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ABSTRACT : Over the past few years, multidimensional convolutional code has become an emerging area of research in the
signal processing community. While one-dimensional convolutional code and its variants have been thoroughly understood,
the m-D counterpart still lacks unified notation and efficient encoding/decoding implementation. Here, the strong link
between the theory of @bner bases ana-D convolutional code is explored. Several applications dfliBer bases to the
characterization ofn-D convolutional encoders are proposed. Furthermore, the more practical problem of minimal encoder
realization is discussed and an algebraic algorithm based on the uséhwfdgbases is provided. From the implementation

point of view, the syndrome decoder is currently the only means for decoediiyconvolutional code. A constructive
method for computing the syndrome decoding matrix using the theory of syzygy modules is proposed.
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INTRODUCTION mentation. In this paper, the partial aim is to empha-
size the recent developmérit of m-D convolutional
Examples of 1-D information are voice signals, audi@ode theory as well as to point out the bottleneck and
signals, node voltages, and line currents. By samplingpen problems to the multidimensional community.
these signals and quantizing the samples, one obtaifiBe main goal is to demonstrate the usefulness of the
discrete sequences of binary representations. @meory of Gbbner bases in the field of convolutional
the other hand, multidimensionahD, m > 2) code which has not been done elsewhere.
information may be taken from 2-D images (e.g., MRl  The theory of Gdbner bases was first introduced
film, photos), 3-D images (e.g., holograms, animatiom 1965 by Bruno Buchberger in his doctoral dis-
of 2-D images, video), and animated 3-D imagesertation and the name &mner was used to honour
(m = 4). To encode multidimensional information, it his thesis advisor. Since then the theory obrer
is conventional to first transforme-D data arrays into bases has been applied to a wide range of engineering
1-D sequences by means of scanning, and then apgiyoblems®, e.g., in the field of computer algebra
the 1-D encoding technique. This encoding procedurfer solving multivariate polynomial equations, integer
is, in fact, unnatural and ignores the correlation in albrogramming problems, in the systems and control
other directions except in the scanning direction.  area for solving controller design problems, and in
To motivate the importance of multidimensionalthe signal processing area for solvingD filter bank
convolutional code, note that 1-D convolutional codelesign and ladder decomposition problemsoliaier
is a generalization of a block code. A block codebasis theory has also been successfully applied to clas-
is a 1-D convolutional code with the delay variablesical coding theory problems, such as the decoding of
D replaced by zero. Equivalently, 0-D convolutionalcyclic codes® 2.
code is essentially a block code. As a result, a This article is organized as follows. First, the
multidimensional convolutional code can be viewedasic definition and conventionssin-D system theory
as a generalization of all linear codes. are given and briefly explained. In the following
While 1-D convolutional code and its variantssection, the properties of:-D convolutional code
have been thoroughly understdo®] the m-D coun- and its encoder are defined. Then, by using the
terpart still lacks unified notation and efficient imple-theory of Gbbner bases, the algorithms for testing
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the existence and characterizing those properties adotation and definition

presented. It will be evident that the application Oﬁ_et F — F, be the finite field withy elements and
Grobner bases and its variants will ultimately define, _ F[qu D, D] be the ring ofrm-variate

a strong link between the:-D convolutional code v nomials whose coefficients belong to the figld
and system theory. Since the encoder matrix ‘ﬁet n > 1 be a positive integer. Then, the free
a 1-D convolutional code can be represented by B-module (p.114 in Ref13) R" is the m-variate

rectangular univariate polynomlal matrix, in the- polynomial row vector space of lengthoverF,
D case, the representation of encoder matrix becomes

the multivariate polynomial matrix, where the theoryr™ = {[ V1 Vg e W ] lv; e Ryi=1,... ,n}_
of Grobner bases for modul&sis readily applicable.
Each row of this generator matrix can be realized

(implemented in the form of hardware) separately anflefinition 1 An m—dimensional convolutional code

thus it k;]aslrow mdep?ngence. o blem of mi of lengthn overF is an R-submoduleC C R™. An
. Int ? at-er Fﬁg," the p.aper, the prq emo _m'n'elementw € C is called acodeword
imal realizatiort is considered. Partial solutions

by direct sequential search and algebraic reductidpinceR is Noetherian, everyr-dimensional convolu-
using the Gbbner basis for modules are providedtional code is finitely generated as &amodule, i.e.,
Various algorithms related to counting the numbethere exists a finite set of row vectars, g2, ..., gx €

of delay elements are given. In the last section, th&" such thatC = {Eleuigi|ui € R}.

