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ABSTRACT:  “Green tides” caused by overgrowth of Ulva species are an increasing problem in tropical areas.  The effect of 
dissolved nutrients on uptake rates, growth, chlorophyll, and tissue nutrient concentration of Ulva reticulata was examined 
in laboratory experiments lasting up to 7 d. Sterile seawater was enriched with nitrate, ammonium, phosphate, 
ammonium + phosphate and nitrate + phosphate. U. reticulata expressed luxury uptake of both nitrogen (N) and 
phosphorus (P). The maximum N-uptake rate was found when ammonium was added alone. The maximum relative  
growth rate was about 15.1% per day but this was in the nitrate-fed algae not the ammonia-fed algae. N-enrichment 
resulted in an increase in chlorophyll concentration on day 4 and a decrease on day 7, probably as a result of cell division.  
P-enrichment had no significant effect on chlorophyll concentration. Treatments with added N, P or N+P showed significant 
increase in tissue N and P content on day 4.  On day 7, N content in macroalgal tissue decreased while P content continued 
to increase.  U. reticulata responded most strongly to added N; responses to P were much lower than for added N and there 
was little or no evidence for an additive effect of N+P.  The N:P ratio of U. reticulata of control material suggested that N 
was the most limiting nutrient at the collection site (Paklok, Phuket, Thailand).
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INTRODUCTION

Green tides are vast accumulations of green 
macroalgal biomass often found in estuaries and 
coastal water of areas undergoing eutrophication1,2. 
This phenomenon is becoming a major concern 
throughout the world (western Baltic Sea, Germany3; 
Finnish Baltic sea coast4; Washington State, USA5; 
Pacific coast of central and southern of Japan6;  Pacific 
coast of USA7).  In the summer of 2004, green tides, 
which were dominated by Ulva reticulata Forsskål, 
occurred in coastal waters of Patong beach, Phuket, a 
famous tourist beach in Thailand. This phenomenon 
had a strong economic impact.  It occurred for almost 
two weeks; tourists were put off by the smelly,  
decomposing and free-floating macroalgae, which 
spoiled the white sand beach and made the water 
look unsafe to swim in. This event was assumed to 
be the result of waste-water discharge from human  
activities.  Ulva spp. have been regularly forming 
green tides in several other places in Thailand e.g. 
Pattani Bay and Songkhla Lake, and Paklok, Phuket.  

However, little is known about the causes, extent or 
history of green algal blooms in Tropical SE Asia.

The excessive growth of these macroalgae 
not only creates an undesirable nuisance and lowers 
the recreation amenity of the beach but also causes 
adverse ecological effects including a decline of sea-
grass beds due to reduction of light penetration, gas, 
and nutrient exchange8,9,10. It also has a negative im-
pact on fish and invertebrates because dissolved oxy-
gen is consumed at night under thick algal mats and 
when the macroalgae decompose. 

Excess nutrient load is supposed to be one of the 
major factors responsible for the occurrence of “green 
tides.”  Nitrogen and phosphorus are the two most 
common nutrients limiting macroalgal growth2, 11,12. 
Nitrogen has been described as the principal limiting 
nutrient2,13,14,15 but in some places phosphorus supply 
may limit macroalgal production16,17,18. In order to find 
a proper method of controlling the blooms, the most 
limiting nutrient must be established.

Tissue nutrient composition can be a good index 
for evaluating macroalgal nutrient status but the choice 
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of the species to be used is important13. In the case of 
plants that are members of a resident or climax com-
munity (for example   Catenella nipae19,20), the levels of 
nutrients in tissue result from the long-term integration 
and accumulation of nutrients from the surrounding 
water over periods of weeks or months.  Analysis of 
an opportunistic species like various Ulva species 
might only give information on the nutrient status of 
the waters in which they are growing over only the 
previous few days19, 20. Water-column analysis would 
only detect the instantaneous nutrient concentrations 
at the time of sampling; intermittent surges of nutrients 
might go undetected.  Alternatively, it has recently 
been shown that analyses of pigment content of long-
lived resident species of macroalgae (Gracilaria 
edulis) can provide an accurate representation of the 
longer term nutrient status in a water body21.

Ulva spp. are common fast-growing opportu-
nistic macroalgae of the littoral zone and are generally 
known as one of the genera forming green tides. They 
are opportunistic in both ecology and physiology. 
Ulva of various species are usually the first colonizers 
on open substrata, and their cosmopolitan presence 
is attributed to their tolerance of a wide range of  
environments and opportunistic life strategy1,22,23.

