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AsstracT The new compressible low-Reynolds-number g-Z turbulence model is developed via the pressure
dilatation model in order to account for the compressibility effects. The effects of the turbulent Reynolds
number, the turbulence Mach number and the ratio of the production to the dissipation rate of square root
of the turbulence kinetic energy are incorporated in the model for the pressure-dilatation correlation. The
efficiency of the proposed model is evaluated using the compressible turbulent boundary layer flow on a flat
plate at subsonic and supersonic speeds as a test case. It is found that the predicted results from the proposed
model are in good agreement with the universally accepted data especially in the outer region of the

boundary layer.
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INTRODUCTION

The effect of compressibility to turbulent flows is
found to be important for the flows through gas turbine,
propulsion and supersonic airplane where the density
changes rapidly and strongly. There are several terms
directly reflect the effect of compressibility on the
turbulence structure. Among these are the dilatation
dissipation, the pressure dilatation and the enthalpy
production. However, the present work is focused on
the pressure dilatation term. The pressure dilatation is
investigated to account for the extra source term that
appears explicitly inthe turbulence transport equation
for compressible turbulent flows, due to the non-
divergent fluctuating velocity field. The pressure
dilatation refers to the work done due to simultaneous
fluctuations in the volume of the fluid cell corresponding
tothefluctuationsin pressure and can be either positive
or negative. The negative value represents adissipation
effect on the kinetic energy of the fluctuations and the
positive value represents a production effect. The
correlation between the pressure and the dilatation
was found to play animportantrole in the exchange of
energy,* which is also a specific phenomenon for
compressible flows and can change the amount of
turbulence kinetic energy rapidly.

The effect of pressure dilatation on the turbulence
structure is a difficult issue in turbulence modeling.
Modeling issues in both the production and dissipation
of turbulence kinetic energy need to be addressed to
account for Mach number effects. The modifications
of this model were proposed by Zeman,* Sarkar,? El Baz
and Launder,® Krishnamurty and Shyy,* and Lejeune
and Kourta® to simulate the effect of this dilatational

term. Fujiwara and Arakawa® have attempted to
correlate the pressure fluctuation and the dilatation
terms based on the direct numerical simulation (DNS)
data of compressible isotropic and homogeneous
sheared turbulence. They have found that the
correlation between these two terms can be devised to
reflect the effects of turbulence Mach number and the
ratio of the production to dissipation rate of turbulence
kinetic energy. Different expressions of the pressure
dilatation model proposed by different researchers
have been studied and it is found that the pressure
dilatation model proposed by Fujiwara and Arakawa®
gives the most accurate results for predicting the
characteristics of compressible turbulent flow.
Furthermore, the model is easily applied to wider
applicationsand simple to solve. Therefore, the model
of Fujiwara and Arakawa® is modified in this work for
using with the compressible low-Reynolds-number g-
( turbulence model.

The study of compressible turbulent flow is
governed by the conservation of mass, momentum,
energy and state equations. The turbulent effect is
taken into account by the compressible low-Reynolds-
number g- turbulence model proposed by Gibsonand
Dafa’Alla” to improve the prediction of the flow
characteristics near the wall, where the two dependent
variablesareq (= ﬁ )and { (=€/2q). Thesquare root
of turbulence kinetic energy (q) is preferred to the
turbulence kinetic energy (k) because in the region
very close to the wall, g varies linearly with distance y.
The destruction rate of the square root of turbulence
kineticenergy () is better behaved than the dissipation
of turbulence kinetic energy (€). Furthermore, both g
and C are zero at the wall and numerical problems are
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alleviated because there is no need to calculate terms
like b =2vfpvk /ayf, which are needed to provide a
derived boundary condition for € in the k-€ model.

The g-{ model was validated using the DNS data of
channel flow and boundary layers,” and it was then
applied to the calculation of the flow over 2D backward
facing steps by Gibson and Harper.2 The results showed
that the g-¢ model compared well with the k-€ model
in separated flows behind the steps even with the use
of coarser calculation mesh. Inafurther development,
Dafa’Alla, etal **°applied the model to boundary layers
with periodic variation of free-stream velocity and time-
mean adverse pressure gradient, and Gibson and
Harper! calculated the heat transfer from animpinging
jet. The predictions compared well with the
corresponding experimental data and with the k-¢€
model, and the g-¢ model was the more economical
with coarser grids and less computing time required
for convergence compared with the other methods.

