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The main difficulties for viscous incompressible
thermal flow analysis can be classified into two
categories: (a) the complex coupling between the energy
equation and the equations governing the fluid motion,
and (b) the non-linear phenomenon of the convection
terms in both the momentum equations and the energy
equation. One successful technique for solving couple
partial differential equations, such as the governing
equations of fluid flow, is known as the SIMPLER (Semi-
Implicit Method for Pressure-Linked Equations
Revised) algorithm1, which compute the primitive
variables, namely the velocity components, the pressure
and the temperature, separately. The algorithm,
originally devised for finite difference method, has
been modified and proposed by several researchers
for the finite element method.2-4 In computing the
convection terms, the widely used technique is known
as streamline upwinding method. One successful
method was reported by Rice and Schnipke5 using the
four-node quadrilateral element. The method evaluates
convection terms directly along the local streamlines.
Calculations presented in their papers have shown that
the method is monotonic and introduces artificial
numerical diffusion. The effect of numerical diffusion
is to smear the solution in area of high flow field gradients
and hence decreases the solution accuracy.

The accuracy in a numerical solution is an important
factor that must be considered especially for large
scale problems. The solution accuracy can be increased
by using small elements in the computational domain,
but it will require additional computer time and data
storage.6 To reduce such difficulty, a technique of
adaptive meshing7-8 is incorporated in the computa-
tional algorithm.

In this paper, the procedure for computing the
convection terms in the momentum equations and the
energy equation along local streamlines passing through
triangular elements is presented. Triangular elements
are employed in order to combine effectively with the
adaptive meshing technique presented herein. These
triangular elements use equal-order interpolation
functions for the velocity components, the pressure
and the temperature to reduce the complexity in
deriving the corresponding finite element equations. A
segregated solution algorithm9-10 is also incorporated
to compute the velocity components, pressure and
temperature separately for further improving the
computational efficiency. In addition, the adaptive
meshing technique is applied to reduce the
computational time as well as the computer memory.
The technique places small elements in the regions of
large change in the solution gradients to increase
solution accuracy, and at the same time, places larger
elements in the other regions to reduce the
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"0���"��  A segregated finite element algorithm is combined with a monotone streamline upwinding method
for solving two-dimensional viscous incompressible thermal flow problems. The finite element equations are
derived from a set of coupled nonlinear Navier-Stokes equations that consist of the conservation of mass,
momentums and energy. The method uses the three-node triangular element with equal-order interpolations
for all the variables of the velocity components, the pressure and the temperature. The finite element
formulation is validated by developing a corresponding computer program and evaluated by examples of
viscous incompressible thermal flows. These examples are the thermally driven flows in a square cavity and
in the concentric cylinders. In addition, an adaptive meshing technique is also combined with the finite
element algorithm to further increase solution accuracy, and at the same time, to minimize the computational
time and computer memory requirement.

KEYWORDS::::: finite element method, streamline upwinding, adaptive meshing technique, segregated
algorithm.
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computational time. The paper describes briefly the set
of the partial differential equations that satisfy the law
of conservation of mass, momentums and energy.
Corresponding finite element equations are derived
and element matrices presented. The computational
procedure used in the development of the computer
program and the basic idea behind the adaptive meshing
technique are then described. Finally, the finite element
formulation and the computer program are verified
using examples that have prior numerical solutions
and experimental results.

�1�������"2� ��� �2"����� "��� ��2�����
/��������

Governing EquationsGoverning EquationsGoverning EquationsGoverning EquationsGoverning Equations
The fundamental laws used to solve two-

dimensional, steady state, viscous incompressible
thermal flow behavior consist of: (a) the law of
conservation of mass which is called the continuity
equation, (b) the law of conservation of momentums,
and (c) the law of conservation of energy, as follows,

(1a)

(1b)

(1c)

(1d)

where u and v are the velocity components in the x and
y direction, respectively, ρ is the density, p is the
pressure, µ is the viscosity, g is the gravitational
acceleration constant, β is the volumetric coefficient of
thermal expansion, T is the temperature, T

o
 is the

reference temperature for which buoyant force in the
y-direction vanishes, c is the specific heat, and k is the
coefficient of thermal conductivity.