In the present study, we investigated nutrient 
uptake rates, growth, tissue nutrients and chlorophyll 
concentration of Ulva reticulata from Paklok, Phuket.  
We measured its responses to known amounts of 
added nutrients to determine which was the most 
limiting nutrient. This would help us to understand 
the blooming phenomenon and would be useful 
for promoting rational environmental wastewater  
management and planning in tourist areas.

  
MATERIALS AND METHODS

Ulva reticulata thalli was collected from the 
intertidal zone of a sheltered bay at Paklok, Phuket, 
Thailand (8 ° 01’03’’ N, 98 ° 24’38’’ E). Paklok is  
situated on the east of the island of Phuket and is sur-
rounded by mangrove areas and seagrass beds. There 
are human residences, prawn farms, and other farm-
land nearby which may cause high nutrient loads to 
support significant growth of U. reticulata.  Moreover, 
the soft-bottom substrate could also provide another 
source of nutrients for macroalgae and would act as a 
store for nutrients between surges of nutrients due to 
flooding and storms.

Individual plants were rinsed in seawater in 
order to remove small epiphytes and invertebrates.  
For consistent results, it is important to clean the 
plants properly19,20. They were kept for 3 days before 

starting   the experiment.  The  background  level  of   
nutrients in the nutrient-depleted seawater was 
measured. Water was circulated by bubbling with 
compressed  air under    controlled   temperature     (25  ◦C) 
and light; daylight  fluorescent  lamps  which pro-
vided approximately 300 μmol photons m–2s–1 of  
photosynthetically active radiation (PAR).             

The added nutrients were KNO3
–, NH4Cl, and 

Na2HPO4.  The experiments consisted of six treat-
ments: ~200 μMNO3

–, ~ 60 μMNH4
+, ~14 μM HPO4

2–, 
NO3

– + HPO4
2–, NH4

+ + HPO4
2– and the last treatment 

was maintained at the initial nutrient status to act 
as a low nutrient control (LNC).  Seawater contains 
about 2 mM total inorganic carbon as CO2, HCO3

– 
and CO3

2–.  This carbonate system acts as an efficient 
buffering system at the normal pH of seawater  
(pH 8.1).  The amounts of phosphate, nitrate and  
ammonia added in the present study would not have 
altered the pH of seawater in equilibrium with the 
air.   

The concentrations used were 30 times higher 
than the background concentration measured in situ. 
Nutrient-rich seawater (with NO3

–, NH4
+ and HPO4

2–) 
but without added algae was used as the control blank.  
During the experiments, approximately 10 g fresh 
weight (FW) of algae were placed in aerated 250 ml 
Erlenmeyer flasks with 200 ml of incubation medium 
under the same controlled environment.  The tissue 
to media volume ratio was large and so metabolism 
of the added phosphate, nitrate and ammonia would 
have had little effect on the pH of the seawater. Water 
samples were taken at 0, 1, 2, 4, 8, 12, 24, 48 or 72 h, a 
total of 9 flasks making up one experimental nutrient 
treatment. All nutrient treatments were replicated 
3 times.  Multiple sampling from flasks at different 
times was avoided because it would alter the weight-
to-volume ratio during incubation.  There is also the 
statistical problem that multiple samples taken from 
a single flask are not truly statistically independent  
observations.  Uptake rates of inorganic N and P 
were determined by measuring the disappearance of  
inorganic nutrients over time24.  NO3

–, NH4
+ and 

HPO4
2– were measured using cadmium reduction, 

the phenate method, and the ascorbic acid method,  
respectively25. Uptake, U, was determined using 

     	
	

where Ci and Cf are the initial and final nutrient  
concentrations, respectively, t is the incubation time 
interval, and w is the plant dry weight (DW), and V is the 
volume of seawater used for the incubation (200 ml). 
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	 Tissue samples were taken after 4 day and 7 day 
incubations.  Dry weight, tissue nitrogen, and phos-
phorus and total chlorophyll concentration of the 
algae with 3 replicates from each treatment were 
analysed.  Tissue phosphate was extracted using hot 
nitric/perchloric acid digestion25 and assayed using 
atomic  absorption spectrophotometric methods.  
Tissue nitrogen was extracted using standard prepa-
ratory methods for Kjeldahl analysis26. Chlorophyll 
calculations were based on the Jeffrey and Humphrey 
equations27 and calculated as mg total chlorophyll. 
The relative growth rate (μ) of U. reticulata was cal-
culated from changes in FW biomass for each experi-
mental period using

                          1 ln Bt

		                t     B0

Statistical analysis
One-way ANOVA with a significance level of 

95% was used to test the effect of the enrichment of 
distinct forms of nutrients on growth rate, nutrients 
uptake, tissue nutrients, and chlorophyll concentration 
of U. reticulata after 4 and 7 days28. Two-way ANOVA 
was used to test differences among uptake rates of 

N as NO3
– or NH4

+ alone or in combination with P.  
Significant differences between pairs of means were 
identified using the Tukey test28.

