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AsstrRACT: The electronic properties of self-assembled InAs/GaAs quantum dots are investigated theoretically.
The ground-state transition energies for quantum dots in the shape of a cube, pyramid and “truncated
pyramid” are calculated and analyzed. We use a method based on the Green’s function technique for calculating
strain in quantum dots and use an efficient plane-wave envelope-function technique to determine the
ground-state electronic structure of the quantum dots having different shapes. Based on these results, we also
calculated permanent built-in dipole moments and compared with recent experimental data. Our results
demonstrate that the measured Stark effect in self-assembled quantum dot structures can be explained by

including linear grading.
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INTRODUCTION

Progress made in the growth of “free-standing”
(e.g., colloidal) quantum dots and in the growth of
semiconductor-embedded (“self-assembled”) dots has
opened the door to new and exciting spectroscopic
studies of quantum structures. The last decade has
witnessed an intensive research effort focused on the
physics of semiconductor quantum dots (QDs). Self-
assembled InAs-GaAs quantum dots provide nearly
ideal examples of zero-dimensional semiconductor
systems'*and are hence of considerable contemporary
interest for the study of new physics and potential
device applications. However, very little is known about
their detailed atomic and electronic-structure,
including, for instance, the form of the ground-state
electron and hole wave functions. Therefore, to model
and hence to control the optical and electronic
properties, precise knowledge on alevel as fundamental
as the electronic-structure would be desirable. Initial
structural studies of uncapped Stranski-Krastinow dots
suggested a pyramidal shape,” and several groups
therefore conducted theoretical investigations into the
structure of ideal pyramidal dots.'" The typical
schematic diagram of an InAs pyramidal quantum dot
and InAs wetting layer is as shown in Fig 1.

More recent structural study demonstrated that
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Fig 1.Schematic diagram of an InAs pyramidal quantum dot
and InAs wetting layer together with axes referred to in
the paper.

both the dot shape and size could vary with the growth
conditions. In addition to the ideal pyramidal shape,
more recent works have also provided evidence for
“truncated” pyramids,'? lens-shaped dots, " cone-shape
dots,'* as well as showing that In and Ga compositions
can also vary through the dot.""" These have revealed
rich and sometimes unexpected features such as
quantum-dot shape-dependent transitions, size-
dependent (red) shifts between absorption and
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emission, emission from high excited levels, surface-
mediated transitions, exchange splitting, strain-induced
splitting, and Coulomb-blockade transitions. These new
results have promoted the need for developing suitable
theoretical tools capable of analyzing the electronic
structure of quantum dots.

The first theoretical study of the electronic
properties of these structures used the single-band
effective-mass theory to calculate the energy levels and
wave functions in InAs/GaAs cone-shape quantum
dots.'* The strain was taken to be a constant in the InAs
material and zero in the surrounding GaAs barrier.
More recently, the single-band theory was used for
InAs/GaAs dots with a more realistic pyramidal
geometry. ° The variations of the strain in and around
the InAsisland were determined using elastic continuum
theory, in which the atomic nature of the constituent
materials was neglected. Both approaches neglected
valence-band mixing, and the strain dependence of the
effective masses. Figures in most theoretical papers on
ideal pyramidal dots show the presence of a permanent
dipole in the dot, due to the large built-in strain fields
which localize the highest energy hole state near the
bottom of the pyramid. Therefore, it sits underneath
the lowest-energy electron state in the dot. Because of
the built-in dipole, QD structures should exhibit an
asymmetric Stark shift in the presence of an applied
field. As an electric field F is applied, the transition
energy E_ between the ground-state electron and hole

levels will vary quadratically as B (F) = E1 (0)— pF + BF*,
where E_(0) is the zero-field transition energy, p
depends on the built-in dipole, and  is a measure of
the polarizability of the electron and hole wave
functions. Asymmetry in experimental measurements
of the Stark shift has indeed revealed a built-in dipole
both in InAs/GaAs,'®and also in Al In, As/Al Ga, As
quantum dots but, surprisingly, the ditection of the
dipoleis opposite to that predicted from the theoretical
calculations, with the hole center of mass above the
electron center of mass in both cases. Some recent
theoretical works have explained this “inverted”
alignment by assuming composition grading in the
pyramidal InAs QDs. !¢

In this paper, we use a theoretical investigation of
different shape and size influencing the sign and
magnitude of the built-in dipole in QDs with cubic,
pyramidal and “truncated” pyramidal shapes. Here we
consider three kinds of common shapes of quantum
dots with constant composition, and show whether
these can lead to the correct sign in the built-in dipole
moment, compared to that observed experimentally.
The calculations were undertaken using separate one-
band Hamiltonian equation for the electrons and holes.
We also present a simple method for calculating strain
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fields in quantum dots, but neglecting anisotropy. As
result of our work, we show conclusively that the
measured Stark effect in self-assembled quantum dot
structures can be explained by including linear grading.

