
R ESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2009.35.095
ScienceAsia35 (2009): 95–105

Applications of Gröbner bases to the structural
description and realization of multidimensional
convolutional code
Chalie Charoenlarpnopparut

School of Information, Computer and Communication Technology, Sirindhorn International Institute of
Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand

e-mail: chalie@siit.tu.ac.th
Received 25 Feb 2008
Accepted 4 Mar 2009

ABSTRACT : Over the past few years, multidimensional convolutional code has become an emerging area of research in the
signal processing community. While one-dimensional convolutional code and its variants have been thoroughly understood,
the m-D counterpart still lacks unified notation and efficient encoding/decoding implementation. Here, the strong link
between the theory of Gröbner bases andm-D convolutional code is explored. Several applications of Gröbner bases to the
characterization ofm-D convolutional encoders are proposed. Furthermore, the more practical problem of minimal encoder
realization is discussed and an algebraic algorithm based on the use of Gröbner bases is provided. From the implementation
point of view, the syndrome decoder is currently the only means for decodingm-D convolutional code. A constructive
method for computing the syndrome decoding matrix using the theory of syzygy modules is proposed.

KEYWORDS : minimal encoder, syndrome decoding, syzygy, unimodular matrix

INTRODUCTION

Examples of 1-D information are voice signals, audio
signals, node voltages, and line currents. By sampling
these signals and quantizing the samples, one obtains
discrete sequences of binary representations. On
the other hand, multidimensional (m-D, m > 2)
information may be taken from 2-D images (e.g., MRI
film, photos), 3-D images (e.g., holograms, animation
of 2-D images, video), and animated 3-D images
(m = 4). To encode multidimensional information, it
is conventional to first transformm-D data arrays into
1-D sequences by means of scanning, and then apply
the 1-D encoding technique. This encoding procedure
is, in fact, unnatural and ignores the correlation in all
other directions except in the scanning direction.

To motivate the importance of multidimensional
convolutional code, note that 1-D convolutional code
is a generalization of a block code. A block code
is a 1-D convolutional code with the delay variable
D replaced by zero. Equivalently, 0-D convolutional
code is essentially a block code. As a result, a
multidimensional convolutional code can be viewed
as a generalization of all linear codes.

While 1-D convolutional code and its variants
have been thoroughly understood1–6, them-D coun-
terpart still lacks unified notation and efficient imple-

mentation. In this paper, the partial aim is to empha-
size the recent development7–9 of m-D convolutional
code theory as well as to point out the bottleneck and
open problems to the multidimensional community.
The main goal is to demonstrate the usefulness of the
theory of Gr̈obner bases in the field of convolutional
code which has not been done elsewhere.

The theory of Gr̈obner bases was first introduced
in 1965 by Bruno Buchberger in his doctoral dis-
sertation and the name Gröbner was used to honour
his thesis advisor. Since then the theory of Gröbner
bases has been applied to a wide range of engineering
problems10, e.g., in the field of computer algebra
for solving multivariate polynomial equations, integer
programming problems, in the systems and control
area for solving controller design problems, and in
the signal processing area for solvingm-D filter bank
design and ladder decomposition problems. Gröbner
basis theory has also been successfully applied to clas-
sical coding theory problems, such as the decoding of
cyclic codes11,12.

This article is organized as follows. First, the
basic definition and conventions inm-D system theory
are given and briefly explained. In the following
section, the properties ofm-D convolutional code
and its encoder are defined. Then, by using the
theory of Gr̈obner bases, the algorithms for testing

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.095
http://www.scienceasia.org/2009.html
mailto:chalie@siit.tu.ac.th
www.scienceasia.org

96 ScienceAsia35 (2009)

the existence and characterizing those properties are
presented. It will be evident that the application of
Gröbner bases and its variants will ultimately define
a strong link between them-D convolutional code
and system theory. Since the encoder matrix of
a 1-D convolutional code can be represented by a
rectangular univariate polynomial matrix, in them-
D case, the representation of encoder matrix becomes
the multivariate polynomial matrix, where the theory
of Gröbner bases for modules13 is readily applicable.
Each row of this generator matrix can be realized
(implemented in the form of hardware) separately and
thus it has row independence.

In the later part of the paper, the problem of min-
imal realization14–16 is considered. Partial solutions
by direct sequential search and algebraic reduction
using the Gr̈obner basis for modules are provided.
Various algorithms related to counting the number
of delay elements are given. In the last section, the
decoding process of multidimensional code by means
of syndrome decoding is discussed, and with the help
of Gröbner bases, the construction procedure of the
decoding matrix is explained.

Representation of multidimensional signals

In general, there are two approaches to representing
multidimensional signals. In the geometrical ap-
proach, anm-D signal is represented by am-D finite
matrix. For example, a3 × 3 pixel imageI with 16
grey-scale levels (4 bits) can be represented as

I =

 1100 0101 1001
1000 1001 0000
1011 0100 0010

 . (1)

In the algebraical approach, anm-D signal is rep-
resented by am-variate polynomial vector of size
1 × b where b is the number of symbols used for
representing each sample. For example, the 2-D
image in the previous example (b = 4,m = 2) may
be represented by

u =


1 + D2 + D2

1 + D1D2 + D2
2

1 + D1 + D1D
2
2

D2
2 + D2

1D
2
2

D1 + D2
1 + D1D2 + D2

2


T

. (2)

Note that in the above example, theith-row jth-
column element of the matrixI in (1) is associated
with the multiplying factorDj−1

1 Di−1
2 and thepth

element of the vectoru in (2) is taken from the
summation of allpth symbols, of all elements of the
matrix I multiplied by their associated monomials.