RESULTS

Nutrient uptake rates
The uptake of N and P by U. reticulata treated 

with added NO3
–, NH4

+, and HPO4
2– were significantly 

higher than that with the LNC treatment  (Fig. 1). 
There was little evidence for additive effects of N+P.  
On the contrary, uptake of each nutrient (NO3

–, NH4
+ 

and HPO4
2–) was slightly higher when it was added 

alone than in combination with others (p < 0.001).  	
	 Water column N decreased significantly over 
time. Rapid uptake was observed during the experiment 
in the first 4 to 24 h when NH4

+ and NO3
– were add-

ed as the nitrogen source.  The maximum uptake 
rate was found in the case of the NH4

+ treatment  
(Vmax= 9.39 ±  1.26 μmol g–1 DW h–1 1–2 h of in-
cubation).  After 24 h, approximately 96% of the 
added NO3

– and approximately 90% of the added 
NH4

+ was taken up.  At the end of the experiment 
N was depleted in both NO3

- and NH4
+ treatments  

(Figs. 1A, 1B).
Trends of phosphate concentration were  

different from the changes in nitrate and ammonium 
concentrations.  There was no obvious rapid uptake 
of P.  Over a 3-day period, dissolved phosphate con-
centration decreased continuously but had still not 
completely disappeared at the end of the experiment 
(approximately 2.3 μM was left in the water column) 
(Fig. 1C).

Biomass
Algal biomass significantly increased after  

4 days of incubation in all treatments with added nu-
trients (p < 0.001) and continued to increase until the 
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Fig. 1  Nutrients concentration during 72 h of treatment: A: 
nitrate; B: ammonium; C: phosphate.   
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end of the experiment (Fig. 2). LNC treatment showed 
little or no growth.  This indicated that the alga had 
little or no luxury accumulations of either N or P that 
the plant could draw upon when brought into the  
laboratory.  Final biomass compared to initial biomass 
ranged from 100.3% to 288.2% in different experi-
ments and treatments.  In the example shown (Fig. 2), 
the lowest value was observed in the LNC treatment 
and the highest value was observed when NO3

– was 
added alone (μ = 0.151 ±  0.006 day–1).   This relative 
growth rate of 15.1% per day is equivalent to a  
doubling time of only 4.6 ±  0.2 days.

Total chlorophyll concentration 
Chlorophyll concentration of U. reticulate, 

in all treatments where N was added, significantly  
increased after 4 days of incubation (p < 0.001) and 
decreased after 7 days of incubation (p < 0.001)  
(Fig. 3). Maximum chlorophyll concentration was 
found on the fourth day of incubation in the NO3

– 

treatment (0.62 ±  0.01 mg g–1 FW), while the initial 
chlorophyll was 0.13 ±  0.01 mg g–1 FW.  This  
significant greening of the plants is good evidence that 
they were N-limited.  Chlorophyll content responded 
more strongly to added NO3

– than NH4
+. Phosphate 

had little effect either by itself or in combination with 
either NO3

– or NH4
+.

Tissue nutrient content
In N added treatments (Fig. 4), tissue N (Kjel-

dahl N) of U. reticulata significantly increased at  
4 days (p < 0.001) of incubation and was followed 
by a decrease after 7 days of incubation (p < 0.005).  
Maximum %N was found in the NO3

– treatment at  
4 days of treatment (%N = 0.47 ±  0.01).  These 
results are consistent with excess NO3

– being easily 
stored but there is a more limited capacity to store 
NH4

+.

Tissue P of U. reticulata showed significant 
increase after 4 days of incubation only in the treat-
ments where HPO4

2–was added alone and where NO3
–

was added in combination with HPO4
2– (p < 0.005).  

There was no difference between tissue P at 4 days 
and 7 days.  Maximum %P was found in the HPO4

2–

treatment after 7 days (%P = 0.07 ±  0.01) (Fig. 5).  

