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ABSTRACT: The three-dimensional structure of the flavoprotein D-amino acid oxidase (DAO, EC 1.4.3.3) from carp
hepatopancreas (chDAO) and its active site cavity was modelled using ProModll. The structural features relevant for the
overall conformation and for the catalytic activity are described. Secondary structure topology consists-bélices

and 173-strands, which differs slightly from pig kidney, afthodotorula gracilisDAOs. chDAO showed a theoretical
‘head-to-head’ mode of dimerization. The presence of a short ‘lid’ in chDAO covering the active site, commonly found in
mammalian DAO but absent R. gracilisDAO, is interpreted as the origin of the differences in kinetic mechanism among

these enzymes. This lid has been proposed to control the access of the substrate to the active site and to regulate dissociation
of products. The conformational change in the large size active site loop determines the overall rate of turnover of DAOs.
The shorter active site loop found in chDAO might be responsible for the higher turnover rate in chDAO compared to that

of pkDAO.
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INTRODUCTION N _ NH
| (Substrate dehydrogenatlon) I

. . .R—C—COOH —C—
It was once generally believed that no D-amino acit™ ] o le(lzno ;:C%OH
of any kind exists in the body of mammals. However  H_ E. FADOX E. FADred

: . . D-Amino acid

due to the improvement in the detection method c H,0, Nonenz e
distinguishing enantiomeric amino acids, it has nov (Reoxidized by oxygen) hydm.yz.s
been established that D-amino acids do occur i ﬁ
various organisms including mammaf Moreover, R—C—COOH + NH,
certain D-amino acids play critical roles in regulating Ketoacid

neural activities in vivd. In contrast, the D-Amino Fig. 1 Scheme showing the principles underlying the

acid oxidase (DAO, EC 1.4.3.3), a flavin adeningyidative deamination of D-amino acid by D-amino acid

dinucleotide (FAD)-dependent and highly stereoselegyidase.

tive flavoenzyme, occurs widely in microorgani

and in animal tissu€s’. It is a marker enzyme of

microbodies in yeast and peroxisomes of higher osible for metabolizing exogenous and endogenous

ganisms®. Since Kreb$! discovered DAO in animal free D-amino acids in animal$!’. DAO catalyses

tissues, it has served as a subject for enzymologicalxidative deamination of a variety of D-amino acids

biophysical, and medical investigations. The primaryFig. 1). When a substrate binds to the active site

structure has been reported on the basis of the amionb the enzyme, it is dehydrogenated to an imino

acid and nucleotide sequences of the cORX'. acid by the enzyme-bound FAD in a reduced state.
In view of the growing interest in the physi- The imino acid then is released from the active site

ological functions of D-amino acids, DAO is alsoand hydrolysed nonenzymatically to a ketoacid and

considered important in regulating the levels of Dammonia. Reduced FAD is reoxidized by molecular

amino acids related to neural actii®y!®. Several oxygen, thereby closing the catalytic cycle.

recent investigations revealed that DAO was respon- Despite its long history of enzymological as well
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as physico-chemical studies, the detailed molecul@ompared with that of pkDAO (PDB entry code: 1kif)
events during the catalytic sequence were not totalgnd Rhodotorula gracilisDAO (RgDAO, PDB entry
clear due to the lack of the active-site structure atode:1c0i). The coordinates of the Kamiigusa struc-
atomic resolution. Very recently, these moleculatures were viewed, analysed, and edited by Swiss-
details have been solved by X-ray crystallography PdbViewer 3.7* and protein explorer software.

We have cloned a gene encoding DAO from the
hepatopancreas of car@yprinus carpid for the first RESULTS AND DISCUSSION
time in a non-mammalian species (GenBank acce®verall structure and topology

. 2 . , )
sion no. AY421707% and characterized its catalytic Structural parameters possibly involved in the cat-

and theoretical structural propertiesin this paper . : : .
. ' _alytic properties of chDAO were examined by tertiar
we report the structural properties of the carp DAQ ytic prop y y

. . Lo .Structure modelling. The three-dimensional struc-
active site and compare it with those of mammahar&lre obtained from SWISS-MODE is depicted

and yeast DAOs. We also identily the factors thaﬁq Fig. 2 Secondary structure elements have been

determine catalytic efficiency and the stability of the . )
dimeric forms of DAO. adopted and named according to the topology de

scribed by Mattevi et 8. The chDAO subunit

MATERIALS AND METHODS is schematically shown ifrig. 3. Each subunit is
clearly divided into two domains, a FAD binding

The deduced amino acid sequence of chDAO (Geny, ., -in wi ; : P
) th the dinucleotide-binding fold ob d
Bank accession no. AY421707) was used as the startc—)maln W € dinucleotide-binding fold observe

ing materials for model buildiny.