Notation and definition

Let F = Fq be the finite field withq elements and
R = F[D1, D2, . . . , Dm] be the ring ofm-variate
polynomials whose coefficients belong to the fieldF.
Let n > 1 be a positive integer. Then, the free
R-module (p.114 in Ref.13) Rn is the m-variate
polynomial row vector space of lengthn overF,

Rn =
{[

v1 v2 · · · vn

]
|vi ∈ R, i = 1, . . . , n

}
.

Definition 1 An m−dimensional convolutional code
of lengthn over F is anR-submoduleC ⊆ Rn. An
elementw ∈ C is called acodeword.

SinceR is Noetherian, everym-dimensional convolu-
tional code is finitely generated as anR-module, i.e.,
there exists a finite set of row vectorsg1, g2, . . . , gk ∈
Rn such thatC =

{
Σk

i=1uigi|ui ∈ R
}

.

CONVOLUTIONAL ENCODER

In this section, the representation of the convolutional
encoder is given in terms of a generator matrix which
is an m-D polynomial matrix. This representation
is suitable for encoder equivalence testing and the
determination of the convolutional decoder.

Generator matrix

As in the 1-D case, a generator matrix of anm-D con-
volutional code can be viewed as a transfer function
matrix of the encoder and it is often the centre of focus
in the encoder design and realization stage.

Definition 2 Let G be ank × n (k 6 n) m-variate
polynomial matrix constructed row-wise from a set of
row vectors{gi}ki=1:

G =


g1

g2

...
gk

 .

If an m-D convolutional codeC = rowspace(G),
then the polynomial matrixG ∈ Rk×n is called a
generator matrixof C.

The existence ofG is guaranteed since anym-D
convolutional code is a finitely generatedR-module.
Furthermore, ifG is of full row rank (i.e., rank(G)
= k), then the rate ofC is k

n . Note that it is desirable
for a generator matrix to have full row rank in order to
avoid having different input sequences mapped to the
same codeword, which may cause confusion for the
decoder regarding the actual transmitted message.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 97

Definition 3 If a codeC is free of ratek
n , thenC =

rowspace(G) for someG ∈ Rk×n andG is called an
encoderof the codeC.

It is well-known that anR-module can be generated
by many different sets of module generators. Anal-
ogously, a givenm-D convolutional codeC can be
generated by more than one encoder. This class of
generators that generate the same set of code is defined
as a class ofequivalentgenerators.

Definition 4 An m-variate polynomial matrixU ∈
Rk×k is unimodularif U is a unit inRk×k. In other
words,U is unimodular if and only if det(U) is a unit
in R (i.e., a nonzero element ofF).
Proposition 1 9 Let G, G1 ∈ Rn×k be of full row
rank. G andG1 are equivalent encoders if and only if
there exists a unimodular matrixU ∈ Rk×k such that
U ·G = G1.

FromProposition 1, given two generator matricesG1

andG2 ∈ Rn×k, the following algorithm can be used
to determine whether they are equivalent. Further-
more, it can be used to compute the unimodular matrix
U ∈ Rk×k such thatU ·G1 = G2.

Algorithm 1 Equivalence test
Step 1: Construct modulesM1 andM2 generated by
the rows of matricesG1 andG2 respectively.

Step 2: Compute the (completely) reduced Gröbner
bases ofM1 and M2 with respect to the same or-
dering by using Buchberger’s algorithm for modules
(see p.149 in Ref.13).

Step 3: If the Gröbner bases are identical, thenG1

andG2 are equivalent. Furthermore, the unimodular
matrix U can be constructed by retracing the steps
of the division algorithm (see example 3.6.1 in Ref.
13).

Note that an alternative approach is to apply the theory
of Gröbner bases to show that every row ofG1 is
a member of the module generated byG2 and vice-
versa.

Example 1 Verify that the encoders

G1 =
[

1 0 D1

D2 D2 1 + D1D2

]
,

G2 =
[

1 D1D2 0
0 D2 1

]
are equivalent.Solution: Let M1 andM2 be the mod-
ules generated by all rows ofG1 andG2 respectively,
i.e.,

M1 =
〈[

1 0 D1

]
,
[

D2 D2 1 + D1D2

]〉
M2 =

〈[
1 D1D2 0

]
,
[

0 D2 1
]〉

.

Computation of Gr̈obner basesG1,G2 of modules
M1 and M2 with respect to degree lexicographical
ordering yields

G1 = G2 =
{[

0 D2 1
]
,
[

1 0 D1

]}
.

Hence the encodersG1 andG2 are equivalent. Fur-
thermore, by retracing the steps in the computation of
Gröbner bases, one can show thatG2 = U ·G1, where

U =
[

1 + D1D2 D1

D2 1

]
, and det U = 1.

Definition 5 A convolutional generator matrixG of
sizek×n, k 6 n is calledbasicif it has a polynomial
right inverse.

From the viewpoint of matrix primeness description,
it is equivalent to saying thatG is basic ifG is zero
left prime (ZLP), i.e., allk×k minors ofG are devoid
of any common zero. The theory of Gröbner bases for
modules can be applied here to compute a right inverse
of a polynomial generator matrixG. A more general
algorithm and examples on the characterization of the
whole class of all possible right inverses can be found
in Ref. 17.

Algorithm 2 Computing the right inverse of a given
generator matrix
Step 1: Let M be a module generated by all columns
of the generator matrixG.

Step 2: Compute the Gr̈obner basis of the moduleM
with respect to any ordering by using Buchberger’s
algorithm for modules (see p.149 in Ref.13).