The presentwork aims to develop and evaluate the
efficiency of the proposed compressible turbulence
model for the flow predictions in steady compressible
turbulent boundary layer past a flat plate by applying
the low-Reynolds-number g-C turbulence model
together with the pressure dilatation model of Fujiwara
and Arakawa.®

GoVERNING EQUATIONS

Compressible flow is governed by the continuity,
Navier-Stokes, energy and state equations. For
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weighting technique called Favre averaging and the
resulting solution represents the mean quantities. This
technique gives rise to the extra-unknown terms that
cause a closure problem. This problem can be solved
using an appropriate turbulence model. For steady
two-dimensional mean flow, the governing equations
with the turbulence model can be expressed in terms
of tensor notation as follows:

Continuity Equation

opli _, 1)
dxi

Navier-Stokes Equation
0,y 0 )
aTj(PUin)—GTj(tij +Tij)‘67 )

where

ti=p o, % 25 ol ®
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and T is from Boussinesq approximation'
[}

turbulentcompressible flow, these governing equations = Ut u, u] H_ B T 2 5ij§q2
are essentially time-averaged using the density- X 0X| H 3 ax a 3
@)
Energy Equation
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and
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Compressible Low-Reynolds-Number g- Turbulence Model
The eddy viscosity ( Lt ) can be defined as
3
_ 8
Ht = pcpfp 37 ( )
The Favre-averaged equations for g and  are given by
Eﬁ 6q Lt oG ouf )
—(p Jq)—— o+ uta > —— —PL+p —
X D q an an
axJ GZ HOXJ g EPX OXyc H
, 2 4 00 (10)
-pCoofrp ~——-—-p(—+
PCz2fz2 q 3PZan pY
E
where oz, Cz1fz1,Czafz2 and @ are equivalent too, ,2C,,f,; —1,2C,,f,, -1 and 2q fespectively, in the low-

Reynolds-number k- € models. The constants (0, 0¢, Cyi, Ce1, Ce

» ), damping functions (fsl,fsz) and E are

adopted from the low-Reynolds-number k- model of Launder and Sharma*® in Table 1.

The extraterm E is
E =2t H 62 g
EPX 6xk H

The damping function (f,, ) proposed by Gibson and
Dafa’Alla’ is written as

i i

u Ret
fu= expﬂi +3exp%;%
% Rep g 10 (12)

50

(11)

Table 1. Constants and damping functions of Launder-
Sharma k- € turbulence model'?

Variables Model constants
and damping functions

o, 1.0

(¢:3 1.3

Cu 0.09

Ce, 1.44

Ce, 1.92

fe, 1.0

fe, 1-0.3 exp (-Re?)

where the turbulent Reynolds number is defined as
3
Ret = —

Equation of St

p a{v 1oy -k - a?)

(14)
Sutherland’s Law 3
TR T, +110
H = He ELBZ ~
E[Too H T+110 (15)
Prandtl Number UG
Pr = "
T (16)

Pressure DiLatatioN MobDEL

The pressure dilatation term is resulted from using
Favre-averaging on the square root of turbulence
kinetic energy equation that representsin the last term
of Equation (9). The model for pressure-dilatation
correlation incorporates the effects of the turbulent
Reynolds number (Re,), turbulence Mach number (M,)
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and ratio of the production to the dissipation rate of square root of the turbulence kinetic energy (P /Z)
The model can be expressed as (Fujiwara and Arakawa®)

L oul T 2 a2
po = P = fnapiid? (17)
j
where and are the pressure variance and the dilatation variance, respectively.

The pressure variance is related to the velocity fluctuation and the function of the ratio of production to
dissipation rate of the square root of turbulence kinetic energy as:

2 = C,pa2 (18)

Pq
where C, =Cpy +Cpp 7

Thedilatation variance appears in the dilatation dissipation term (¢) and is related to turbulence Mach number
as:

a2 ocm ¢ (19)
\%
where M, = 9 and is the speed of sound.
a

The correlation coefficient (f1 ) is included in the magnitude part and the sign part. The magnitude part
depends on the turbulent Reynolds number and the sign part depends on the effect of Pq/Z.