Comparative  protein  modelling  requires
at least one sequence of known experiment:
three-dimensional structure with a significant
similarity to the target protein. SWISS-MODEL .
(http://swissmodel.expasy.gr@ server for automated Active site
comparative modelling of three-dimensional proteitloop
structure, selected three modelling templates of pi
kidney DAO (pkDAO, PDB entry code: levi, 1an9,
and laa8) from Brookhaven Protein Data Banl
(PDB).

The sequence of chDAO was aligned with the se
lected templates by the structurally corrected multipl
sequence alignment using the best-scoring diagon:
obtained by sequence alignment algoritifns A
structural alignment was generated after removin
incompatible templates, i.e., omitting structures witt
high C, root mean square deviations.

The three-dimensional model of chDAO was
built with ProModIl (SWISS-MODEL), an automated
knowledge-based protein-modelling t8dl The ex-
perimentally determined structural coordinates ¢
DAOs (PDB entry code: levi, 1an9, and la&g)-2?
were used as references for model building. Th
backbone atom positions of these template structur
were averaged. The templates were thereby weight
by their sequence similarity to the chDAO sequence
while significantly deviating atom positions were ex-
cluded. Fig. 2 Ribbon representations of chDAO monomer structure

Deviation in the protein structure geometry wagonstructed with ProModIl. Arg283, Tyr224, and Tyr228
regularized by steepest descent and conjugate gradi@f thought to be key catalytic residues. The letters N and C
energy minimization using the GROMOS96 forceindicate the N and C terminus of the protein, respectively.
field?23. The active site loop contains residues 218-226 and C-

The three-dimensional structure of chDAO waderminal loop contains residues 297-302.

C-terminal
loop
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C-terminal

urewoq adejusiu|

urewog Bupuig-av4

Active site

Fig. 3 Secondary structure topology of DAO according tc loop

Mattevi et af>. Cylinders: a-helices; arrows:B-strands.
The secondary structure elements of the interface doma
and FAD-binding domain are labelled by the letters | and F
respectively, followed by the sequential number.

in several flavoenzymé8 and an interface domain. C-termina
The secondary structure topology consists ofotl jgop ~
helices and 1-strands. The FAD-binding domain
(denoted by F) is characterized byo6helices and
10 B-strands whereas the interface domain (denot
by I) comprises x-helices and $3-strands. Overall
the structure is analogous to that of pkDAG® and
RgDAO?".

When the head region of chDAO is compared tQ-pp2s
pkDAO there are 3 additionak-helices illa and §
allb between3ll and 312 and xl3a after«xl3) and

Eigg. 4 The DAO ‘head-to-head’ dimer viewed along the
two-fold axis.

chDAO shows a theoretical ‘head-to-head’
interaction of the subunits, resulting in an elongated
dimer of cylindrical shapeHRig. 4. The same mode

B-strands pF3a afterpF3 andpl7a andp17b after of dimerization has also been re :

. . ported in pkDAO by
BI7) (Fig. 3. However, RgDAQ contains one moe oy et afS.  For RgDAO, a different mode of
strand than chDAQO. Two main topological dn‘ference%1

imerization has been proposed in which a ‘head-to-
are also observed between chDAO and pkDAO as W&Ail interaction between the two monomers yields a

as RgDAO. One is the presence of shorter actlvgpherical dimer. The buried surface area in RgDAO

site loop (9 residues in chDAO versus 13 in kaAO}s much wider than that observed in the ‘head-to-

connectingp16 and 17 in chDAO (Fig. 3). This head’ di 9 o :
. . ; ead’ dimer of pkDAG?®. Another striking difference
active site loop connecl5 andf16 in pkDAO, but between mammalian and yeast DAOs is the presence

this type of loop is absent in RgDAO. Another is theof a long C-terminal loop in RgDAO, not present in

absence of a long C-terminal loop found in RgDAO . . .
(6 residues in chDAO and 4 in pkDAO versus 21 | other known DAO sequences. This loop is responsible

. . Yor making the ‘head-to-tail’ mode of dimerization
RgDAO). This C_:-termmal Ioop_conneqﬁdzs andﬁF6_ that gives the dimer wider interaction between two
in each DAO Fig. 3. The active site loop found in

KDAO d by Mattevi et & act id monomers. The ‘head-to-tail’ mode dimer thereby
P » Proposed by Matlevi et @, acls as a 10 provides a more stable state and a tighter binding of
controlling the access of substrate to the active site.