MATERIALS AND METHODS

The calculations were performed for a three-
dimensional superlattice of dots, with superlattice unit
cell size 2B x2B x2B_. A Schrodinger equation for the
system was solved using a plane-wave envelope-
function technique. The normalized envelope wave
functions ¥, (f)are determined using a Fourier series
expansion

‘Pn(r):;ﬁexp(iﬁr), (D
where k=n(m/B,,n/B,,p/B,) and F=(xy,z). We
choose the separation between neighboring dots to be
equal to the dot dimension in order to minimize cross
interaction, while also ensuring efficient convergence
of the Fourier series. We first describe here the general
method and then discuss the particular form of the
strained one-band Hamiltonian equations used. The
Schrodinger equation here is
HY, =E,Y¥, )
Using the plane-wave basis, we substitute (2) with

(1)and then leaving Jm“‘p( -i-n forintegration under

periodic boundary condition. The energy levels and
eigenfunctions were found by solving the large
Hamiltonian matrix equation

D HppAL =E AL, 3)
K

Hyp = I

Inorder to set up the Hamiltonian matrix of Eq. (3),

8B B D ——exp(— —ik’ r)H(r)[eXp(lk T)] @

x-y-Tz

we must first evaluate the matrix elements H , linking

plane-wave basis states of wave vector k and k’. The
misfit of lattice constant of the quantum dot material
will generate a non-uniform strain distribution
throughout the dot and the matrix. Both the electron
and hole Hamiltonian equations contain terms
depending on this local strain distribution. The
calculation of the spatial strain distribution in a QD
structure requires the solution of a three-dimensional
problem in elasticity theory. This is often achieved by
using finite-difference or atomistic technologies,®"
which require considerable computational effort. A
method based on the Green’s function technique for
calculating strain in quantum dot structures was
recently presented.*® An analytical formula in the form
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of a Fourier series has been obtained for the strain
tensor for arrays of QDs of arbitrary shape taking
account the anisotropy of elastic properties. Of equal
or greater importance, the technique isalso particularly
well-suited asinput for electronic structure calculations
based on the envelope function method using a plane-
wave expansion technique, because the strain-
dependent matrix element linking any pair of the plane
waves can be determined analytically. We use this
approach to directly determine the strain-dependent
terms in the Hamiltonian matrix. We assume for
simplicity that the dot and matrix elastic constants are
equal and isotropic, with the values given in Table 1.

We derive the electron and hole envelope function

Hamiltonian equations from one-band k-P theory.2"?2

The electron Hamiltonian is given as

I8 B R R
mv +V, +ag, (H+d, (D+eFz, (5)
where m"(7) is the electron effective mass, V_the
edge,a.zg, () the
hydrostatic deformation of the conduction band edge,
and d,.(v) the piezoelectric potential. The strain-

unstrained conduction-band

induced band deformation causes the effective-mass
parameters to vary from their bulk values. The variation
of the electron effective mass with the (hydrostatically)
strained band gap, E , is given as

1B E,(F)

3E, (1) 3[EL(T)+Ay(D)] o ©)

m”* ()
where E,(r) is the Kane interband energy
parameter, §(t) takes into account the contribution of
remote bands to the conduction-band effective mass,
and a,(r) is the spin-orbit splitting energy.
Substituting Eq. (5) into Eq. (4), the expression for

Hiphas the form

H7A /r_
kK BBBB

x 2y =z

+Vc+acghy(r)+dpz(r)+er] @)

L +k2+k?)

where k”=k-k’. We define the characteristic function

of the dotX(T) in the supercell (1 for InAs, 0 for GaAs),
and take the lattice mismatch of the dot to be 6.7% for
InAs in GaAs. It can be shown for an isotropic elastic
medium that the Fourier transform of the real-space
strain tensor component &,(t) is given by (k”#0),*