decoding process qf mglt@mensmnal codg by mea ONVOLUTIONAL ENCODER

of syndrome decoding is discussed, and with the help

of Grobner bases, the construction procedure of tH8 this section, the representation of the convolutional

decoding matrix is explained. encoder is given in terms of a generator matrix which
is an m-D polynomial matrix. This representation
Representation of multidimensional signals is suitable for encoder equivalence testing and the

In general, there are two approaches to representit‘?&termInatlon of the convolutional decoder.

multidimensional signals. In the geometrical apGenerator matrix
proach, ann-D signal is represented byra-D finite
matrix. For example, 8 x 3 pixel imagel with 16
grey-scale levels (4 bits) can be represented as

As in the 1-D case, a generator matrix ofrarD con-
volutional code can be viewed as a transfer function
matrix of the encoder and it is often the centre of focus

1100 0101 1001 in the encoder design and realization stage.
I'=| 1000 1001 0000 | . (1) Definition 2 Let G be ank x n (k < n) m-variate
1011 0100 0010 polynomial matrix constructed row-wise from a set of

k
. _ _ row vectors{g;}:_,:
In the algebraical approach, an-D signal is rep- Stgi iz

resented by an-variate polynomial vector of size g1
1 x b whereb is the number of symbols used for g2
representing each sample. For example, the 2-D G =
image in the previous examplé & 4, m = 2) may
be represented by 9k
) 5 1T If an m-D convolutional codeC = rowspacéG),
1+ D>+ Dy +D1D§ + D3 then the polynomial matrixG € R¥*™ is called a
y— 1+ Dy + DiDj . (2) generator matriof C.
D3 + D3iD3
Dy + D? + DDy + D3 The existence ofG is guaranteed since any.-D

convolutional code is a finitely generatétimodule.
Note that in the above example, thith-row jth- Furthermore, ifG is of full row rank (i.e., rank)
column element of the matriX in (1) is associated = k), then the rate of is f Note that it is desirable
with the multiplying factorD{’ng‘1 and thepth  for a generator matrix to have full row rank in order to
element of the vector in (2) is taken from the avoid having different input sequences mapped to the
summation of allpth symbols, of all elements of the same codeword, which may cause confusion for the
matrix I multiplied by their associated monomials. decoder regarding the actual transmitted message.
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Definition 3 If a codeC is free of rate%, thenC = Computation of Gdbner basegj;,G, of modules
rowspacéG) for someG € RF*™ andG is called an M, and M, with respect to degree lexicographical
encoderof the codeC. ordering yields

It is well-known that ank-module can be generated G, =G, ={[ 0 D, 1],[1 0 D; |}.

by many different sets of module generators. Anal- ]

ogously, a givenm-D convolutional codeC can be Hence the encodexs, and G, are equivalent. Fur-
generated by more than one encoder. This class Qgp_rmore, by retracing the steps in the computation of
generators that generate the same set of code is defiff@pPner bases, one can show that= U -G, where

as a class ogéquivalentgenerators. 14+DiDy Dy

U )
Definition 4 An m-variate polynomial matrixy < Dy 1

ke ni T i k i : .
R** is unimodularif U is a unit in R***. In other  pefinition 5 A convolutional generator matrig' of

words, U is unimodular if and only if d§UV) is a unit  sjzek x n, k < n is calledbasicif it has a polynomial
in R (i.e., a nonzero element &¥). right inverse.
Proposition 1 ° Let G, G; € R™** be of full row

rank. G and G, are equivalent encoders if and only if From the viewpoint of matrix primeness description,
there exists a unimodular matriX € R*** such that it is equivalent to saying thaF is basic ifG is zero
U-G=G. left prime (ZLP), i.e., alk x k£ minors of G are devoid

of any common zero. The theory of @mer bases for
modules can be applied here to compute a right inverse
andG; € RnXk’ the following algorith_m can be used of a polynomial gzgerator matri. Al?more ggeneral

to determine whether they are equivalent. Furthety,,ihm and examples on the characterization of the

more, Ltc:m be used to compute the unimodular matrigp e cjass of all possible right inverses can be found
U € RF¥*k suchthatly - G; = Gb. in Ref. 17

Algorithm 1 Equivalence test Algorithm 2 Computing the right inverse of a given
Step 1: Construct moduled/; and M, generated by generator matrix

the rows of matriceé:, andG:, respectively. . Step 1: Let M be a module generated by all columns
Step 2: Compute the (completely) reduced dBner of the generator matrig’

bas_es OfM; _and My with respect to the same or- Step 2: Compute the Gibner basis of the modul&/
dering by using Buchberger’s algorithm for modules with respect to any ordering by using Buchberger's
(see p.149 in Refl3). algorithm for modules (see p.149 in Réf3).