Step 3: Use the division algorithm (p.145 in Ref.13)
and the Gr̈obner basis of the module in Step 2
to determine if all column vectors of the identity
matrix Ik are members of the moduleM . If so, the
right inverseG−1 can be computed by retracing the
steps of the division algorithm. Otherwise, the right
inverse does not exist.

Example 2 Consider a binary encoder matrix,

G =
[

1 0 D1

D2 D1 1 + D1D2

]
.

By using the SINGULAR program18 for computing
the Gr̈obner basis, the syzygy module and implement-
ing the long division algorithm17 one can obtain the
parameterized right inverse in the form:

Q =

 1 + D1D2 D1

0 0
D2 1

 +

 D2
1

1
D1

 [
a b

]
wherea, b ∈ {0, 1}. SinceG has a polynomial right
inverse, i.e.,GQ = I2, the encoder matrixG is basic.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

98 ScienceAsia35 (2009)

Encoding procedure

In this section, a 2-D convolutional encoding process
is illustrated by an example. Let us consider a 2-D
convolutional code, of rate23 whose generator matrix
is given by

G =
[

1 D1 D1D2

0 D2 D1 + 1

]
and letI be the 2-D binary input taken from a3 × 3
pixel, 4-colour image

I =

 01 10 10
11 00 00
01 10 01


whose algebraic representation is given as

u=
[

D1+D2+D2
1+D1D

2
2 1+D2+D2

2+D2
1D

2
2

]
.

The outputv of an encoderG can be obtained by
vector matrix multiplication:

v = u ·G

=


D1+D2+D2

1+D1D
2
2(

D2+D2
1+D1D2+D2

2

+D3
1+D3

2+D2
1D

2
2+D2

1D
3
2

)
(

1+D1+D2+D1D2+D2
2+D2

1D2

+D2
1D

2
2+D3

1D2+D3
1D

2
2+D2

1D
3
2

)


T

.

The polynomial output vectory can be represented in
the geometrical form as

Iout =


001 101 110 010
111 011 001 001
011 100 011 001
010 000 011 000

 .

Observation 1: Ifk is the number of symbols (bits) of
each input pixel, and the generator matrix is of sizek×
n, the number of symbols (bits) of each encoded pixel
is n and is independent of the number of input pixels.
On the other hand, the size of the encoded image (2-D
array) depends directly on the row-wise maximal total
degree of the generator matrix.
Observation 2: In the case when the size of the input
is large (e.g.,256× 256 pixels), the total degree of the
input vector would grow significantly. However, this
is not a problem in the implementation stage since the
realization of the encoder is done by using an array
shift register, not polynomial multiplication.
Observation 3: One assumption used here is that the
number of rows of the generator matrixG must be
the same as the number of symbols (bits) representing
each pixel. When this is not the case, one needs to
regroup them-D data symbols to suit the encoder
matrix.

SYNDROME DECODER AND DUAL CODE

The decoding ofm-D convolutional code can be
performed in a straightforward manner by means
of syndrome decoding. However, unlike the soft-
decision scheme, e.g., Viterbi decoding in 1-D, this
hard-decision decoding method may not be optimal
in the maximum-likelihood sense nor the maximum a
priori sense5. In this section, the basic definition and
existence criteria of the syndrome decoder are given
along with the algorithm for computing the syndrome
decoder matrix.

Definition 6 Let C be anR-submodule of the freeR-
module,Rn. An image representationof C is a matrix
G ∈ Rl×n such thatC = rowspace(G). A kernel
representationof C is a matrixH ∈ Rn×p, where
p is some positive integer, such thatC = ker(H) =
{w ∈ Rn|w ·H = 0}.

If a sequencew ∈ C, thenw = u ·G for someu ∈ Rk,
and sow · H = u · G · H = 0, ∀ u. This implies
GH = 0.

Given anm-D convolutional codeC with the as-
sociated generator matrixG, the kernel representation
(i.e., the matrixH), if it exists, can be constructed by
computing the syzygies of the module generated by all
columns of the generator matrixG (p.161, Ref.13).

Example 3 Let G be the minor left prime matrix

G =
[

1 D1 D1D2

0 D2 D1 + 1

]
.

The kernel representation ofG is computed by using
the SINGULAR program18 command lines

>ring r=2,(x,y),(c,dp);
>module M=[1,0],[x,y],[xy,x+1];
>module H=syz(M);
>H;
H[1]=[x2+xy2+x,x+1,y]

to obtainH = [D1 + D2
1 + D1D

2
2 D1 + 1 D2]T.

By the properties of the matrixH and syzygy, all
codewords in the setC = rowspace(G) satisfy the
condition

w ·H = 0, ∀ w ∈ C.

This condition provides aparity check, which can be
applied to a received sequence for testing whether
it is a codeword. The matrixH is often called the
parity check matrixor thesyndrome decoderof C and
the corresponding codes are calledfinite convolutional
code. Note that not every convolutional code admits

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 99

a syndrome decoder (i.e., the parity check matrices of
somem-D convolutional codes do not exist)19,20. The
following proposition characterizes the existence of a
syndrome decoder.

Proposition 2 8,9 A free modular codeC admits a
syndrome decoder if and only ifC has a minor prime
generator matrixG.

(An m-variate polynomial matrixG is minor prime21,
if all maximum-size minors (major determinants) are
devoid of common factor other than units.) For a
Laurent polynomial ring, the existence condition8 is
relaxed to the condition that the generator matrix must
be left factor prime.

Example 4 Consider a 3-D convolutional codeC with
a corresponding generator matrix:

G =
[

D1 0 D2

0 D1 D3

]
.

