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ABSTRACT: When applying finite element analysis (FEA) to the designing of rubber products, the material constants are
required as input data. To obtain sufficiently accurate material constants, combined tests and biaxial tests are recommended.
However, these tests are time-consuming and sometimes require special equipment. We propose a fast and easy method to
characterize the material constants. In this method, only the tensile test is required. The tensile data are used to generate
biaxial data based on the constant true Young modulus with varying Poisson’s ratio approach. The synthetic biaxial data
are then converted into material constants by multiple regression. Compared with the material constants obtained from
conventional method, those obtained from the proposed method give a better prediction of rubber behaviour under tension
and simple shear modes. Even though they give a poorer prediction under compression mode, the difference between the
FEA and experimental results is relatively low11-12%). Thus, it could be concluded that the material constants obtained

from this method could give good prediction of rubber behaviour under various types of deformation.
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INTRODUCTION used for stress analysis of rubber components and is

Finite element analysis (FEA), an effective engineeii_ncorporated in most commercial FEA programs, and

ing tool for product design, has been extensively® therefore Fhe focus of the present study.

applied to assist in the design of rubber products such To prgdlpt the rubber behaviour based on the
as laminated rubber bearinlgd, automotive exhaust Mooney-Rivlin model, the values of, and Cio
hangeré, and fluid seals. However, the application MUSt be determined.  FEA programs can be used
of FEA to rubber encounters many difficulties due tC @PProximate these constants from experimental
the geometrical and material nonlinear behaviour dfata: However, it has been reported that the material

rubber-like materials. In FEA, there are many factor§onstants derived from uniaxial tensile data alone
are insufficient to describe the behaviour of rubber
The selection of an appropriate strain energy functiofitCiected to multiaxial deformatiots Combined
(W) and the determination of material constants arSts Of biaxial tests are always recommended. Un-
the most important factors affecting the modellingﬁjrtunately’, these tests are time-consuming and some-
success. Many theoretical models have been demes require specially designed equipment. Due to

veloped to characterize the mechanical behaviour 8f€S€ hurdles, we propose an alternative method to
rubbef11, One of the most important is the Mooney_characterlze and to validate material constants derived

Rivlin model, fro_m _synthet_ic biaxial data. In this method, _the_
uniaxial tensile data are used to generate the biaxial
W = Cio(I1 — 3) + Cor (I — 3), (1) data based on the constant true Young modulus with
varying Poisson’s ratio approath The synthetic
whereC1y andCy; are material constants atigd and biaxial data are subsequently employed to characterize
I, are strain invariants. This model is extensivelythe material constants.
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To test our proposed method, the material conEONVERSION OF TRUE YOUNG MODULUS
stants were derived from both combined test datiNTO MATERIAL CONSTANTS
(conventional method) and synthetic biaxial data (pros o nyersion of true Young modulus into material con-
posed method). The material co_nstants obtained froggams was done by using a specially written program
the two.methods were then fed into th? F_EA Prograyjied elastic.exe. With a given specified maximum
to predict rubber behaviour. The prediction accuraCyy-in  the program generates a series of the two

was then compared. extension ratios\; and \,. Initially, six equally

CONSTANT TRUE YOUNG MODULUS WITH spaced values ok; (excluding 0% strainA; = 1)

VARYING POISSON'S RATIO APPROACH up to a value corresponding to the maximum strain

In uniaxial tension, the true elastic stress varies i are selected. For thih value of), (arranged lowest
. S i nfirst), 4+k equally spaced values of, are selected
early with strain over the strain range encountere

; . . o . = 1,...,6). The program then employs the true
0,

n most. engineering app.h'canns (up.to 10.0/0 Straln)Young modulus to calculate the principal true stresses,

Assuming incompressibility, the relationship betwee

) d . . Based on &)—(8), for each of the 45 combinations of
true stresst() and engineering stress;] is defined as the extension ratios.