Step 3:1f the Gr_bbner bases are identical, _th@l Step 3: Use the division algorithm (p.145 in Ref3)
andG- are equivalent. Furthermore, the unlmodularand the Gobner basis of the module in Step 2

matrix U can be copstructed by retracing th? StPS, determine if all column vectors of the identity
of the division algorithm (see example 3.6.1 in Ref. matrix I, are members of the moduld’. If so, the
13). right inverseG—! can be computed by retracing the
Note that an alternative approach is to apply the theonsteps of the division algorithm. Otherwise, the right
of Grobner bases to show that every row @f is  inverse does not exist.
a member of the module generated Gy and vice-

and detU =1.

From Proposition 1 given two generator matrices;

Example 2 Consider a binary encoder matrix,

versa.
Example 1 Verify that the encoders G = 1 0 Dy .
Dy Dy 14 D1Dy
G — 1 0 Dy ) ]
'= | D, Dy 14+DDy |’ By using the SINGULAR progran? for computmg
the Gibbner basis, the syzygy module and implement-
G, — |1 DiD2 0 ing the long division algorithr¥ one can obtain the
2 — . . . .
0 Dy 1 parameterized right inverse in the form:
are equivalentSolution Let M, and M5 be the mod- 1+ DDy D D?
ules generated by all rows 6f; andGs respectively, Q= 0 0 n 1 [ a b ]
ie., D, 1 D,

My=([1 0 Di],[ D> Dy 1+DiDs ) wherea, b € {0,1}. SinceG has a polynomial right
My={([1 DDy 0],[0 Dy 1]). inverse, i.e.(GQ = I, the encoder matri& is basic.
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Encoding procedure SYNDROME DECODER AND DUAL CODE

In this section, a 2-D convolutional encoding proces$he decoding ofm-D convolutional code can be
is illustrated by an example. Let us consider a 2-[performed in a straightforward manner by means
convolutional code, of rat§ whose generator matrix of syndrome decoding. However, unlike the soft-
is given by decision scheme, e.g., Viterbi decoding in 1-D, this
hard-decision decoding method may not be optimal
1 Dy DD, . ) o )
=10 Dy Do1 m_th(_a maX|mum—I|!<eI|hoqd sense nor the maximum a
priori sensé. In this section, the basic definition and
and let] be the 2-D binary input taken fromaax 3  existence criteria of the syndrome decoder are given
pixel, 4-colour image along with the algorithm for computing the syndrome
decoder matrix.

G

01 10 10
I=1] 11 00 00 Definition 6 LetC be anR-submodule of the fre®&-
01 10 o1 module,R™. Animage representatioaf C is a matrix

G € R™" such thatC = rowspacéG). A kernel
representatiorof C is a matrix H € R"™*P, where
u=[ D1+Dy+D}+D1D} 14+D,+D3+D?D3 ]. pis some positive integer, such that= ker(H) =
{w € R"|w- H = 0}.

whose algebraic representation is given as

The outputv of an encodelG can be obtained by

vector matrix multiplication: If a sequence € C, thenw = u-G for someu € R¥,
andsow-H =u-G-H =0, Yu. Thisimplies
v=u-G GH =0.
Dy+Dy+Di+D, D3 B Given anm-D convolutional code with the as-
( Do+D3?+D; Do+ D3 sociated generator matri, the kernel representation
= +D}+D3+DiD3+Di D3 . (i.e., the matrixH), if it exists, can be constructed by
< 14Dy +Do+Dy Dy +D35+D3 Dy ) computing the syzygies of the module generated by all
+DiD3+ D} Dy+ DY D5+ DY D3 columns of the generator matrix (p.161, Ref.13).

The ponnomlaI output vectay can be represented in Example 3 Let G be the minor left prime matrix
the geometrical form as

001 101 110 010 a
111 011 001 001

011 100 011 001 The kernel representation 6f is computed by using
010 000 011 000 the SINGULAR program® command lines

Observation 1: If is the number of symbols (bits) of

each input pixel, and the generator matrix is of dize >ring r=2,(x,y),(c,dp);

n, the number of symbols (bits) of each encoded pixel >module M=[1,0],[x,y],[xy,x+1];

is n and is independent of the number of input pixels. >module H=syz(M);

On the other hand, the size of the encoded image (2-D >H;

array) depends directly on the row-wise maximal total ~ H[1]=[x2+xy2+x,x+1,y]

degree of the generator matrix.