The major determinants ofG contain the common
factor D1. As a result,G is not minor prime. In
p.16 of Ref. 9, it has been shown thatG is in fact
left factor prime. By using the SINGULAR program,
H = [D2 D3 D1]T is the syzygy of the module
generated by all columns ofG. However,H is not
a syndrome decoder ofC sincev = [D3 D2 0]
satisfiesv · H = 0, but it does not belong to the set
C (i.e., there does not exist a row vectoru ∈ R2 that
producesu ·G = [D3 D2 0]).

Definition 7 Theorthogonal moduleof M is denoted
by M⊥ and is given by

M⊥ 4
=

{
w ∈ Rn|wvt = 0, ∀v ∈M

}
.

For anm-D convolutional codeC, theorthogonal code
of C is denoted by the moduleC⊥. In the case where
the C admits a syndrome decoder (i.e., has a kernel
representation), the orthogonal codeC⊥ is called the
dual codeof C.

REALIZATION OF CONVOLUTIONAL
ENCODER

The implementation of multidimensional convolu-
tional code requires the use of various dimensional
delays (shift registers),D1, D2, . . . where an example
of the canonical form realization is shown inFig. 1. In
this section, the focus is on the minimal realization of
a 2-D convolutional code. The higher dimension cases
can be tackled in a similar fashion.

To realize the encoding process efficiently in the
form of hardware, it is necessary to minimize the

D1 D1

D2

current position of input
u

D2

D2

D2

D2

D2

...

.........

Fig. 1 Example of a 2-D shift register array whereui is
the input andD1, D2 are the horizontal and vertical delays,
respectively.

number of delays needed. In the 1-D case, one
objective is to single out the generator matrix, from
all equivalent ones, that has the minimum overall
constraint length. However, a meaningful definition
of constraint length, in a higher(m > 2) dimension
case, has not been given anywhere. A good candidate
for this parameter should directly indicate the total
number of delays in the implementation of a desired
encoder. Given a generator matrixG ∈ Rk×n,
we wish to identify among all equivalent generator
matrices, the one whose realization uses the minimum
number of delay elements. A practical procedure
towards the solution of this problem is only possible
by direct searches via a computer program.

One approach to solve the problem stated above
is to perform a search over the space of all possible
equivalent generator matrices. Since an equivalent
generator matrix can be generated by multiplying
a unimodular matrix by the given generator matrix,
there are an infinite number of elements to search
from. As a result, a finite scope for searching must
be set in such a way that the minimal basic encoder
should be found most of the time. Here we limit
the searching space by limiting the total degree of
each element in the unimodular matrix to be less than
a certain integer chosen according to the available
search time.

Number of delay elements

Since there is only one kind of delay in one-
dimensional convolutional encoder realization, it is
straightforward to count the total delays22. However,

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

100 ScienceAsia35 (2009)

D
1
 D
1

D
2
 D
2

D
2
 D
2

+

current position of input

u

v
1

v
3

v
2

Fig. 2 Direct realization of the encoder matrixG1.

in 2-D, the counting procedure is nontrivial as illus-
trated by the following example.

Example 5 Let G1 = [1 + D2
2 D1D

2
2 D2

1]. It is not
so obvious that twoD1’s and fourD2’s may be used.
The realization diagram inFig. 2clearly indicates how
many delays are needed.

Given a realization diagram, the total number of
the delays required can be easily counted. However,
one of the goals here is to find an algorithm for
quickly counting the number of delays needed without
drawing the diagram.

For the monomial case, the total number of delays
is counted from its total degree.

Example 6 Given a generating matrixG2 = [D2
1D

2
2],

to realizeG2, two D1’s and twoD2’s are required. In
other words, the total number of delays required are
the same as the total degree of the monomial.

Counting delays for a polynomial row vectorG

For illustrative purposes, letG3 be a (1× 2) generator
matrix G3 = [D2

1D2 + 1 D1D
2
2]. The associated

realization diagram is given inFig. 3. FromFig. 3,
it is clear that to realizeG3, two D1 and threeD2 are
required.

The following algorithm can be used to find the
total number of delays for a polynomial row vectorG
without drawing a realization diagram.

Algorithm 3 Counting delays for a polynomial row
vectorG
Step 1: Let G(1, j) be the polynomial in thejth
column. To find out the number ofD1, compare

D
1
 D
1

D
2

D
2

+

current position of input

u

v
1

v
2

D
2

Fig. 3 Direct realization of the encoder matrixG3.

all polynomials inG and findD1 with the highest
degree (treatingD2 as constant). The number of
D1 required is equal to the maximum degree of all
polynomials:delD1(G) = maxj{degD1

G(1, j)}.
Step 2: The number of delays,D2, is the sum overr1

of all the maximum degreesr2 of monomials in the
form Dr1

1 Dr2
2 of all G(1, j), r1 = 0, 1, 2,

Step 3: The total number of delays needed can be
found by simply summing all the delays:del(G) =
delD1(G) + delD2(G).

Example 7 Let

G = [D2 D1D2 1 + D2
1D2]. (3)

Step 1: Clearly,degD1
G(1, 1) = 0,degD1

G(1, 2) =
1, anddegD1

G(1, 3) = 2. Therefore,delD1(G) =
maxj{degD1

G(1, j)} = 2.
Step 2: For r1 = 0, G(1, 1) = D0

1D
1
2, so oneD2 is

needed. Forr1 = 1, G(2, 1) = D1
1D

1
2, so another

D2 is needed. Finally,r1 = 2, G(1, 2) = 1 + D2
1D2,

so anotherD2 is needed. Therefore,delD2(G) =
1 + 1 + 1 = 3 anddel(G) = 5.