The stress-strain relation of rubber subjected to
biaxial deformation is given by

YW

where) is the extension ratio and the subscripts refer OW oW

to the directions of the principal stresses. Based on  ti —t; = 2(A7 — A3) [61 + 261} )
the standard equations of elasticity at low strain where ! 2

the Young modulus ) is constant, the nonlinear Differentiating (1) with respect tal; and I, it can be
multi-axial behaviour of rubber can be accommodategeen thadW /oI, = C19 andOW /01, = Cy;. Using
by considering Poisson’s ratio to be a function othese results in9j gives

the principal extension ratios. Thus, the stress-strain

relations are given by ti —t; =2(A7 — A2) [C10 4+ A{Co1] - (10)

t; =0\ (2

eg=M—-1=(1/E)[t1 —v(ta+t3)] (3) Hence if the relationship between true stress and

e =X —1=(1/E)[ts —v(ts + ;)] (4) extension ratio is known, the material constants can
be obtained by a multiple regression technique.

es=Xs—1=(1/E)[ts —v(ty +12)]  (5) 4 pered q

. . ) . . EXPERIMENTAL TESTS
where v is Poisson’s ratio and; is the strain. For

plane stress, wheny = 0, eliminatingt,/E ort,/E  Materials
from (3) and @) give, respectively, The rubber compound used in this study was supplied

by NCR rubber industry (Thailand) Co., Ltd., and
Bl(\ — 1) + v — 1) t v :

t = ’ (6) consisted of a carbon black-filled natural rubber com-
1—v? pound typically employed in the production of bridge

b= ElQe =1 +v( —1)] (7) bearing.

2 1—102 '

Determination of material constants from the
Since incompressibility is assumek = (A A2)~!, combined test data

and ©)—(7) then yield To derive the material constants from the combined

Mo — 1 test data, the tension and simple shear deformation
v= Maa F -1 -1 (8)  modes were studied. The tests were carried out using
112N 1 2 . . .
a universal testing machine (Instron 4301).
Based on this approach, only a single material prop- For the tension test, dumbbell specimens (Die
erty (a true Young modulus obtained from tensile testype 1 according to ISO 37) were prepared. As FEA
is required to describe the rubber elastic behaviowan only simulate the elastic response, the viscous
at low strains. Unfortunately, most FEA programgesponse must be eliminated. To achieve this, the
dealing with nonlinear hyperelastic analysis only acspecimens were initially extended using a crosshead
cept material data inputted in terms of the materiadpeed of 50 mm/min to approximately 80% strain and
constants. Consequently, conversion of the true Yourtgen allowed to return to their original state with the
modulus into the material constants is necessary. same crosshead speed. This testing procedure was
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Fig. 1 Quadruple specimen for simple shear test. =
0.5¢
Table 1 Equilibrium stress-strain data obtained from tensile

0 10 20 30 40 50 60 70 80

and simple shear tests. Strain (%)
Strain (%) Stress (MPa) Fig. 2 Plot of true stress against strain
Tension Shear
;8 g'ggé 8'223 haviour subjected to various deformation modes (ten-
30 0975 0270 sion, simple shear, and compression). The computed
40 1251 0365 results were then compared with the experimental
50 1.529 0.453 results. In the present study, all FEA analysis was per-
60 1.828 0536 formed using the MSC.MRC 2005 program which
70 2.155 0.617 uses the large strain-updated Lagrangian formulation
80 2.528 0.699 to solve such nonlinear static mode problems.
Tension
repegted until the equilibrium stress-strain curve WaBy taking advantage of symmetry, only a quarter of
obtained. domain was modelled{g. 3). This model consisted

_ Forthe simple shear test, the quadruple specimegs 150 elements and 182 nodes. We chose to anal-
(Fig. 1) were prepared and tested with a crossheggke plane stress to reduce computational time. The
speed of 50 mm/min. As with the tension testyoyndary conditions were applied as follows. The left
the specimens were deformed several times prior g pottom edges of the model were fixed. A variable
recording the equilibrium stress-strain relatiofia-  tensjon force was then applied at the right edge and

ble 1shows the equilibrium stress-strain relation obgne corresponding displacement was calculated.
tained from tensile and simple shear tests.

