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ABSTRACT : When applying finite element analysis (FEA) to the designing of rubber products, the material constants are
required as input data. To obtain sufficiently accurate material constants, combined tests and biaxial tests are recommended.
However, these tests are time-consuming and sometimes require special equipment. We propose a fast and easy method to
characterize the material constants. In this method, only the tensile test is required. The tensile data are used to generate
biaxial data based on the constant true Young modulus with varying Poisson’s ratio approach. The synthetic biaxial data
are then converted into material constants by multiple regression. Compared with the material constants obtained from
conventional method, those obtained from the proposed method give a better prediction of rubber behaviour under tension
and simple shear modes. Even though they give a poorer prediction under compression mode, the difference between the
FEA and experimental results is relatively low (∼11–12%). Thus, it could be concluded that the material constants obtained
from this method could give good prediction of rubber behaviour under various types of deformation.
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INTRODUCTION

Finite element analysis (FEA), an effective engineer-
ing tool for product design, has been extensively
applied to assist in the design of rubber products such
as laminated rubber bearings1–3, automotive exhaust
hangers4, and fluid seals5. However, the application
of FEA to rubber encounters many difficulties due to
the geometrical and material nonlinear behaviour of
rubber-like materials. In FEA, there are many factors
governing the precision of the computational result.
The selection of an appropriate strain energy function
(W ) and the determination of material constants are
the most important factors affecting the modelling
success. Many theoretical models have been de-
veloped to characterize the mechanical behaviour of
rubber6–11. One of the most important is the Mooney-
Rivlin model,

W = C10(I1 − 3) + C01(I2 − 3), (1)

whereC10 andC01 are material constants andI1 and
I2 are strain invariants. This model is extensively

used for stress analysis of rubber components and is
incorporated in most commercial FEA programs, and
is therefore the focus of the present study.

To predict the rubber behaviour based on the
Mooney-Rivlin model, the values ofC01 and C10

must be determined. FEA programs can be used
to approximate these constants from experimental
data. However, it has been reported that the material
constants derived from uniaxial tensile data alone
are insufficient to describe the behaviour of rubber
subjected to multiaxial deformations12. Combined
tests or biaxial tests are always recommended. Un-
fortunately, these tests are time-consuming and some-
times require specially designed equipment. Due to
these hurdles, we propose an alternative method to
characterize and to validate material constants derived
from synthetic biaxial data. In this method, the
uniaxial tensile data are used to generate the biaxial
data based on the constant true Young modulus with
varying Poisson’s ratio approach13. The synthetic
biaxial data are subsequently employed to characterize
the material constants.
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To test our proposed method, the material con-
stants were derived from both combined test data
(conventional method) and synthetic biaxial data (pro-
posed method). The material constants obtained from
the two methods were then fed into the FEA program
to predict rubber behaviour. The prediction accuracy
was then compared.

CONSTANT TRUE YOUNG MODULUS WITH
VARYING POISSON’S RATIO APPROACH

In uniaxial tension, the true elastic stress varies lin-
early with strain over the strain range encountered
in most engineering applications (up to 100% strain).
Assuming incompressibility, the relationship between
true stress (ti) and engineering stress (σi) is defined as

ti =
σi

λjλk
= σiλi (2)

whereλ is the extension ratio and the subscripts refer
to the directions of the principal stresses. Based on
the standard equations of elasticity at low strain where
the Young modulus (E) is constant, the nonlinear
multi-axial behaviour of rubber can be accommodated
by considering Poisson’s ratio to be a function of
the principal extension ratios. Thus, the stress-strain
relations are given by

ε1 = λ1 − 1 = (1/E)[t1 − ν(t2 + t3)] (3)

ε2 = λ2 − 1 = (1/E)[t2 − ν(t3 + t1)] (4)

ε3 = λ3 − 1 = (1/E)[t3 − ν(t1 + t2)] (5)

whereν is Poisson’s ratio andεi is the strain. For
plane stress, whent3 = 0, eliminatingt2/E or t1/E
from (3) and (4) give, respectively,

t1 =
E[(λ1 − 1) + ν(λ2 − 1)]