Note that the total number of delays could be different
if the roles ofD1 and D2 were interchanged in the
algorithm. For example, in this example only three
delays (oneD2 and two D1’s) are required. Also
note that the presence of ‘1’ in the elements ofG is
completely irrelevant to the total number of delays.

Counting delays for a polynomial matrix

To facilitate the understanding, the algorithm will be
presented in parallel with an example.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 101

Example 8 Let

G =
[

1 + D1 D1D2 D2
1

D2
2 1 1 + D2

]
. (4)

Algorithm 4 Counting the total number of delays for
a given generator matrixG
Step 1: Count one row at a time using Step 1 of
Algorithm 3. The total number of delaysD1 needed
is

degD1
G =

∑
i

max
j
{degD1

G(i, j)}.

In this example,G(1, 3) = D2
1 and there is noD1 in

the second row. Hence only twoD1’s are needed.
Step 2: Count the number ofD2’s row-wise by using
Step 2 inAlgorithm 3.
In the example, in the first row the number ofD2

delays required is only one, due to the termD1D2.
In the second row, the number ofD2 delays required
is two, due to the monomialsD2

2. Hence three delays
D2 are required for implementingG.

Step 3: Compute the total number of delays required
by adding results from the two previous steps.
For the generator matrixG in (4), five (twoD1’s and
threeD2’s) delays are needed.

Alternatively, the above algorithm may be recon-
sidered by using the notation of support which can be
used directly in a computer program.

Support of a generator matrix

A support S of a bivariate polynomial row-vector
G = [g1(D1, D2) g2(D1, D2) · · · gk(D1, D2)] is
defined as ap × q binary matrixS whose element
S(r, t) is 1 if there existsDr−1

1 Dt−1
2 as a monomial

in at least one of the polynomialsgj , j = 1, 2, . . . , k
and 0 otherwise. For example, (3) defines a map onto
a support matrix inFig. 4.

D
1

D
2

D
2

0

D
2

1

D
1

0
 D
1

2
D
1

1

D
2
 D
1
D
2

1

D
1

2
D
2

D
1
 D
1

2

1
 0
0

1
1
1

Fig. 4 Mapping of a generator encoding matrix onto a
support matrix using (3).

For the purpose of mathematical representation
and computation, the support will be represented in a
matrix form. Each row ofG can be represented by one
support matrix. Theith row andjth column of support

matrix corresponds to the presence of the monomial
Di

1D
j
2, i, j = 0, 1, 2, . . . in the row of generator matrix

G. To avoid confusion, elements ofG are generally
polynomials, each of which consists of the sum of one
or more monomials.

The rest of the matrix will be filled with0’s. For
example, the support of (3) is

S =
[

1 0 0
1 1 1

]
.

The next algorithm summarizes the method to gener-
ate the support of a generator matrix.

Algorithm 5 Construction of a support
Again, the generator matrix in (3) will be used to

illustrate the method.
Step 1: For each monomial in theith rowG, put a ‘1’
in the support matrix,Si, in the associated position.
For example,G(1, 3) = 1 + D2

1D2. Therefore,
S(0, 0) = 1 because of the monomial1 = D0

1D
0
2

in G(1, 3) and S(1, 0) = 1 because of theD2 in
G(1, 1).

Step 2: If the same monomial is encountered more
than once, then the later found monomials are ig-
nored. The presence of the second monomial does
not cancel any entries in the support.

Step 3: Finally, the size of the matrix can be checked
for verification. The number of columns is equal to
the maxi,j{degD1

G(i, j)} + 1 and the number of
rows ismaxi,j{degD2

G(i, j)}+ 1.

Note that for a given generator matrixG, there are as
many support matricesS as the number of rows inG.

Example 9 Let

G=
[

1 + D1D2 + D3
1 D1 + D2

2

D3
1 + D2 + D1D

3
2 1 + D2

1 + D2
1D

2
2

]
.

The supports ofG are

S1 =

 1 1 0 1
0 1 0 0
1 0 0 0

 , S2 =


1 0 1 1
1 0 0 0
0 0 1 0
0 1 0 0

 .

Algorithm 6 Counting delays for a generator matrix
using support
Step 1: Represent each rowgi of then × k generator
matrixG by the corresponding support matrixSi for
i = 1 to n.

Step 2: If the size of the support matrixSi is pi + 1×
qi + 1, then the number ofD1 delays for realizinggi

is computed bydelD1(gi) = qi.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

102 ScienceAsia35 (2009)

Step 3: Remove the first row ofSi, thereby making it
a (p− 1)× q matrix.

Step 4: This is the important step. Consider one
column ofSi at a time and identify the row number
(the top row is counted as row number 1) of the last
row (of that column) that contains ‘1’. Add these
numbers up for all columns. The result is the number
delD2(gi) of D2 delays required.

Step 5: Compute the total numberN of delays forG
by adding up the number ofD1 delays andD2 delays
required for each row ofG. That is,

N =
n∑

i=1

delD1(gi) + delD2(gi).

Minimal Encoder

In this subsection, let first define the term minimal
and propose two approaches to produce a minimal
encoder. It is well-known that a givenm-D convolu-
tional code can be generated by many equivalent en-
coders, each of which is characterized by a generator
matrix. The class of equivalent generator matrices can
be parameterized by unimodular multiplication:

S(G0) =
{
G ∈ Rk×n

∣∣ G = UG0

}
whereU is a unimodular matrix andG0 ∈ Rk×n.
Here, a unimodular matrix is defined as a square
multivariate polynomial matrix whose determinant is
a unit element in the coefficient fieldF, i.e., one.