Observation 2: In the case when the size of the inpl@ obtain = [ Dy + Di + D1D3 Di+1 Dy |'.

is large (e.g.256 x 256 pixels), the total degree of the By the properties of the matri¥l and syzygy, all

input vector would grow significantly. However, this . ;
isrr)wotaproblem in t?]e implgementati)(;n stage since thceode\_/v_ords in the sef = rowspacéG) satisfy the
realization of the encoder is done by using an arrag/Ondltlon
shift register, not polynomial multiplication. w-H=0, YweC.

Observation 3: One assumption used here is that tfdis condition provides parity check which can be
number of rows of the generator matrix must be applied to a received sequence for testing whether
the same as the number of symbols (bits) representiitgis a codeword. The matri¥{ is often called the
each pixel. When this is not the case, one needs parity check matrior thesyndrome decodef C and
regroup them-D data symbols to suit the encoderthe corresponding codes are calfgite convolutional

matrix. code Note that not every convolutional code admits

[1 Dy DD,
10 Dy D41

Iout =
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a syndrome decoder (i.e., the parity check matrices of
somem-D convolutional codes do not exi$®)?°. The : : :
following proposition characterizes the existence of a i ¢ ¢
syndrome decoder. .

Proposition 2 &° A free modular cod& admits a D- D- D-
syndrome decoder if and onlyG@fhas a minor prime
generator matrixG. ? ? ?
(An m-variate polynomial matrix; is minor prime’?, D, L. De
if all maximum-size minors (major determinants) are
devoid of common factor other than units.) For a
Laurent polynomial ring, the existence conditfois p Dy Dy >
relaxed to the condition that the generator matrix must H
be left factor prime- current position of input
u
Example 4 Consider a 3-D convolutional codawith
a corresponding generator matrix: Fig. 1 Example of a 2-D shift register array whetg is
the input andD;, D, are the horizontal and vertical delays,
G- { Dy 0 Do } . respectively.
0 Dy Ds

The major determinants aff contain the common ,mber of delays needed. In the 1-D case, one

factor D;. As a result,GG is not minor prime. In gpiactive is to single out the generator matrix, from
p-16 of Ref.9, it has been shown thak is in fact g equivalent ones, that has the minimum overall
left factor prime. By using the SINGULAR program, constraint length. However, a meaningful definition
H=[ Dy D3 D ]"isthe syzygy of the module of constraint length, in a highdrn > 2) dimension
generated by all columns d@¥. However,H is not  case has not been given anywhere. A good candidate
a syndrome decoder @fsincev = [ D3 D> 0]  for this parameter should directly indicate the total
satisfiesv - H = 0, but it does not belong to the setpymper of delays in the implementation of a desired
C (i.e., there does not exist a row vectorc R? that encoder. Given a generator matix € RFX™,
produces: -G =[ D3 Dy 0 ]). we wish to identify among all equivalent generator
matrices, the one whose realization uses the minimum
number of delay elements. A practical procedure
towards the solution of this problem is only possible
VRS {w € R™wvt =0, Yo € M}. by direct searches via a computer program.

One approach to solve the problem stated above
For anm-D convolutional cod€, theorthogonal code is to perform a search over the space of all possible
of C is denoted by the moduté’. In the case where equivalent generator matrices. Since an equivalent
the C admits a syndrome decoder (i.e., has a kern@enerator matrix can be generated by multiplying
representation), the orthogonal cagé is called the a unimodular matrix by the given generator matrix,

Definition 7 Theorthogonal modulef A is denoted
by M+ and is given by

dual codeof C. there are an infinite number of elements to search
from. As a result, a finite scope for searching must

REALIZATION OF CONVOLUTIONAL be set in such a way that the minimal basic encoder

ENCODER should be found most of the time. Here we limit

The implementation of multidimensional convolu-the searching space by limiting the total degree of

tional code requires the use of various dimension&ach element in the unimodular matrix to be less than

delays (shift registers));, Do, ... where an example & certain integer chosen according to the available

of the canonical form realization is shownfiig. 1 In ~ search time.

this section, the focus is on the minimal realization of

a 2-D convolutional code. The higher dimension casegumber of delay elements

can be tackled in a similar fashion. Since there is only one kind of delay in one-
To realize the encoding process efficiently in thelimensional convolutional encoder realization, it is

form of hardware, it is necessary to minimize thestraightforward to count the total delejs However,
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current position of input current position of input
u u
Fig. 2 Direct realization of the encoder matii; . Fig. 3 Direct realization of the encoder matiix;.

in 2-D, the counting procedure is nontrivial as illus- all polynomials inG and find D; with the highest
trated by the following example. degree (treatingD, as constant). The number of
D, required is equal to the maximum degree of all

Example 5 Let G = [1 + D3 D D3 Di]. Itisnot  polynomials:delp, (G) = max;{degp, G(1,5)}.
so obvious that twd),’s and fourDsy’s may be used. Step 2: The number of delayd),, is the sum over,
The realization diagram iRig. 2clearly indicates how  of all the maximum degrees, of monomials in the
many delays are needed. form D} Dy? of all G(1,5),71 = 0,1,2, ...