1− ν2
, (6)

t2 =
E[(λ2 − 1) + ν(λ1 − 1)]

1− ν2
. (7)

Since incompressibility is assumed,λ3 = (λ1λ2)−1,
and (5)–(7) then yield

ν =
λ1λ2 − 1

λ1λ2(λ1 + λ2 − 1)− 1
. (8)

Based on this approach, only a single material prop-
erty (a true Young modulus obtained from tensile test)
is required to describe the rubber elastic behaviour
at low strains. Unfortunately, most FEA programs
dealing with nonlinear hyperelastic analysis only ac-
cept material data inputted in terms of the material
constants. Consequently, conversion of the true Young
modulus into the material constants is necessary.

CONVERSION OF TRUE YOUNG MODULUS
INTO MATERIAL CONSTANTS

Conversion of true Young modulus into material con-
stants was done by using a specially written program
called elastic.exe. With a given specified maximum
strain, the program generates a series of the two
extension ratiosλ1 and λ2. Initially, six equally
spaced values ofλ1 (excluding 0% strain,λ1 = 1)
up to a value corresponding to the maximum strain
are selected. For thekth value ofλ1 (arranged lowest
first), 4+k equally spaced values ofλ2 are selected
(k = 1, . . . , 6). The program then employs the true
Young modulus to calculate the principal true stresses,
based on (6)–(8), for each of the 45 combinations of
the extension ratios.

The stress-strain relation of rubber subjected to
biaxial deformation is given by

ti − tj = 2(λ2
i − λ2

j )
[
∂W

∂I1
+ λ2

k

∂W

∂I2

]
. (9)

Differentiating (1) with respect toI1 andI2 it can be
seen that∂W/∂I1 = C10 and∂W/∂I2 = C01. Using
these results in (9) gives

ti − tj = 2(λ2
i − λ2

j )
[
C10 + λ2

kC01

]
. (10)

Hence if the relationship between true stress and
extension ratio is known, the material constants can
be obtained by a multiple regression technique.

EXPERIMENTAL TESTS

Materials

The rubber compound used in this study was supplied
by NCR rubber industry (Thailand) Co., Ltd., and
consisted of a carbon black-filled natural rubber com-
pound typically employed in the production of bridge
bearing.

Determination of material constants from the
combined test data

To derive the material constants from the combined
test data, the tension and simple shear deformation
modes were studied. The tests were carried out using
a universal testing machine (Instron 4301).

For the tension test, dumbbell specimens (Die
type 1 according to ISO 37) were prepared. As FEA
can only simulate the elastic response, the viscous
response must be eliminated. To achieve this, the
specimens were initially extended using a crosshead
speed of 50 mm/min to approximately 80% strain and
then allowed to return to their original state with the
same crosshead speed. This testing procedure was
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Rubber parts

Force Force
8 mm

32 mm

Fig. 1 Quadruple specimen for simple shear test.

Table 1 Equilibrium stress-strain data obtained from tensile
and simple shear tests.

Strain (%) Stress (MPa)

Tension Shear

10 0.361 0.053
20 0.686 0.163
30 0.975 0.270
40 1.251 0.365
50 1.529 0.453
60 1.828 0.536
70 2.155 0.617
80 2.528 0.699

repeated until the equilibrium stress-strain curve was
obtained.

For the simple shear test, the quadruple specimens
(Fig. 1) were prepared and tested with a crosshead
speed of 50 mm/min. As with the tension test,
the specimens were deformed several times prior to
recording the equilibrium stress-strain relation.Ta-
ble 1 shows the equilibrium stress-strain relation ob-
tained from tensile and simple shear tests.

After inputting the data from the tests into the
FEA program, MSC.MARC, a curve fitting process
was carried out with the constraint that only non-
negative coefficients are allowed. This yielded the
valuesC10 = 0.43058 MPa andC01 = 0. Since the
value ofC01 is zero, the material model then becomes
the widely known neo-Hookean model.

