2) 0.0200 (5) 0.0322 (18) 0.0222 (11)
95.65 100.00 5.56 73.68

1.2 0.0062 (1) 0.0140 (1) 0.0429 (0) 0.0244 (0)
0.0202 (2) 0.0269 (3) 0.0232 (15) 0.0200 (5)
90.91 84.21 0.00 24.00

1.3 0.0034 (0) 0.0071 (0) 0.0567 (1) 0.0169 (0)
0.0257 (1) 0.0263 (2) 0.0175 (3) 0.0179 (2)
82.61 85.00 0.00 21.43

2.1 0.0183 (0) 0.0255 (4) 0.0418 (0) 0.0315 (1)
0.0229 (6) 0.0237 (8) 0.0287 (6) 0.0266 (18)
66.67 45.83 0.00 7.69

2.2 0.0097 (2) 0.0175 (1) 0.0429 (0) 0.0244 (0)
0.0199 (3) 0.0265 (6) 0.0232 (15) 0.0200 (5)
60.00 50.00 0.00 3.45

2.3 0.0181 (0) 0.0200 (0) 0.0997 (1) 0.0336 (0)
0.0256 (4) 0.0405 (26) 0.0343 (9) 0.0222 (6)
57.14 53.85 0.00 33.33

3.1 0.0159 (0) 0.0233 (1) 0.0628 (0) 0.0350 (2)
0.0200 (2) 0.0222 (5) 0.0303 (30) 0.0246 (4)
25.00 9.09 0.00 3.85

3.2 0.0225 (0) 0.0288 (0) 0.1090 (0) 0.0441 (1)
0.0170 (24) 0.0212 (13) 0.0352 (22) 0.0253 (7)
5.13 12.50 0.00 8.33

3.3 0.0220 (1) 0.0301 (2) 0.2114 (7) 0.0468 (0)
0.0253 (7) 0.0304 (17) 0.0497 (40) 0.0291 (9)
47.06 5.26 0.00 5.26

4.1 0.0505 (4) 0.0912 (18) 0.1696 (1) 0.0738 (7)
0.0365 (26) 0.0292 (15) 0.0293 (7) 0.0268 (14)
25.00 0.00 0.00 0.00

4.2 0.0299 (0) 0.0470 (0) 0.2068 (6) 0.0701 (0)
0.0254 (13) 0.0377 (27) 0.0323 (7) 0.0329 (13)
20.83 0.00 0.00 0.00

4.3 0.1158 (4) 0.1933 (11) 0.4680 (22) 0.1823 (5)
0.0481 (42) 0.0507 (19) 0.0828 (68) 0.0360 (9)
20.00 0.00 0.00 0.00

5.1 0.0584 (0) 0.1051 (1) 0.3817 (31) 0.0845 (1)
0.0261 (6) 0.0251 (15) 0.0269 (7) 0.0257 (6)
41.67 0.00 0.00 0.00

5.2 0.0299 (1) 0.1473 (4) 0.4059 (31) 0.0835 (0)
0.0214 (9) 0.0327 (8) 0.0295 (8) 0.0230 (5)
47.50 0.00 0.00 0.00

5.3 0.0915 (1) 0.1025 (1) 0.5113 (31) 0.2043 (2)
0.0292 (10) 0.0341 (42) 0.0312 (7) 0.0306 (34)
47.50 0.00 0.00 0.00

For each problem set, first row = convergence, second
row = spread, third row = ratio of solution (%)
* = mean; ** = variance× 10−4

noticeable that IP often shows high performance when
applied after mutation.

For large-sized problems (problem sets 4–5), PI
and IP still show outstanding performances, whereas
the local search that performs poorly is still the
double-bridge especially when it is applied after mu-
tation. Often, IP still shows better performance when
it is applied after mutation. Interaction between
local searches applied after initial solution and after
mutation is still noticeable. Notice that PI*IP appears
very often as the best contestant.

Table 3 illustrates the relative performances of
MNSGA II, MSPEA 2, NSGA II, and SPEA 2 as
gauged by the convergence, spread, and ratio of non-
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dominated solution metrics. A lower value of the
convergence metric is better, whereas higher values of
spread and ratio of non-dominated solution metrics are
better. It is obvious that SPEA2 outperforms NSGA II
for convergence and ratio of non-dominated solution
metrics. For spread metric, the value obtained from
SPEA 2 and NSGA II is not substantially different.
This means the non-dominated fronts of SPEA 2 and
NSGA II are more or less evenly distributed. Simi-
larly, the spread metrics of MSPEA 2 and MNSGA
II are quite similar and are not much different from
those of the non-MA algorithms. This means the per-
formance of diversity mechanisms of MA algorithms
and non-MA algorithms are not significantly different.

When the appropriate local search is applied to
MAs, their performances are improved significantly.
For example, under the problem set 2.3, the ratio of
non-dominated solutions increases from 0.00 (no non-
dominated solution found) for NSGA II to 57.14%
for MNSGA II. As a result, it is obvious that MAs
(MSPEA 2 and MNSGA II) with appropriate local
searches can help improve the performances of such
original MOEAs as SPEA 2 and NSGA II.

With small-sized problems (problem sets 1–3),
the performance differences between MNSGA II and
MSPEA 2 are not substantial. However, when the
problem sizes are large, MNSGA II outperforms MS-
PEA 2 for convergence and ratio of non-dominated
solution metrics. Such results contradict those of the
original MOEAs (SPEA 2 outperforms NSGA II). As
a result, it is clear that the appropriate local search
can enhance the performances of NSGA II more than
SPEA 2. In addition, the viable MA is MNSGA II.

CONCLUSION

In this paper, an attempt was made to study the perfor-
mance of MAs to search for Pareto-optimal solutions
of MMAL sequencing problems in a JIT environment
where the objectives of dependent setup times and
production rate variation are considered simultane-
ously. Since the objectives may conflict with each
other, a sequence that can optimize both objectives
at the same time may not exist. Furthermore, this
type of problem is NP-hard, and so obtaining desirable
solutions through MOEAs is a practical option. The
basic concept of our MAs is to combine original
MOEAs with appropriate local searches. Several local
searches are evaluated as to whether they can work
well with original MOEAs (MSPEA 2 and MNSGA
II). The first improvement is the strategy that we
employ to reduce the computation time of the local
search operation. Under this strategy, the neighbours
of the current solution are accepted right after finding

a better solution and terminated when no better solu-
tion is found amongk neighbours randomly generated
from the current solution. Moreover, local search
is not applied to all the selected solutions but with
probabilityPLS for decreasing the number of solutions
to apply local search. We found that MNSGA II and
MSPEA 2 outperform the original MOEAs. MNSGA
II shows better performances than MSPEA 2, whereas
SPEA 2 outperforms NSGA II. Local searches PI
and IP perform better than the others. Comparing
the performances of some appropriate local search,
in practice, decision makers should give high priority
to the one that can give significant improvement on
performances and consumes less computation time.
Fortunately, in this study, both PI and IP local searches
perform well with a short CPU time. However, if
the situation is not the same as in this study, decision
makers have to trade off between time (cost) and
quality of solutions which depend on which goal is
much more important at that time.
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