Step 3: The total number of delays needed can be

Given a realization diagram, the total number of 5,1 by simply summing all the delaygel(G) =
the delays required can be easily counted. HoweverdelD (G) + delp, (G)

one of the goals here is to find an algorithm for
quickly counting the number of delays needed withoutxample 7 Let
drawing the diagram.
For the monomial case, the total number of delays G =[Dy D1Dy 1+ D?Dy). 3)
is counted from its total degree.

Example 6 Given a generating matri; = [D7 D3],  Step 1: Clearly,deg,,, G(1,1) = 0,deg ), G(1,2) =

to realizeGs, two D1’s and twoDs’s are required. In 1, anddegp, G(1,3) = 2. Thereforedelp, (G) =
other words, the total number of delays required aremax;{deg, G(1,7)} = 2.

the same as the total degree of the monomial. Step 2:Forr; = 0,G(1,1) = DD}, so oneD; is
_ . needed. For; = 1,G(2,1) = DiDJ}, so another
Counting delays for a polynomial row vectorG D, is needed. Finally;; = 2, G(1,2) = 1+ D2Ds,

For illustrative purposes, |&; be a ( x 2) generator SO anotherD, is needed. Thereforelelp, (G) =
matrix Gs = [D?D, + 1 D;D3]. The associated 1+ 1+ 1= 3anddel(G) = 5.

realization diagram is given iRig. 3. FromFig. 3, .
it is clear that to realiz&'s, two D, and threeD, are  Note that the total number of delays could be different

required. if the roles of D; and D, were interchanged in the
The following algorithm can be used to find the@lgorithm. For example, in this example only three

total number of delays for a polynomial row vectgr delays (oneD, and two D,’s) are required. Also
without drawing a realization diagram. note that the presence of ‘1’ in the elementstbfs

completely irrelevant to the total number of delays.
Algorithm 3 Counting delays for a polynomial row
vectorG
Step 1:Let G(1,5) be the polynomial in thejth To facilitate the understanding, the algorithm will be
column. To find out the number ab,, compare presented in parallel with an example.

Counting delays for a polynomial matrix
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Example 8 Let matrix corresponds to the presence of the monomial
) DiDj,i,j =0,1,2,...inthe row of generator matrix
_ | 1+D1 DiDy  Dj G. To avoid confusmn, elements ¢f are generally

2 + D2 polynomials, each of which consists of the sum of one

. . or more monomials.
Algorithm 4 Counting the total number of delays for The rest of the matrix will be filled witl's. For

a given generator matris )

) ) example, the support o8) is
Step 1: Count one row at a time using Step 1 of
Algorithm 3. The total number of delay®, needed g [ 1 0 0 }

is 111
degp, G =) max{degp, G(i,5)}. _ _
P The next algorithm summarizes the method to gener-

In this example(1,3) — D2 and there is nd, in ate the support of a generator matrix.

the second row. Hence only two,'s are needed.
Step 2: Count the number ab-’s row-wise by using
Step 2 inAlgorithm 3.

Algorithm 5 Construction of a support

Again, the generator matrix ir8) will be used to
. ! illustrate the method.
In the example, in the first row the number b% Step 1: For each monomial in thith row G, put a ‘1’

delays required is only one, due to the tefDs. i ihe spport matrixS;, in the associated position.
In the second row, the number B% delays required For example,G(1,3) = 1 + D2D,. Therefore
’ 9 1 . ]

. . 2 -
is two, due to the monomial®;. Hence three delays S(O 0) = 1 because of the monomial = DYDY
Dy are required for |mpIement|n@

n G(1,3) and S(1,0) = 1 because of theD; in
Step 3: Compute the total number of delays requwedG(1 (1) 3) (1,0) 2

by adding results from the two previous steps.
For the generator matris in (4), five (two D;’s and
threeD5’'s) delays are needed.