Determination of material constants from
synthetic biaxial data

Based on the equilibrium tensile stress-strain data, the
true stress at any given strain was calculated using (2)
and the plot of true stress against strain was made
(Fig. 2). At low strain (up to 50% strain), a straight
line was obtained. Its slope is equal to the true Young
modulus (3.15 MPa). Using this value in elastic.exe
givesC10 = 0.40444 MPa andC01 = 0.10607 MPa.

FINITE ELEMENT ANALYSIS

To validate the obtained material constants, finite ele-
ment analysis was performed to predict the rubber be-
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Fig. 2 Plot of true stress against strain

haviour subjected to various deformation modes (ten-
sion, simple shear, and compression). The computed
results were then compared with the experimental
results. In the present study, all FEA analysis was per-
formed using the MSC.MARC 2005 program which
uses the large strain-updated Lagrangian formulation
to solve such nonlinear static mode problems.

Tension

By taking advantage of symmetry, only a quarter of
domain was modelled (Fig. 3). This model consisted
of 150 elements and 182 nodes. We chose to anal-
yse plane stress to reduce computational time. The
boundary conditions were applied as follows. The left
and bottom edges of the model were fixed. A variable
tension force was then applied at the right edge and
the corresponding displacement was calculated.

Simple shear

Only one forth of the quadruple specimen (one cylin-
der) was modelled (Fig. 4). This model consisted of
3000 elements and 3312 nodes. A contact boundary

ForceForce

115 mm

33 mm

6 mm25 mm 

Modelled domainy

x

Applied forceFixed constraint

Fixed constraint

Fig. 3 Selected domain and finite element model of the
specimen for tensile test.
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Moveable surfaceFixed surface

Applied force

Fig. 4 Finite element model of the specimen for simple
shear test.

Moveable surface

Fixed surface

Axisymmetric axis

Applied force

 

14.3 mm

12.5 mm Modelled domain

Fig. 5 Selected domain and finite element model of the
specimen for compression test.

condition was used to represent the bonded surfaces
between rubber and steel parts. The variable shear
force was then applied to one of the contact surfaces
while the other contact surface was fixed. The corre-
sponding displacement was then computed.

Compression

Since the specimen is symmetric along the centre axis,
only half of the cross-section was modelled (Fig. 5).
The model consisted of 225 axisymmetric elements
and 257 nodes. A contact boundary condition was
used to represent the bonded surfaces. The variable
compressive force was then applied to one of the
contact surfaces while the other was fixed. Finally,
FEA was performed to calculate the corresponding
displacement.

Fig. 6 Examples of deformed shapes and stress distribution
of the specimens subjected to tension, simple shear, and
compression.

RESULTS AND DISCUSSION

Examples of the deformed shape of the specimens
subjected to various deformation modes and the re-
sulting distribution of stress are shown inFig. 6.
To check the accuracy of FEA results, we compare
the predicted force-displacement data with the exper-
imental data (Fig. 7). For tensile and simple shear
tests, the material constants derived from the synthetic
biaxial data give significantly better prediction than
those derived from the combined test data. It can also
be observed that the material constants derived from
the synthetic biaxial data could be used to describe
the rubber behaviour under tension and shear almost
throughout the tested strain range, except at very low
strains where the predicted and experimental results
are noticeably different. However, for the compres-
sion test, the material constants derived from the
combined test data give better prediction than those
derived from the synthetic biaxial data. Again, the
predicted results are significantly different from the
experimental results at very low strains.
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Fig. 7 Force-displacement relationships obtained from FEA
and experiment: (a) tension (b) simple shear (c) compres-
sion.

CONCLUSIONS

The results reveal that the material constants derived
from either the combined test data or the synthetic
biaxial data could be used to describe the rubber
elastic behaviour under various deformation modes.
Compared to the material constants derived from the
combined test data, the material constants derived
from the synthetic biaxial data provide better predic-
tion of rubber behaviour in both tension and simple
shear modes. Even though the material constants
derived from the synthetic biaxial data give poorer
prediction under the compression mode, the difference
between the predicted and experimental results, ex-
cept at very low strain, is still relatively low (∼11–

12%) and is considered to be within the acceptable
range. As a consequence, it could be said that the
proposed method could be used as an alternative to
characterize the material constants.
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