O
fnd = -Cnd tanhd Cre_Cann P9 oo, SD

HyRey HCpe H (20)
Finally, a model for pressure dilatation is

P
= -Cpg+/Ret tanh anhLB—O 50Co; +Cpo ng [o14
ne % HCpe F % PTH™ (21)

— _ unull au| Mt =
PUY] X /yRT and the constants are as in Table 2. The expression in the above

where
equation shows that the pressure dilatation model isa function of the turbulent Reynolds number, the turbulence
Mach number and the ratio of the production to the dissipation rate of square root of the turbulence kinetic
energy.

NumericAL SoLuTioN PROCEDURE

The finite volume method is used to numerically solve the governing equations, which can be written in a

general form as follows:
0 09
_ + S(p
ox; S (o) = ox; %L ax; E (22)

Table 2. g,?”f*?ms for c';“jli"js’o’o and Arakawa pressure  \yhere isthe general dependent variable, is the effective
fatation modef. diffusion coefficient, and is the source/sink term of . To

Variables Model constants simulate the internal flow with variable cross-sectional
c 1.0 area and the external flow past an object of complex
;’f 0.4 shape, the general form of the governing equations is

" 0.3 essentially transformed from the physical domain into

c
gnd 38-[13 the computational domain using the following equation:
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Using the finite volume method, the computational domain is divided into anumber of control volumes. The
transformed equations can be integrated as follows:

[(puan)@lS, +[(pvag)qD = Er?” Eugi; - BS?% Erg gr‘f Ba‘p% + (JDEAN)ST (24)

where s is the mean value of s® at the center P of each control volume, and (e, w, n, s) are the east, west, north
and south faces of each control volume. The convection terms are approximated by the first-order upwind
differencing scheme and the diffusion terms are estimated by the second-order central differencing scheme.
Therefore, the standard form of the finite volume equation can be obtained as

(pp A(pE+A (p\,\,+A(p,\,+A(pS+b“D (25)

where

_ An _ An
Ag = %a a +max[0,~(puUAn)e] AY, = %a AE%, +max|0, (pUAn) ] -

>
£

_g 88 _ o AL
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@ _pQ ) () ()
AP‘AE+AW+AN+AS’

b® = (Jngan)Sy - ér%% % rAE g?%

The standard SIMPLE algorithm?* is employed here to satisfy the conservation law of mass. The continuity
equation is not solved directly with other governing equations. The p'-equation is solved instead to obtain the
pressure correction prand its value is used to correct the values of pressure and velocities to satisfy the
conservation law of mass. The p'-equation can be written in a standard form as follows:

APPp = ABPE + AfPiv + ARPN *ASPS +mp (26)

where
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_ Ar]’p_%)Ar]’ AE[ A
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u*and y* are calculated from the resulting velocities of the Navier-Stokes equations, whereas

B:Bual_Bval,C:Cval_cual 27)
on on 0¢ 0¢
where
_A&An oy BY = AEAN ox cu = AEAN oy cv = _A&An ox

Bu: 1 1 H .
u \" u \"
Ap on AS on Ap 0% A3 0¢

In general, the standard SIMPLE algorithm is implemented on the staggered grid system to prevent the
decoupling between the velocity and the pressure. However, the staggered grid system is technically rather
complicated for programming and requires a large amount of computer storage. This drawback becomes obvious
when the computer program is developed further for real-world applications. The collocated grid system is
employed in this work so that all the variables are stored at the center of each control volume. The problem of
velocity-pressure decoupling is solved by the Rhie and Chow interpolation® where (UZ, U*W, v, V:) are
calculated from the appropriate pressure gradient.

ResuLts AND DiscussioN

The test case for compressible turbulent flow over aflat plate is chosen in this work to evaluate the efficiency
of the compressible - turbulence model together with the pressure dilatation model in predicting the compressible
turbulent boundary layer. According to grid independent study, a grid of 151 x 151 nodes in cross-stream and
streamwise directions is used respectively. The schematic representation of flat plate can be seen in Fig 1.

The performance of the model is evaluated via the closeness of the compared parameters to the universally
accepted datain comparison with the conventional compressible g- turbulence model. The compared parameters
and the universally accepted data are shown in Table 3. The comparison will be presented for parametersat Mach
number 0.82 and 1.50.

u,v.,k, & .
, extrapolation
€r,pP,P
u=U,_ Initial Conditions
v=0 u=U_ p=101325kPa
k=0 v=0 p' =0
e=0 k=0 u
2 —
er =C, T+ o e=0 v
2 p=101325 kPa k extrapolation
g T=300K ey
p extrapolation
T=300K
u=v=k=g=0
er =C,T
p extrapolation
o _

0
on

Fig 1. Schematic representation of computational domain.