Step 2:If the same monomial is encountered more
than once, then the later found monomials are ig-
nored. The presence of the second monomial does

Alternatively, the above algorithm may be recon- notcancel any entries in the support.
sidered by using the notation of support which can batep 3: Finally, the size of the matrix can be checked

used directly in a computer program. for verification. The number of columns is equal to
) the max; j{degp, G(i,7)} + 1 and the number of

Support of a generator matrix rows ismax; ; {degp, G(i,j)} + 1.

A support S of a bivariate polynomial row-vector )

G = [91(D1,Ds) go(Dy1,Ds) -+ gi(Dy,D5)] is Note that for a given generator matiix, there are as

defined as @ x ¢ binary matrix.S whose element Many support matriceS as the number of rows ify'.

S(r,t) is 1 if there existsD} "' Di~! as a monomial

in at least one of the polynomialg, j = 1,2,...,k Example 9 Let

and 0 otherwise. For exampl&)(defines a map onto 1+ Dy Dy + D3 Dy + D32

a support matrix irFig. 4. D3+D2+D1D3 1+D2+D2D2 .

The supports ofr are
% D p| D2

Dz tioa)  [H

Dzu 1 D, D12 1 | 0 | 0 51: O ]_ 0 O s 52: 0 0 1 0
oL L 100 0

o, || b, | b, | DsD, i || s 01 0 O

Algorithm 6 Counting delays for a generator matrix

Fig. 4 Mapping of a generator encoding matrix onto ausing support

support matrix usingd). Step 1: Represent each row of then x k generator
matrix G by the corresponding support matt§x for

For the purpose of mathematical representation = 1 ton.

and computation, the support will be represented in &tep 2: If the size of the support matri¥; is p; + 1 x

matrix form. Each row o€z can be represented by one ¢; + 1, then the number oD, delays for realizingy;

support matrix. Theth row andjth column of support  is computed bylelp, (¢;) = ¢;.
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Step 3: Remove the first row of;, thereby making it by a stored unimodular matrix to produce a different
a(p—1) x g matrix. equivalent generator matri&. Then the number of
Step 4: This is the important step. Consider onedelays for this new equivalent matrix is computed
column of S; at a time and identify the row numberand compared with the original number. T&ethat
(the top row is counted as row number 1) of the lagbroduces a smaller number of delays will be stored.
row (of that column) that contains ‘1’. Add theseThe process is repeated with new equivalent matrices
numbers up for all columns. The result is the numbeuntil all unimodular matrices in storage are used.
delp, (g;) of Dy delays required. Finally, the stored generator matrix is the one that
Step 5: Compute the total numbéy of delays forG  required the smallest number of delays found. Clearly,
by adding up the number @, delays and), delays the search result depends on the searching space.
required for each row aff. That is, Since theoretically the searching space is infinitely
countable, the minimal encoder is not guaranteed to be
found. However, from the practical point of view, one
can start the search by generating a large number of
unimodular matrices. From our experimental testing,
Minimal Encoder we found that this approach does provide a quick and
Fuboptimal result most of the time. Next, the detailed
lementation is explained.
Consider the two-dimensional case. Let

N = ZdelDl (gl) + delDz (gz)

i=1

In this subsection, let first define the term minimal
and propose two approaches to produce a minim&l'P
encoder. It is well-known that a given-D convolu-

tional code can be generated by many equivalent en- P P
coders, each of which is characterized by a generator U= { Py Py } (6)
matrix. The class of equivalent generator matrices can
be parameterized by unimodular multiplication: whereP;, i = 1,2,3,4 is a 2-D polynomial. Now, the
goal is to find a set of P;}1_; such that/ becomes
S(Go) = {G € R’””| G= UGo} a unimodular matrix. For instanc&; may be in the

form
whereU is a unimodular matrix and?, € RF*".

Here, a unimodular matrix is defined as a squareP;, = ay + as D + ang + asDs + a5 D1 Do
multivariate polynomial matrix whose determinant is +a¢D?Dy + a7 D2 + agD1 D2 + ag D2 D2
a unit element in the coefficient fielg i.e., one.
wherea; € {0,1}. The concept of support is
U is unimodular— |U| = det{U) =1. (5) particularly helpful to visualize this polynomiaP;.

) ) P, can be written in the form of a support as
Examples of unimodular matrices are:

a1 a2 as
Ul _ |: Dl% +1 D1 :| 7 SP1 = as as ag . (7)

2 1 ar ag ag
Uy = { Dy 1 } ' A similar treatment can be applied for othBg, & =
14+ D?+ DDy Di+ Dy 2, 3,4 with a; replaced by;, ¢;, andd;, respectively.