After inputting the data from the tests into theSimple shear

FEA program, MSC.MRC, a curve fitting process . .
was carried out with the constraint that only non-Only one forth of the quadruple specimen (one cylin-

X . S der) was modelledFig. 4). This model consisted of
negative coefficients are allowed. This yielded th%OO)O elements andqgsf)z nodes. A contact boundary
valuesCiy = 0.43058 MPa and’y; = 0. Since the ’

value ofCy; is zero, the material model then becomes
the widely known neo-Hookean model.

115 mm

33 mm

Determination of material constants from
< >

synthetic biaxial data «— S
A . . Force«— 25 mm 76 mm A1
Based on the equilibrium tensile stress-strain data, the

true stress at any given strain was calculated usthg ( y Modelled domain
and the plot of true stress against strain was made

(Fig. 2). At low strain (up to 50% strain), a straight

line was obtained. Its slope is equal to the true Young

modulus (3.15 MPa). Using this value in elastic.exe, . .=
givesCy = 0.40444 MPa and’y; = 0.10607 MPa.

FINITE ELEMENT ANALYSIS Fixed constraint

To validate the obtained material constants, finite eld=ig. 3 Selected domain and finite element model of the
ment analysis was performed to predict the rubber bépecimen for tensile test.

—>Force

—
—>Applied force
—
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Moveable surface 2.581%+006
2. 151e+006

Fixed surface

1.721e+006

1.290e+006

Applied force 8.603e+005

3.933e+006
3.337+006
2.740e+006
2. 443e+006

. o . . 1.547+006
Fig. 4 Finite element model of the specimen for simple

shear test.

9.502e+005

3.535e+005

14.3 mm
< » 3.246e+006
2,705e+006
A
2. 64e+006
< .
12.5 mm Modelled domain 162364006
Y
108264006
5.410e+005
Applied force 0.000e+000

v v v v v Moveable surface

Fig. 6 Examples of deformed shapes and stress distribution
of the specimens subjected to tension, simple shear, and
compression.

Fixed surface

Axisymmetric axis RESULTS AND DISCUSSION

Fig. 5 Selected domain and finite element model of thé&examples of the deformed shape of the specimens
specimen for compression test. subjected to various deformation modes and the re-
sulting distribution of stress are shown Fig. 6.

" To check the accuracy of FEA results, we compare
condition was used to represent the bonded surfacgg, predicted force-displacement data with the exper-

between rubber anq steel parts. The variable shegfental data Fig. 7). For tensile and simple shear
force was then applied to one of the contact surfacggs;s, the material constants derived from the synthetic
while the other contact surface was fixed. The corrésiayial data give significantly better prediction than
sponding displacement was then computed. those derived from the combined test data. It can also
be observed that the material constants derived from
the synthetic biaxial data could be used to describe
Since the specimen is symmetric along the centre axie rubber behaviour under tension and shear almost
only half of the cross-section was modellddd. 5. throughout the tested strain range, except at very low
The model consisted of 225 axisymmetric elementstrains where the predicted and experimental results
and 257 nodes. A contact boundary condition waare noticeably different. However, for the compres-
used to represent the bonded surfaces. The varialdien test, the material constants derived from the
compressive force was then applied to one of theombined test data give better prediction than those
contact surfaces while the other was fixed. Finallyderived from the synthetic biaxial data. Again, the
FEA was performed to calculate the correspondingredicted results are significantly different from the
displacement. experimental results at very low strains.

Compression
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Fig. 7 Force-displacement relationships obtained from FEA

and experiment: (a) tension (b) simple shear (c) compres9.

sion.

10.

CONCLUSIONS

The results reveal that the material constants deriveri

from either the combined test data or the synthetic

biaxial data could be used to describe the rubbet2.

elastic behaviour under various deformation modes.
Compared to the material constants derived from the
combined test data, the material constants derived
from the synthetic biaxial data provide better predic—l
tion of rubber behaviour in both tension and simple
shear modes. Even though the material constants
derived from the synthetic biaxial data give poorer
prediction under the compression mode, the difference
between the predicted and experimental results, ex-
cept at very low strain, is still relatively low~11-

399

12%) and is considered to be within the acceptable
range. As a consequence, it could be said that the
proposed method could be used as an alternative to
1 characterize the material constants.
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