DISCUSSION

Nutrient uptake
Ulva took up large amounts of nutrients from the 

water column when offered nutrients in the laboratory.  
Although Ulva depleted NO3

– and NH4
+ in less than 

24 hours, positive growth responses to these nutrients 
persisted over the 7-day duration of our experiment 
and may have even lasted longer than this. This result 
supports conclusions drawn by Pedersen and Borum29 
and Runcie et al19,20 that Ulva species are capable of 
luxury uptake of nutrients, particularly N.  The maxi-
mum N-uptake rate was found in the NH4

+ treatment. 
Similar result was found in other macroalgae (Pilayella 
littoralis and Enteromorpha intestinalis30; Ulva lactuca 
and  Catenella nipae19,20; Ulva fenestrata  and  Gracilaria 
pacifica31; Chaetomorpha linum32).  NH4

+ is usually 
considered to be the preferred form of nitrogen 
because no energetically costly enzymatic reduction 
reactions are required for NH4

+ to be available 
for assimilation33.  Although NO3

– is usually the more 
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common form of nitrogen in nearshore waters, it is 
more metabolically costly for macroalgae to use 
NO3

–. However,  NO3
– can be stored in large amounts 

in the vacuoles of Ulva lactuca19 whereas the capacity 
of algae to store large amounts of ammonia in the 
vacuoles is more limited.  To confirm this notion it 
would be necessary to set up experiments where algae 
were fed repeated doses of ammonia, nitrate and com-
binations of N-sources.  It would be very interesting 
and environmentally relevant to determine how long 
such growth surges continue after a surge in nutrient 
supply and whether the type of N-source provided and 
whether or not N and P provided simultaneously has 
an effect on the time course of growth surges.

In our experiments on U. reticulata, we observed 
indications of surge uptake of NH4

+ during the first 
four hours. During the later time intervals (12–72 h),  
we found that the tissue uptake rate decreased.  
The uptake rate of NH4

+ may have been controlled 
by diminishing nutrient supplies in the medium.  
Pedersen separated uptake of NH4

+ by Ulva lactuca 
into three phases34. The first phase, surge uptake, is 
the transiently enhanced nutrient uptake and  lasts for 
a few hours. The second phase, internally controlled 
uptake, is characterized by a relatively constant uptake 
rate occurring at high substrate concentration which 
may be controlled by the nutritional status of the cell.  
The final phase, externally controlled uptake, occurs 
at decreasing substrate concentrations and is regulated 
by the rate of transport of nutrients across the alga 
surface. Unfortunately, not enough data was available 
to  estimate  the Km for uptake of NH4

+ from the de- 
pletion experiments shown in Fig. 1, but Runcie et al19 
give estimates  of  the Km for NH4

+ of  about 100 μM   
and 30μM  for  NO3

–.	  
Large amounts of NO3

– were taken up by  
U. reticulata.  We found that Ulva grew fastest on  
nitrate even though ammonia was taken up by  
U. reticulata faster than nitrate.  Nitrate was almost 
completely depleted in 24 h indicating the large 
NO3

– storage capacity of U. reticulata.  NO3
– can 

represent a significant storage pool in algae31,35. In 
Chaetomorpha linum, N is stored as simple organic 
compounds if ammonia is the N-source but as NO3

–

if N is provided as NO3
–.  Both storage forms of N 

provide a temporary mechanism to buffer against 
the asynchrony of N supply and demand25. However, 
the N uptake rate of U. reticulata observed in our  
research was much lower than the N uptake of other 
Ulva species19,36,37,38,39. Some of these differences 
can be attributed to possible differences in the N-
status of the material used in different studies. 
Other differences can be attributed to different 

experimental methods, particularly the times over 
which uptake measurements were made. For exam-
ple,  Runcie et al19 measured rates of uptake of up to  
400 μmol g–1 DW h–1 but such high rates were sustained 
for only the first few minutes of an incubation.  Thus 
our relatively slow rates might indicate a relatively 
high N-status of our experimental material and the  
nutrient concentrations we provided for the algae, 
which were 30 times higher than background nutrient 
measured in situ (6.5 μM NO3

– , 2.03 μM NH4
+, 0.46 μM  

HPO4
2–), might have quickly satisfied the demands of  

the algae for extra N.  Several researchers have shown  
that  nutrient  uptake  by  macroalgae  was regulated   
by substrate nutrient concentration19,20,29,37–39.