Given a generator matrix, to find all possible equiva- AN €xample is given to illustrate how to generate
lent generator matrices, as many unimodular matric€&sMinimal delay encoding matrix. The example was
as possible must first be found. That is, givep €  Worked out with the help of computer software to
R**", to find aG which is equivalent taGy, one generate all possibl2 x 2 unimodular matrices with

needs to construdt’ € R***. One way to find as maximum degree of each element less than or equal to

many U as possible for a particula®*** is to con-  (2:2)-

S|der. asequenﬂat;earch thrgugh as many.polynomlalExample 10 Suppose
matrices as possible. Unimodular matrices may bé
generated by systematically arranging possible corg- DD, D2 1+ D2

inati ) i i = . (8
b|nat|_ons of pol_ynomlal entries of tr_le matrix. Dy(1+D2) Dy+D3 14Dy+D2D, (8)
First, the given generator matrix is entered as an

input. Then its number of required delays is countedhis requires foutD;'s and nineDy’s. Let the input
and stored. Next, multiply the given generator matrixf the function be the support of each row 8f.(After
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the search, the minimal delay generator matrix8)f ( the unnecessary delays during the implementation by
will be first finding a lower row-wise maximum total degree
equivalent generator matri€’ = UG, whereU is
(9) the unimodular matrix, and use it for the realization
instead.
There are two approaches proposed for finding

G D, Dy 1+ Dy
w0 DDy D% D%

which requires thred),’s and only four D>’s, as-

suming that the standard realization structure set L%Ee m|n|malt_ dlelay erp}coder. thThf? _ftert Is based tonf
earlier is used, and the unimodular mattiy;, used € sequential search over the Tinitely many set o

. sample space, whose members are the equivalent
to produce i, is

generator matrices obtained by multiplying the given
Dy 1 generator matrix by unimodular matrices. The result
Unin = { 1 0 } of this approach directly depends on the number of
unimodular matrices used for forming the searching
In this sequential search approach, the performanspace. The second approach here is based on the
of the search is not optimal and largely depends ousage of Gobner basis to perform an algebraic row-
the size of the searching space (i.e., the number operation of the generator matrix to reduce row-wise
unimodular matrices used). Furthermore, for a largthe maximum total degree. This approach has a
generator matrix, the sequential approach will suffesignificant advantage over the previous method, in that
from the higher complexity. The general problem tdt provides a fast and systematic way to the suboptimal
find the optimal solution is still open. The proposedsolution. The ternsuboptimalis used here due to the
standard realization structure is a fixed structure arfdct that there may exist a generator matrix with larger
the minimum number of delays is not ensured (attal degree but requiring a smaller number of delay
detailed in next section). elements than the one with minimum total degree.
When the encoder is realized in the direct fdPnthe
total degree is directly (but not proportionally) related
to the number of delays. The algebraic approach to
In this section, a more general approach to identiffind the minimal realization where the optimal solu-
the minimal encoder is proposed. Given a generattion is guaranteed may not exist due to the nonlinear
matrix GG, one can observe that the number of delayelationship between the well-ordering degree and the
is directly related to the maximum total degree of eactotal number of delays.
multivariate polynomial row vector irtz. This fact Consider a generator matri¥, whose rows are
is especially true when a strictly rectangular array of1, g, - .., gx € R™. Multiplying G by a unimodular
delaysD,, D, is used. That is, the number of delaysmatrix U; to get another equivalent generator matrix
can be identified by the sum of the row-maximumG; = U, G is essentially performing a row operation
degree product. on G. The multiplying factorU; is constructed by

In the 1-D case, there exists a well-known algeusing a Gobner basis with respect to a proper choice
braic algorithm for computing the minimal convolu- of degree ordering such that the maximum total degree
tional encodet??. The 1-D algorithm is based on of a selected row ii&’ is less than that of’.
the Smith-form description. The direct generalization
of this algebraic approach is not possible as there flgorithm 7 Minimization of the row-wise maxi-
no generalization of the Smith-form descriptionin ~ mum degree (w.r.t. degree reverse lexicographical or-
D. Furthermore, the number of delay elements in th@ering)
realization ofm-D convolutional encoder cannot be ~ Given ank x n generator matrixG whose rows
computed by adding the row-wise constraint lengt@re denoted by, g2, ..., gx € R",

(constraint length is undefined -D convolutional Step 0: Initialize i = 1, wherei is the row number to
code). The attempt here is to determine an alterbe reduced.

native m-D approach similar to the algorithm givenStep 1: Define a moduleM generated by all row
in3562223 vectors except théh row.