” on

3h+2u ki k;
A+2u 2

(kM) =g 1 (K" 8, — =

, (8)

where A=C ) and pu=C,, are the Lamé constants for an

isotropic elastic medium. x(k")is the Fourier transform
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Table 1. Parameters used in this paper.
Parameters InAs GaAs
o 19.67 6.85
2 8.37 2.1
Eg 0.418eV 1.519eV
A, 0.38eV 0.33eV
Ep 22.2eV 25.7eV
m,,, (0 K) 0.023 0.067
a_ -5.08 -7.17
a, 1.00 1.16
e, /e x10~cm -2.97 -12.49
V(300 K) 0.621eV 1.428eV
v, 0.265eV 0.000eV
V_+ae, (300 K) 0.994eV 1.428eV
Vag, 0.192eV 0.000eV

C,,=11.9x10'°Pa
C,,=5.38x10'%Pa
C,,=5.95x10'°Pa
b, =1.8eV

g (InAs)=15.15

of the dot characteristic function.
For the case of isotropic elastic constants, evaluation

of the analytic form of H;, isatrivial matter for all but

the piezoelectric termin A (). In order to evaluate this
term, we use the analytic expression of Ref. 23 for the
Fourier transform of the piezoelectric potential (z” » o),

. ”k "
XK -

b\r

k'

3 (E’):’liﬁ[cu’fzcu]
0,21 C, odot bur N (9)
N R AL L
B3> &
where &, o and o are the permittivity of free space
and relative permittivity of the dot and barrier material,
dot

respectively. efy' and e} are the piezoelectric constants.

From experiment, Stranski-Krastanow quantum
dotshave alarge base-to-height ratio. The kinetic energy
in the x-y plane is thus reduced relative to that in the
growth direction, leading to stronger heavy-hole
confinement and weaker light-hole confinement. The
one-band valence Hamiltonian we use for the hole
ground state is then given as

2
1,0 == {1 O+ 10V + [0 - 27,0]V2)
0 (10)
+V, +2,8, (D)= b, &, (1) +d,,(F)+eFz

where V is the unstrained valence band-edge energy,
a,&, () the hydrostatic deformation of the valence-
band edge, and -b, e, (¥)the axial-strain-induced shift

ax™ax

in the heavy-hole band edge. In a similar way, we can
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obtain the Hamiltonian matrix H, , for the valence band.

The following calculations were carried out assuming
room temperature energy gaps and effective masses.
In order to correctly describe the one-band Luttinger

parameters Y.(F), we first relate them to their eight-

band counterparts, v, (7). In the full eight-band
Hamiltonian, the interactions between the conduction-
band minimum and valence-band maximum are

considered explicitly, with ¥: (T) then due to interactions
with remote bands, and assumed to be independent of
the built-in strain and the lowest-energy gap. The eight-

band “{,,(f) values are related to the one-band values
byZ‘kZS

E ()
6E, ()

‘®=1-2 B =y,
T )=7 3Eg(?) SR I=T,

(11
where E_is the unstrained band gap. The energy gap
g

changes in a strained material, so that the one-band
Luttinger parameters will also change in a strained
inclusion, as

Y=, <f>+%(§) BO=1 0+ ;g:(?) .

The parameters used are tabulated in Table 1. We
calculated the parameter values for InAs in a GaAs
matrix, and for unstrained GaAs. We obtained stain-
renormalized one-band effective masses of y,=10.601,
¥,=3.253, and m'=0.042. Finally, we assume the GaAs
values for the elastic constants in the dot and
surrounding matrix. Thisassumption has been justified
previously, based on Keye’s scaling rule for elastic
constants.?°

(12)

ResuLts AND DiscussioN

InFig2(aandb), we give the variation of the ground-
state electron and hole confinement energies, and
calculate different shapes of quantum dots as a function
of dot size, with a base to height ratio of 2:1. The results
for pyramidal quantum dots are in good agreement
with previous calculations.®®We also calculate ground-
state confinement energies for “truncated” pyramidal
quantum dots and cuboidal quantum dots and find
that electron and hole confinement energies become
closer as the quantum dots become flatter. We defined
truncation factor f as the bottom part of a full pyramid
of height 2B /(1-f). The conduction-band spacing is in
the order of 100 meV between cuboidal and
“truncated” pyramidal quantum dots, and 150 meV
between “truncated” pyramidal and pyramidal
quantum dots. It can be explained that symmetry of the
QD shape takes great effect to the quantum-confined
ground energy of electron. The hole spacings are much
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Fig 2.Ground-state electron and hole confinement energies
(300 K) as a function of dot size for InAs quantum dots
of base: height ratio 2:1, pyramidal quantum dots
(dashed line), “truncated” pyramidal quantum
dots"Ctruncated factor f=0.75 (solid line), and cuboidal
quantum dots (dotted line).

smaller due to their higher effective mass. Fig 3 shows
the calculated difference between the electron and
hole ground state energies for the dot structure
considered in Fig 1 when the electric field is applied
along the z-axis. We have defined the applied field to
be positive when it results in the conduction- and
valence-band edges moving to higher energy above the
dotand to lower energy below the dot, as illustrated in
Fig 3.