U. reticulata did not demonstrate the same 
high and sustained affinity for P that it did for N.  
Fig. 5 shows that the baseline phosphate content of 
U. reticulata was already high.  However, the LNC 
material showed little or no growth (Fig. 2).  Added 
P alone resulted in some growth but large amounts of 
growth required extra N whether or not P was also 
added.  Considerable amounts of HPO4

2– remained in 
the water column at the end of the experiment relative 
to background HPO

4

2– concentrations.  The highest 
rate of uptake of P was found when P was added alone. 
Phosphate supplied with nitrate or ammonium was 
taken up much more slowly in the first four hours and 
about 20% remained unassimilated even after 3 days 
(Fig. 5).  Thus, this study suggested that N is the most 
limiting nutrient to U. reticulata.  Considering the  
difference between treatments fertilized with two 
forms of N, with or without added P, we found 
that N uptake rate was slightly higher when it was 
added alone than in combination with P. Uptake of 
P was highest when offered alone rather than with 
an added source of N. Phosphate (> 1 μM) has  
been shown to inhibit N uptake in a marine   diatom 
as reported by Terry40. On the other hand, high 
concentrations of N (>100 μM) were thought 
to inhibit HPO4

2– uptake41.

Effect of nutrient supply on growth, chlorophyll, 
and tissue nutrient concentration of Ulva reticlata

Both P and N enrichment resulted in an increase 
of biomass after 4 days of incubation and the biomass 
continued increasing over the 7 days of the experi-
ments.  The maximum growth rate was found when 
NO3

– was added alone, demonstrating the large NO3
–  

uptake capacity in U. reticulata.  This could give it 
an advantage by being able to grow well on stored N 
for several days without additional nutrient supplies.   
U. reticulata can take advantage of temporary surges 
of nutrients.  Some studies have shown that excess 
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N is stored primarily in pools of inorganic N (NO3
–

and to a lesser extent NH4
+) and simple organic  

compounds19. We have shown that N supplied as NO3
– 

can be stored by U. reticulata as NO3
– but it is less  

capable of storing N supplied as NH4
+.  The algal 

growth rate was significantly higher when N was added, 
indicating that N is the most limiting nutrient to  
U. reticulata.  Chlorophyll-bound N typically changes 
in response to macroalgal N status42. It is largely  
considered as a metabolically active pool, but because 
of its small size is not considered to be significant for 
N storage35. Nevertheless, chlorophyll content can be 
used as a useful index of conversion of N sources into 
organic N because chlorophyll is so easily assayed. 

As noted earlier, photosynthetic pigment  
content is sensitive to the N status of the alga.   
N-enrichment was followed by an increase in chloro-
phyll content 4 days after treatment and chlorophyll 
concentration decreased at day 7 when the water column 
N was depleted probably due to growth and a lack of 
sufficient ambient N for continued synthesis of new 
chlorophyll.  This effect is probably due to cell division 
because the doubling time for U. reticulata under  
favorable conditions is about 4.6 days.  At day 4 the 
cells had large amounts of chlorophyll but by day 7 
the cells had largely divided and so the amount of  
chlorophyll per cell had dropped.  The maximum  
chlorophyll content was found on day 4 when NO3

– was 
added alone (0.62 mg g–1 FW).  This could be a result 
of the larger molar amount of N added as NO3

– than 
as NH4

+ in the experiment in this study.  A tissue N:P 
ratio greater than 12–24 is indicative of P limitation, 
whereas a ratio less than 8–16 is indicative of N  
limitation for Ulva fenestrata13. Our results showed 
that U. reticulata was limited by N in all treatments 
and also limited by P in NH4

+ and NO3
– treatments. 

The initial N:P ratio of U. reticulata in this ex-
periment was 6.69 ±  0.57; this should have been a  
N-limited experimental condition. 

In conclusion, Ulva reticulata can take up large 
amount of nutrients, particularly N.  Added N results 
in rapid increase of chlorophyll concentration, tissue 
nutrient concentration, and biomass. These give  
U.reticulata a selective advantage to form dense 
blooms in only a few days.  For example, a relative 
growth rate of about 15.1% per day is equivalent to 
a doubling time of only about 4.6 days.  Since our 
results indicate that the most limiting nutrient to  
U. reticulata is N, top priority should be given to  
limiting N loads to avoid blooms of U. reticulata.  
We suggest that N concentration in the sea and point 
sources or in the receiving water should be mea- 
sured to provide evidence for the most important 

contributors of N in order to recommend some 
appropriate action.  However, Ulva reticulata is able 
to take advantage of surges of nutrients from storms, 
sewage  overflows, draining  of  prawn  ponds, etc., which 
could easily be missed in routine sampling schedules. 
Ulva reticulata would be useful for biomonitoring 
provided that only short incubation periods consistent 
with its rapid growth cycle are used7,19,43.
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