By inspection, it can be inferred that the totalStep 2: Compute the Gibner basisS of the module
number of delay elements required for realizing aM w.r.t. degree lexicographical ordering atetm
given convolutional code depends greatly on the max-over position(TOP) ordering (see p.142 of Ref3).
imum total degree of each row vector of its genStep 3: Reduce théth row w.r.t. the Gobner basiss.
erator matrixG. Using this fact, one can remove The leading monomial of the reduceéth row will

Finding minimal delay encoder by algebraic
approach
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have a smaller or equal degree.

Step 4: Form the updated generator matrX by
replacing theth row of G by the reduceith row ob- . g Y ¢y S
tained in Step 3. This generator matrix is equivalent
to the given generator matrix.

Step5:If i < k, leti = i + 1 and go to Step 1.
Otherwise, the algorithm is completed.

The following points should be noted. First, in
Step 2 of Algorithm 7, the degree lexicographical
ordering is used because the aim here is to reduce the
maximum total degree. In the degree lexicographi-
cal ordering, the monomial with the maximum total
degree is the leading monomial and will be reduced
first in the reduction process. Second, the algorithm
can be reapplied to the resulting generator matrix
to further reduce the maximum degree (w.r.t. degree
lexicographical and TOP orderings). And finally, each
row of the updated generator matrix is reduced with
respect to the module generated by the remaining
rows. As a result, the final generator matrix after
repeatedly applyindgorithm 7 will converge to the
minimum total degree among all possible equivalent
generator matrices.

Example 11 Consider a binary 2-I3 x 4 generator Fig. 5 Realization of the convolutional code with the

matrix G € F2[D1, D], generator matrix”.
Gll G12 G13 G14 ) -
G=| Go1 Ga Gos Gou in the same generator matriX and so the algorithm
1 Dy Dy+DiD3 D+ D3 converges ta@’.

whereGy; = 1+ D?+D3}D,, G12 = 1+ D1 +D$ Do, )
Gis = Dy + DD} + DiD4, Giy = Dy + D3+ G=UG

D3Dy + DiD3, Goy = 1+ Dy + Dy + DDy + 1+D}  1+D, Dy Dy + D3
D? + D3,Gog =1+ D? + D1 Dy, Goz = 1+ Do + =| DiD2 0 1 5 D1+D22
Dy Dy+ D2+ Dy D4, andGay = Dy+ D1 Dy+ D2 + 1 Dy Da+DiD; D1+ D3
D3 + D1 D3 + D3. This generator matri& requires  bora
28 delay elements, detailed Table 1 1 0 D2D,

After a passing through the first iteration Af- U=|14+4D; 1 D,
gorithm 7, by using SINGULAR, one obtains an 0 0 1

equivalent generator matrix’, shown in (0) which . . . o
requires only 13 delay elements for realization usingha unimodular matrix. The realization of the 2-D

the canonical form. The subsequent iteration resul 0”"0"!“0?’6" encoder with the generator matfikis
shown inFig. 5

Table 1 Numbers of delays required for implementation ofCO’\ICI‘USIO'\IS

G andG'. It has been shown that there exists a strong rela-
a o tionship between the theories of multidimensional
RowNo. “hs  Dys sum Dys Dys sum Systemsand those ei-D convolutional code. In the
1 3 9 12 > 5 2 system point of view, the focus is on the input and
2 3 7 10 1 2 3 output relationship and how the system responds to a
3 1 5 6 1 5 6 different input. On the other hand, the coding side
Total 7 21 28 4 9 13

only concentrates on the set of output (codewords)
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and its properties. The set of all-D convolutional
codewords generated by a generator magfigan be

modelled as an R-submodule, where many mathemat®-
ical tools such as @bner bases, module theory and

algebraic geometry can be applied.

The minimal encoder realization is explored and
the algorithm for finding a suboptimal solution is
given. Although the solution obtained from the se-
guential search may not be minimal in some case
with the current computing technology, it is possible
to extend the searching space so that the optimab
Another algorithm
for computing the minimal encoder based on some
algebraic theories is in the development process aris.

solution is found every time.

will be reported in the near future.
There are still many areas @i-D convolutional

codes which are rather unexplored, e.g., the design of
m-D convolutional code, performance measurement,

and soft decoding. There has been a sfudyg the
weight and distance bound of-D convolutional code

completion of optimain-D convolutional code design

procedure. Some progress has been made for the spe-
cial class ofm-D convolutional code design, namely
the unit memory codes (the ones whose generatqg,
matrix contains only first or zero degree polynomials).
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