U is unimodular←→ |U | = det(U) = 1. (5)

Examples of unimodular matrices are:

U1 =
[

D1D2 + 1 D1

D2 1

]
,

U2 =
[

D1 1
1 + D2

1 + D1D2 D1 + D2

]
.

Given a generator matrix, to find all possible equiva-
lent generator matrices, as many unimodular matrices
as possible must first be found. That is, givenG0 ∈
Rk×n, to find a G which is equivalent toG0, one
needs to constructU ∈ Rk×k. One way to find as
manyU as possible for a particularRk×k is to con-
sider asequentialsearch through as many polynomial
matrices as possible. Unimodular matrices may be
generated by systematically arranging possible com-
binations of polynomial entries of the matrix.

First, the given generator matrix is entered as an
input. Then its number of required delays is counted
and stored. Next, multiply the given generator matrix

by a stored unimodular matrix to produce a different
equivalent generator matrixG. Then the number of
delays for this new equivalent matrix is computed
and compared with the original number. TheG that
produces a smaller number of delays will be stored.
The process is repeated with new equivalent matrices
until all unimodular matrices in storage are used.
Finally, the stored generator matrixG is the one that
required the smallest number of delays found. Clearly,
the search result depends on the searching space.
Since theoretically the searching space is infinitely
countable, the minimal encoder is not guaranteed to be
found. However, from the practical point of view, one
can start the search by generating a large number of
unimodular matrices. From our experimental testing,
we found that this approach does provide a quick and
suboptimal result most of the time. Next, the detailed
implementation is explained.

Consider the two-dimensional case. Let

U =
[

P1 P2

P3 P4

]
(6)

wherePi, i = 1, 2, 3, 4 is a 2-D polynomial. Now, the
goal is to find a set of{Pi}4i=1 such thatU becomes
a unimodular matrix. For instance,P1 may be in the
form

P1 = a1 + a2D1 + a3D
2
1 + a4D2 + a5D1D2

+ a6D
2
1D2 + a7D

2
2 + a8D1D

2
2 + a9D

2
1D

2
2

where ai ∈ {0, 1}. The concept of support is
particularly helpful to visualize this polynomialP1.
P1 can be written in the form of a support as

SP1 =

 a1 a2 a3

a4 a5 a6

a7 a8 a9

 . (7)

A similar treatment can be applied for otherPk, k =
2, 3, 4 with ai replaced bybi, ci, anddi, respectively.

An example is given to illustrate how to generate
a minimal delay encoding matrix. The example was
worked out with the help of computer software to
generate all possible2 × 2 unimodular matrices with
maximum degree of each element less than or equal to
(2, 2).

Example 10 Suppose

G=
[

D1D2 D2
2 1 + D2

1

D1(1+D2
2) D2+D3

2 1+D1+D2
1D2

]
. (8)

This requires fourD1’s and nineD2’s. Let the input
of the function be the support of each row of (8). After

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 103

the search, the minimal delay generator matrix of (8)
will be

Gmin =
[

D1 D2 1 + D1

D1D2 D2
2 D2

1

]
(9)

which requires threeD1’s and only fourD2’s, as-
suming that the standard realization structure set up
earlier is used, and the unimodular matrixUmin used
to produceGmin is

Umin =
[

D2 1
1 0

]
.

In this sequential search approach, the performance
of the search is not optimal and largely depends on
the size of the searching space (i.e., the number of
unimodular matrices used). Furthermore, for a large
generator matrix, the sequential approach will suffer
from the higher complexity. The general problem to
find the optimal solution is still open. The proposed
standard realization structure is a fixed structure and
the minimum number of delays is not ensured (as
detailed in next section).

Finding minimal delay encoder by algebraic
approach

In this section, a more general approach to identify
the minimal encoder is proposed. Given a generator
matrix G, one can observe that the number of delays
is directly related to the maximum total degree of each
multivariate polynomial row vector inG. This fact
is especially true when a strictly rectangular array of
delaysD1, D2 is used. That is, the number of delays
can be identified by the sum of the row-maximum
degree product.

In the 1-D case, there exists a well-known alge-
braic algorithm for computing the minimal convolu-
tional encoder3,22. The 1-D algorithm is based on
the Smith-form description. The direct generalization
of this algebraic approach is not possible as there is
no generalization of the Smith-form description inm-
D. Furthermore, the number of delay elements in the
realization ofm-D convolutional encoder cannot be
computed by adding the row-wise constraint length
(constraint length is undefined inm-D convolutional
code). The attempt here is to determine an alter-
native m-D approach similar to the algorithm given
in3,5,6,22,23.

By inspection, it can be inferred that the total
number of delay elements required for realizing a
given convolutional code depends greatly on the max-
imum total degree of each row vector of its gen-
erator matrixG. Using this fact, one can remove

the unnecessary delays during the implementation by
first finding a lower row-wise maximum total degree
equivalent generator matrixG′ = UG, whereU is
the unimodular matrix, and use it for the realization
instead.

There are two approaches proposed for finding
the minimal delay encoder. The first is based on
the sequential search over the finitely many set of
sample space, whose members are the equivalent
generator matrices obtained by multiplying the given
generator matrix by unimodular matrices. The result
of this approach directly depends on the number of
unimodular matrices used for forming the searching
space. The second approach here is based on the
usage of Gr̈obner basis to perform an algebraic row-
operation of the generator matrix to reduce row-wise
the maximum total degree. This approach has a
significant advantage over the previous method, in that
it provides a fast and systematic way to the suboptimal
solution. The termsuboptimalis used here due to the
fact that there may exist a generator matrix with larger
total degree but requiring a smaller number of delay
elements than the one with minimum total degree.
When the encoder is realized in the direct form15, the
total degree is directly (but not proportionally) related
to the number of delays. The algebraic approach to
find the minimal realization where the optimal solu-
tion is guaranteed may not exist due to the nonlinear
relationship between the well-ordering degree and the
total number of delays.