Table 3. The comparisons between the compared parameters and the universally accepted data.

Compared parameters Universally accepted data
Velocity distribution for inner region Law of the wall
Velocity distribution for outer region Maise and McDonald'®
Velocity distribution for outer region Fernholz and Finley!”

Skin friction coefficient distribution Nash and MacDonald'®
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Inner Region
The law of the wall represents the velocity profile
outside the laminar sublayer and in the logarithmic
region (3.6 <y*<8.0), which is expressed as
ut 1, o,
—==Iny"+c¢
u, K
where the values of constants k and were taken as
0.4 and 5.1, respectively.
The transformed velocity (u®) that is derived
from the Van Driest transformation?® and the concept
of temperature recovery factor (r) is given by

U 0
~ %bzfvi—am
Us . - u
ut = Ddgptl B0

(28)

(29)
b D/a2+4bzg
B B8
where
azggﬂv poand p2 = Y"1z Ts
Tw H 2 °Ty

Fig 2 shows the velocity distribution of the turbulent
boundary layer on a flat plate at Mach number 0.82
where the computed results are compared with the law
of the wall. Itisfound that in the logarithmic region, the
velocity distribution of the model with pressure
dilatation shifts from the law of the wall. Thisis because
the pressure dilatation model takes into account the
damping effect of pressure variation near the wall that
resultsin the increase of the velocity distribution in the
boundary layer.

The velocity distribution at Mach number 1.50 is
shown in Fig 6. The deviation of velocity distribution
of model with pressure dilatation is higher than the
case of Mach number 0.82 because the effect of Mach
number on the velocity distribution is brought to bear
through the increase of temperature in the direction of
thewall.

Outer Region

Maise and McDonald*® correlation extends the
validity of the Van Driest transformation to the outer
region of boundary layer by introducing u” into the
velocity defect law with afinite wake component. In the
experiment of Motallebi®, it also predicts the correct
trend of the data. Maise and McDonald correlation is
defined as

% *
ts ~ U :—2.5Inx+1.25§+cosBTX% (30)
u e O 0o

T

where uT = VTw / Pw .
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Fig 3 and 7 show the velocity distribution of the
turbulentboundary layer on aflat plate at Mach number
0.82and 1.50 respectively, where the computed results
are compared with Maise and McDonald correlation.
Itis found that the computed results of the developed
model are in good agreement with this correlation at

outerregion (0.2<<<1.0). Thisisaconsequence of the

pressure dllatatlon model in the compressible
turbulence model.

Fernholz and Finley!” have achieved a better
correlation for the outer region of boundary layer with
a semi-empirical semiempirical relationship. In this
expression, the constant terms are obtained from a
correlation of experimental data. Fernholz and Finley
correlation compares very well with the experimental
data of Motallebi.?® Fernholz and Finley correlation is
defined as

* *
L|5 —u

47In——674 (31)

where A" —6IHJ5 u EGDE')D

Fig 4 and 8 show the comparison of velocity
distribution with Fernholz and Finley correlation at
Mach number 0.82 and 1.50, respectively. It is found
that the results of the model with pressure dilatation
are closer than the model without pressure dilatation.

Skin Friction Coefficient

The skin friction coefficient values are deduced
using the expression proposed by Nash and
MacDonald¢correlation, which dependson the integral
quantities of boundary layer. Nash and MacDonald
correlation is expressed as

%f - %é/2[2.47llln(FR Reg) +4.75] + )
1.5G + % - 16.87@ (32)
inwhich
FL/2 =1+0.066M32 - 0.008M3u (33)
Fr =1-0.134M2 +0.027M3 (34)
G=6.1p+1.81-1.7 (35)

with 3 = 0 in the present work.
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Fig 2. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 0.82 for inner region.
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Fig 3. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 0.82 for outer region (compared with the
Maise and NcDonald correlation).
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Fig 4. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 0.82 for outer region (compared with the
Fernholz and Finley correlation).
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Fig 5. Skin friction coefficient distribution of the turbulent boundary layer on a flat plate at Mach number 0.82.
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Fig 6. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 1.50 for inner region.
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Fig 7. Velocity distribution of the turbulent boundary layer on a flat plate at Mach number 1.50 for outer region (compared with the
Maise and McDonald correlation).
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Fig 8. \elocity distribution of the turbulent boundary layer on a flat plate at Mach number 1.50 for outer region (compared with the

Fernholz and Finley correlation).
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Fig 9. Skin friction coefficient distribution of the turbulent boundary layer on a flat plate at Mach number 1.50.