It can be seen that the transition energy varies
quadratically with the applied field, so that

Er(F)=E(0)—pE+pF>. The linear coefficient p

dependsdirectly on the initial separation of the electron
and hole mean positions, i.e, on the built-in ground-
state dipole moment of the dot. The peak transition
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Fig 3.Ground-state transition energy (300K) as a function of
applied field for pyramidal dots having base width 12
nm and height 6 nm. The solid line shows the theoreti-
cal calculation and the dashed line shows the quadratic
fit to it. Insert: variation of the band edge with position
for F>0.

energy is seen at positive field in Fig 3, consistent with
anegative dipole moment. Using quadratic fit in Fig 3,
we get the dipole d=-p/e, withd = -8.2A. By contrast,
experimental Stark shift measurements both on InAs/
GaAs and In Ga, As/Al Ga, As'® QD structures show
the peak transition energy at negative fields. The
experimentally observed built-in dipole is therefore of
opposite sign to that predicted from Fig 3, with the
hole-electron separation d = 4.0£1A in Ref. 18.

We therefore conclude that the structure of these
buried Stranski-Krastinow-grown dots must be largely
different from an ideal constant composition pyramid,
and now turn to consider which dot structures are
consistent with the experimentally observed sign in the
dipole. Fig4 shows the calculated dipole ina “truncated”
pyramidal dots of base width B=18 nm and height H=5.5
nm as a function of “truncated” factor, f. The value
assumed for H is similar to the value estimated from a
TEM analysis of uncapped dots.'® f represents the
fraction of the total pyramid height removed so that the
height of the full pyramid is 22 nm. Changing from a
cuboidal to a pyramidal geometry, the increasing
anisotropy of the dot shape modifies the axial strain
fields to move the heavy hole more rapidly away from
the top surface of the dot and toward the dot base than
the ground-state electron, and the magnitude of the
electron-hole separation increases. If the hole is to sit
in the upper part of the dot, above the electron, we
require a deeper heavy-hole potential at the top of the
dot than at the base. The heavy-hole potential can then
be deeper at the top than at the base if the dot is formed
from an In Ga,_As alloy, with indium composition, x,
increasing from base to top. We have assumed a linear
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composition gradient, but recent work suggests that
the true composition profile may be more complicated.
The solid line shows a linear graded cuboid, for which
d=0 when x=1 at the base, with the d increasing to a
maximum value ~7 A near x ~0.3 at the base. A similar
trend is observed for the “truncated” pyramid with
f=0.75 (dashed line). We see from Fig 4, the correct sign
of dipole can be obtained by including the composition
gradient. We have omitted the influence of the wetting

0.8 T T T T T T T T

0.6

0.4

0.2

Dipole [nm]

0.0

0.2+ «

0.0 0.2 04 0.6 0.8 1.0

Indium Mole Variation

Fig 4.Dipole (300 K) as a function of composition gradient
for dots of base width of 18nm and height of 5.5 nm,
graded from InxGal-xAs at the base to InAs at the top
of the surface. The solid line are results for cuboidal dots
and the dashed lines are results for "truncated" pyrami-
dal dots (f=0.75).

layer from calculation because the grading must be
stronger in the presence of the wetting layer.

CoNCLUSION

In thisarticle, we have used an efficient plane-wave
envelope-function technique to determine the ground-
state electronic structure of dots with three types of
shape. We have presented a method based on a Green’s
function approach to calculate strain distributions in
QDs. We have noted that this calculation method is also
particularly appropriate as an input step in calculations
of the electronic structures of quantum dots. We have
used one-band electron and hole Hamiltonian
equationsto investigate the different factors influencing
the magnitude and sign of the built-in dipole in strained
quantum dots. We have demonstrated that the built-in
strain will always lead to the hole center of mass lying
below the electron center of mass in a constant
composition dot with common shapes. The calculated
dipole momentis of the opposite sign to that determined
from the recent quantum-confined Stark effect
experimental measurements. Our results demonstrate
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conclusively that the measured Stark effect in self-
assembled quantum dots with different shapes and
fixed compositions can be explained theoretically by
including composition gradients.
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