Consider a generator matrixG, whose rows are
g1, g2, . . . , gk ∈ Rn. Multiplying G by a unimodular
matrix U1 to get another equivalent generator matrix
G1 = U1G is essentially performing a row operation
on G. The multiplying factorU1 is constructed by
using a Gr̈obner basis with respect to a proper choice
of degree ordering such that the maximum total degree
of a selected row inG′ is less than that ofG.

Algorithm 7 Minimization of the row-wise maxi-
mum degree (w.r.t. degree reverse lexicographical or-
dering)

Given ank × n generator matrixG whose rows
are denoted byg1, g2, . . . , gk ∈ Rn,

Step 0: Initialize i = 1, wherei is the row number to
be reduced.

Step 1: Define a moduleM generated by all row
vectors except theith row.

Step 2: Compute the Gr̈obner basisS of the module
M w.r.t. degree lexicographical ordering andterm
over position(TOP) ordering (see p.142 of Ref.13).

Step 3: Reduce theith row w.r.t. the Gr̈obner basisS.
The leading monomial of the reducedith row will

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

104 ScienceAsia35 (2009)

have a smaller or equal degree.
Step 4: Form the updated generator matrixG′ by
replacing theith row of G by the reducedith row ob-
tained in Step 3. This generator matrix is equivalent
to the given generator matrix.

Step 5: If i < k, let i = i + 1 and go to Step 1.
Otherwise, the algorithm is completed.

The following points should be noted. First, in
Step 2 of Algorithm 7, the degree lexicographical
ordering is used because the aim here is to reduce the
maximum total degree. In the degree lexicographi-
cal ordering, the monomial with the maximum total
degree is the leading monomial and will be reduced
first in the reduction process. Second, the algorithm
can be reapplied to the resulting generator matrix
to further reduce the maximum degree (w.r.t. degree
lexicographical and TOP orderings). And finally, each
row of the updated generator matrix is reduced with
respect to the module generated by the remaining
rows. As a result, the final generator matrix after
repeatedly applyingAlgorithm 7 will converge to the
minimum total degree among all possible equivalent
generator matrices.

Example 11 Consider a binary 2-D3 × 4 generator
matrixG ∈ F2[D1, D2],

G =

 G11 G12 G13 G14

G21 G22 G23 G24

1 D1 D2 + D1D
3
2 D1 + D2

2


whereG11 = 1+D2

1+D2
1D2, G12 = 1+D1+D3

1D2,
G13 = D2 + D2

1D
2
2 + D3

1D
4
2, G14 = D1 + D2

2 +
D3

1D2 + D2
1D

3
2, G21 = 1 + D1 + D2 + D1D2 +

D2
1 + D3

1, G22 = 1 + D2
1 + D1D2, G23 = 1 + D2 +

D1D2 +D2
2 +D1D

4
2, andG24 = D2 +D1D2 +D2

1 +
D2

2 + D1D
2
2 + D3

2. This generator matrixG requires
28 delay elements, detailed inTable 1.

After a passing through the first iteration ofAl-
gorithm 7, by using SINGULAR, one obtains an
equivalent generator matrixG′, shown in (10) which
requires only 13 delay elements for realization using
the canonical form. The subsequent iteration results

Table 1 Numbers of delays required for implementation of
G andG′.

G G′
Row No.

D1’s D2’s Sum D1’s D2’s Sum

1 3 9 12 2 2 4
2 3 7 10 1 2 3
3 1 5 6 1 5 6

Total 7 21 28 4 9 13

v
1

v
2

u
2

D
2

u
3

D
2

D

2

D

2

D

2

D

2

D

1

D
2

u
1

D
2

D

1

D
1

D

1

D

2

v
3

v
4

+

+

+

+

+

+

+

+

+

+

+

Fig. 5 Realization of the convolutional code with the
generator matrixG′.

in the same generator matrixG′ and so the algorithm
converges toG′.

G′= UG

=

 1+D2
1 1+D1 D2 D1 + D2

2

D1D2 0 1 D1+D2

1 D1 D2+D1D
3
2 D1 + D2

2


where

U =

 1 0 D2
1D2

1 + D1 1 D2

0 0 1


is a unimodular matrix. The realization of the 2-D
convolutional encoder with the generator matrixG′ is
shown inFig. 5.

CONCLUSIONS

It has been shown that there exists a strong rela-
tionship between the theories of multidimensional
systems and those ofm-D convolutional code. In the
system point of view, the focus is on the input and
output relationship and how the system responds to a
different input. On the other hand, the coding side
only concentrates on the set of output (codewords)

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org

ScienceAsia35 (2009) 105

and its properties. The set of allm-D convolutional
codewords generated by a generator matrixG can be
modelled as an R-submodule, where many mathemat-
ical tools such as Gröbner bases, module theory and
algebraic geometry can be applied.

The minimal encoder realization is explored and
the algorithm for finding a suboptimal solution is
given. Although the solution obtained from the se-
quential search may not be minimal in some cases,
with the current computing technology, it is possible
to extend the searching space so that the optimal
solution is found every time. Another algorithm
for computing the minimal encoder based on some
algebraic theories is in the development process and
will be reported in the near future.