Fig5and 9 show the comparison of the skin friction
coefficient distribution with Nash and MacDonald
correlation at Mach number 0.82and 1.50, respectively.
Itisfound that the computed results of the model with
pressure dilatation are in reasonable agreement with
Nash and MacDonald. The effect of pressure dilatation
model causes the skin friction coefficient to increase
compared to the model without pressure dilatation for
both Mach numbers.

The deviation in the resultsis due to the coefficient
of skin friction and does not include the effect of the
laminar initial length. In reality, the boundary layer is
laminar to begin with, undergoes transition, and changes
to turbulence further downstream. The existence of
the laminar section causes the skin friction coefficient
to decrease. Additionally, the increases in the Mach
number and the viscosity result in the decrease in the
skin friction coefficient.

CONCLUSIONS

The compressibility effects are incorporated in the
low-Reynolds-number g-C turbulence model via the
modification of the pressure dilatation model of
Fujiwara and Arakawa. The effects of the turbulent
Reynolds number, the turbulence Mach number and
theratio of the production to the dissipation rate of the
square root of turbulence kinetic energy are
incorporated in the model for the pressure-dilatation
correlation. The computed results using the developed
model are compared with the universally accepted data
for two-dimensional compressible equilibrium
turbulentboundary layers. It is found that the predicted
solutions using the developed model are in good
agreementwith the experimental dataespecially in the
outer region of the boundary layer.



ScienceAsia 29 (2003)

ACKNOWLEDGEMENTS

Thisresearch is partially supported by the Thailand
Research Fund for ( to Professor Pramote
Dechaumphai), the Kasetsart University Research and
Development Institute and the Thesis and Dissertation
Support Fund, Graduate School, Kasetsart University.
Special thanks are due to Professor Pramote
Dechaumphai and Assistant Professor Ekachai
Juntasaro.

Appendix A. Nomenclature
a = parameter in Van Driest transformation; speed of sound,
b = parameter in Van Driest transformation
C, = skin friction coefficient
C, = specific heat at constant pressure
C,, = specific heat at constant volume
Cu = model constant for eddy viscosity
Ce,, Cg,, C{,, CC, = model constants for turbulence model
C.1 C,2 C,.. C,., M, = model constants for pressure dilatation model
¢ = intercept for Coles law of the wall
= extra term for turbulence kinetic energy equation
= dilatation part
= extra term for dissipation rate of turbulence kinetic
energy equation
= internal energy
= specific total energy
o Fp = parameters in Nash and MacDonald skin friction
correlation
fu = damping function for eddy viscosity
fe,, fe,, f(,, T, = model functions for turbulence model
fM,= correlation coefficient between pressure and dilatation

ma g

e
€

F

fluctuation

G = parameter in Nash and MacDonald skin friction
correlation

K = Kkinetic energy

k = turbulence kinetic energy

k. = thermal conductivity

M = Mach number

M= turbulence Mach number

p = pressure

Pr = Prandtl's number

P, = production of the square root of turbulence kinetic
energy

g = square root of turbulence kinetic energy

R = gas constant, 287 J/kg.-K for air
Re = turbulent Reynolds number
Re® = momentum thickness Reynolds number

r = temperature recovery factor, 0.89
T = temperature

t = laminar shear stress

u = velocity

ut = friction velocity

y = wall-normal coordinate
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y* = dimensionless distance from wall, yp ut/u, for inner
region and y/d for outer region

d = boundary-layer thickness

. = Kronecker delta, for and for

A"= integral length scale

€ = rate of dissipation of turbulence kinetic energy
y = ratio of specific heat, 1.4 for air
K
u

= slope for Coles law of the wall
= fluid viscosity

K, = eddy viscosity
v = Kkinematic viscosity
p = density

g, o= model constants for turbulent diffusion

T = turbulent shear stress

¢ = rate of dissipation of the square root of
turbulence kinetic energy

Subscripts

w = evaluated based on wall parameters
® = boundary-layer edge
o = freestream

Superscripts

" = fluctuation part of Reynolds decomposition
" = fluctuation part of Favre decomposition

- = Reynolds average

0 = Favre average

* = tranformed condition
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