FAD than the ‘head-to-head’ mode dimer found in
mammalian and carp DAOs. The three-dimensional
structures of DAOs reveal that evolutionary pressure
Native DAOs from microbial and mammalian sourcedas led to the conformational change from microbial
form a dimer composed of identical subudité’. to mammalian DAOs. These DAOs share the same
Each monomer contains one non-covalently bounchemical process with different catalytic efficiency,

Mode of dimerization
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Fig. 5 The FAD-binding site of chDAO showing the typical
Bap motif for a dinucleotide-binding site. The-helix is
connected with th@-strands by the loops, Gly residues are (b)
indicated by the arrows and FAD in balls and sticks.

stability, and mode of dimerization. This is supported
by limited proteolysis studies; this loop can be easily
cleaved off yielding a monomeric RgDAO forth

Tyr224
FAD-binding motif
The N-terminal amino acid sequence of chDAO re- Arg283
veals a high degree of homology with those of
DAOs previously reportetf333,  The N-terminal
sequence includes the highly conserved region | of
DAOs®, which contain the GXGXXG motif required
for binding of FAD*2. chDAQ contains the conserved
consensus Rossman féfdin which a fap motif
is common for FAD and NAD(P)H-dependent oxi-
doreductaseS ** (Fig. 5. pkDAO and RgDAO also o "1 1015”0 Space-filling model of chDAO
show the sam@ 3 motif. The central part of this ~ . . . . .

- active site cavity. Catalytic residues are in black and
consensus motif is a sequence GXGXXG close to thﬁz drophobic residues in are
N-terminus. The importance of the glycine residue§’ " OP grey.
in the conserved GXGXXG is well understotdthe
first strictly conserved glycine allows for a tight turnin pkDAO?>3%°, These three residues were also found
of the main chain, which is important for positioningin a similar conformation in chDAO and active site
the second glycine. The second glycine, because of gavity is delimited by fou3-strandsB17, f17a, B17b,
missing side chain, permits close contact of the maiand 18 (Fig. 6). Interestingly, a larger loop (216-
chain to the pyrophosphate of FAD. The third glycine228) found in pkDAO and a shorter one (218-226)
allows the helix to closely pack with the-sheet. On in chDAO, which Mattevi et &° proposed to act as
the basis of structural and sequence homoldti®s a ‘lid’ controlling the access to the active site, is
chDAO can be classified as a member of a larggbsent in RgDAG"*. The conformational change
glutathione reductase (GR) family in which all thein the large active site loop determines the overall
family members adopt the Rossmann fld, and rate of turnover of DAOs. It makes the turnover of
therein into a subgroup GRvhich is reported to show mammalian DAOs comparatively slow, as the product
sequence similarity mainly within 30 residues in theelease becomes the rate-limiting stepThe active
N-terminal region. site loop contains an important residue Tyr224 which
is also conserved in chDAB, Tyr224 is proba-
bly involved in a broad range of substrates/products
In the active site cavity only three catalytic residuegixation and interacts with substrateamino group
named Tyr224, Tyr228, and Arg283, have been foundnd an active site water molec@fe(Fig. 6). The

Gly313
e

Fig. 6 (a) Active site cavity of chDAO containing key
catalytic residues Tyr224, Tyr228, and Arg283 is surrounded
by hydrophobic side chains of Ala49, Leu51, Leu215,

Active site cavity
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carboxylate group of the substrate makes a strong
hydrogen bond with the OH of Tyr228 and a salt
bridge with Arg283>3°. The substrate is surrounded 2.
by several hydrophobic side chain residues delimiting
the active site (that of Ala49, Leu51, Leu215, Ile230,
and Gly313) Fig. 6). In RgDAO, the Tyr238 side-
chain is placed at a similar position, but in a dif-
ferent segmerif. A corresponding loop that could
exert the same function is not present in yeast DAO.
However, Tyr238 appears to play a comparable role in
a rudimentary fashion. The side-chain of this amino
acid is assumed to take the open conformation in thes,
uncomplexed enzyme, and this might initiate an inter-
action with the substrate, leading it into the bottom
of the active site. The side chain of Tyr238 takes 6.
the open conformation in the free enzyme, initiates an
interaction with substrate, and leads it into the active
site. This scenario explains the higher turnover rate’-
of RgDAO®°. The shorter active site loop found in
chDAO might be responsible for the loW,, values
for D-alanine and the higher turnover rate of chDAO
compared to that of pkDAO. The appardiit, value
of chDAO for D-alanine (0.23 mM) was lower than ¢
that of mammalian and yeast DAGs*. chDAO has
a catalytic constant of about 190°'s compared to
10 s7! for pkDAO and 300 s' for RgDAQ3 4345,
indicating a much higher turnover rate of chDAO
compared to that of pkDAO.

Indeed, fully automated sequence alignment algo-

rithms often misplace insertions and deletions wheA2-

the overall sequence identity level falls below 40%.
The accuracy of a model is essentially limited by the

deviation of the template structure used relative d>

the experimental control structure. This limitation
is inherent to the methods used, since the model
results from an extrapolation. As a consequence, thg,
core G, atoms of a protein which share 35%-50%
sequence identity with their templates will generally
deviate by 1.0-1.52 from their counterparts hav-
ing experimentally elucidated structufés chDAO
showed a less than 10deviation of G, atoms com-
pared to their experimental structure because it shares
60% sequence identity with the modelling templates
(pkDAO).
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