There are still many areas ofm-D convolutional
codes which are rather unexplored, e.g., the design of
m-D convolutional code, performance measurement,
and soft decoding. There has been a study9 on the
weight and distance bound ofm-D convolutional code
which can be further investigated and may lead to the
completion of optimalm-D convolutional code design
procedure. Some progress has been made for the spe-
cial class ofm-D convolutional code design, namely
the unit memory codes (the ones whose generator
matrix contains only first or zero degree polynomials).

Acknowledgements: This work was supported by the
Thailand Research Fund (TRG 4580063). The author would
like to thank Professors N. K. Bose, Zhiping Lin, and H. A.
Park for their valuable comments and discussions.

REFERENCES

1. Forney G Jr (1970) Convolutional codes I: Algebraic
structure.IEEE Trans Inform TheorIT-16, 720–38.

2. Forney G Jr (1973) The Viterbi algorithm.Proc IEEE
61, 268–78.

3. Johannesson R, Wan Z (1993) A linear algebra ap-
proach to minimal convolutional encoders.IEEE Trans
Inform Theor39, 1219–33.

4. Johannesson R, Wan Z (1998) Some structural prop-
erties of convolutional codes over rings.IEEE Trans
Inform Theor44, 839–45.

5. Mahapakulchai S (2002) MAP source-controlled chan-
nel decoding for image transmission using CPFSK
and ring convolutional codes. PhD thesis, Pennsylvania
State Univ.

6. Mahapakulchai S, Van Dyck RE (2004) Design of
ring convolutional trellis codes for MAP decoding of
MPEG-4 imagery.IEEE Trans Comm52, 1033–7.

7. Fornasini E, Valcher M (1994) Algebraic aspects of 2D
convolutional codes.IEEE Trans Inform TheorIT-40,
1068–82.

8. Valcher M, Fornasini E (1994) On 2-D finite support

convolutional codes: An algebraic approach.Multidim
Syst Signal Process5, 231–43.

9. Wiener P (1998) Multidimensional convolutional
codes. PhD thesis, Univ of Notre Dame.

10. Buchberger B (1985) Gröbner bases: An algorith-
mic method in polynomial ideal theory. In: Bose
N (ed) Multidimensional Systems Theory: Progress,
Directions, and Open Problems, Reidel, Dordrecht,
pp 184–232.

11. Fitzpatrick P (1995) On the key equation.IEEE Trans
Inform Theor41, 1290–302.

12. Orsini E, Sala M (2005) Correcting errors and erasures
via the syndrome variety.J Pure Appl Algebra200,
191–226.

13. Adams W, Loustaunau P (1994)An Introduction to
Gröbner Bases, American Mathematical Society.

14. Charoenlarpnopparut C, Tantaratana S (2003) Multi-
dimensional convolutional code: Progresses and bottle-
necks. In: Proceedings of the 2003 IEEE International
Symposium on Circuits and Systems, Bangkok, Thai-
land, vol 3, pp 686–9.

15. Chaoenlarpnopparut C, Wongsura S, Davies A (2003)
Direct realization of a 2-d convolutional encoder with
lesser number of delay elements. In: Proceedings of the
3rd International Symposium on Communications and
Information Technologies, Thailand, vol 1, pp 258–62.

16. Charoenlarpnopparut C, Tantaratana S (2004) Alge-
braic approach to reduce the number of delay elements
in the realization of multidimensional convolutional
code. In: Proceedings of the IEEE International Mid-
west Symposium on Circuits and Systems, Hiroshima,
Japan, vol 2, pp 529–32.

17. Charoenlarpnopparut C (2000) Gröbner bases in multi-
dimensional systems and signal processing. PhD thesis,
Pennsylvania State Univ.

18. Greuel GM, Pfister G, Schoenemann H (2001)SINGU-
LAR 2.0. A Computer Algebra System for Polynomial
Computations, Centre for Computer Algebra, Univ of
Kaiserslautern. [www.singular.uni-kl.de].

19. Charoenlarpnopparut C, Jangisarakul P (2008) Con-
structive algorithms for determining inverses and syn-
drome matrices of multidimensional convolutional en-
coders using the Gröbner basis approach. In: Proceed-
ings of the 14th Asia-Pacific Conference on Communi-
cations, Tokyo, Japan.

20. Charoenlarpnopparut C, Bose N (2001) Gröbner bases
for problem solving in multidimensional systems.
Multidim Syst Signal Process12, 365–76.

21. Charoenlarpnopparut C, Bose N (1999) Multidimen-
sional FIR filter bank design using Gröbner bases.
IEEE Trans Circ Syst II46, 1475–86.

22. Johannesson R, Zigangirov KS (1999)Fundamentals
of Convolutional Coding, IEEE Press, New York, USA.

23. Massey J, Mittelholzer T (1989) Convolutional codes
over rings. In: Proceedings of the 4th Joint Swedish-
Soviet International Workshop on Information Theory,
Gotland, Sweden, pp 14–8.

www.scienceasia.org

http://www.scienceasia.org/2009.html
http://dx.doi.org/10.1109/TCOMM.2004.831382
http://dx.doi.org/10.1109/TCOMM.2004.831382
http://dx.doi.org/10.1109/TCOMM.2004.831382
http://dx.doi.org/10.1109/18.412677
http://dx.doi.org/10.1109/18.412677
www.singular.uni-kl.de
http://dx.doi.org/10.1023/A:1011965825246
http://dx.doi.org/10.1023/A:1011965825246
http://dx.doi.org/10.1023/A:1011965825246
www.scienceasia.org