Finite Element FormulationFinite Element FormulationFinite Element FormulationFinite Element FormulationFinite Element Formulation
The three-node triangular element is used in this

study. The element assumes linear interpolation for the
velocity components, the pressure, and the temperature
as,

u(x, y) = N
i
 u

i
(2a)

v(x, y) = N
i
 v

i
(2b)

p(x, y) = N
i
 p

i
(2c)

T(x, y) = N
i
 T

i
(2d)

where
i = 1, 2, 3, and N

i
 is the element interpolation

functions.
The basic idea of the solution algorithm presented

in this paper is to use the two momentum equations for
solving both of the velocity components, use the
continuity equation for solving the pressure, and use
the energy equation for solving the temperature. The
finite element equations corresponding to the
momentum, the continuity and the energy equations
are shown in next section.

Discretization of Momentum EquationsDiscretization of Momentum EquationsDiscretization of Momentum EquationsDiscretization of Momentum EquationsDiscretization of Momentum Equations
The two momentum equations, Eqs. (1b-c), are

discretized using the conventional Bubnov-Garlerkin’s
method. However, a special treatment for the
convection terms is incorporated. These terms are
approximated by a monotone streamline upwinding
formulation for using with the triangular element.11 In
this approach, the convection terms in the form,

(3)

which are related to the transport variable, φ, are first
rewritten in the streamline coordinates as,

 (4)

where U
s
 and s/ ∂∂  are the velocity and the gradient

along the streamline direction, respectively. For pure
convection, the term in Eq. (4) is constant along the
streamline. These terms are evaluated by a streamline
tracing method which keeps track the direction of the
flow within the element.

Using the standard Galerkin approach, each
momentum equation is multiplied by weighting
functions, N

i
, and then the diffusion terms are integrated

by parts using the Gauss theorem12 to yield the element
equations in the form,

(5a)

(5b)

where the coefficient matrix [ ]A  contains the known
contributions from the convection and diffusion terms.
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The load vectors on the right-hand side of Eqs (5a-b)
are defined by,

(6a)

(6b)

(6c)

(6d)

(6e)

where Ω is the element area and Γ is the element
boundary. The element equations are assembled to
yield the global equations for the velocity components.
Such global equations are then modified for the specified
velocity components along the boundaries prior to
solving for the new velocity components.

Discretization of Pressure EquationDiscretization of Pressure EquationDiscretization of Pressure EquationDiscretization of Pressure EquationDiscretization of Pressure Equation
To derive the discretized pressure equation, the

method of weighted residuals is applied to the continuity
equation, Eq (1c),

‘

(7)

where the integrations are performed over the element
domain Ω and along the element boundary Γ and n

x

and n
y
 are the direction cosines of the unit vector

normal to element boundary with respect to x and y
direction, respectively. As mentioned earlier, the
continuity equation is used for solving the pressure,
but the pressure term does not appear in the continuity
equation. For this reason, the relation between velocity
components and pressure are thus required. Such
relations can be derived from the momentum
equations, Eqs (5a-b) as,

(8a)

(8b)

where u
if  and v

if  are the surface integral terms and
the source term due to buoyancy. By assuming constant
pressure gradient on an element, then,

(9a)

(9b)

where

(10a)

(10b)

(10c)

by applying the element velocity interpolation functions,
Eqs. (2a-b), into the continuity equation, Eq (7),

(11)

and introducing the nodal velocities u
j
 and v

j
 from Eqs.

(9a-b), then Eq (11) becomes,

(12)
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Finally, applying the element pressure interpolation
functions, Eq (2c), the above element equations can be
written in matrix form with unknowns of the nodal
pressures as,

(13)

where

(14a)

(14b)

(14c)

(14d)

(14e)

The above element pressure equations are
assembled to form the global equations. Boundary
conditions for the specified nodal pressures are imposed
prior to solving for the updated nodal pressures.

Discretization of Energy EquationDiscretization of Energy EquationDiscretization of Energy EquationDiscretization of Energy EquationDiscretization of Energy Equation
The energy equation is derived using an approach

which is similar to the momentum equations. The
streamline upwinding method is applied to the
convection term in the energy equation. The standard
Galerkin method is then applied to yield the element
equations which can be written in matrix form as,

[K] {T} = {R}  (15)

where the matrix [K] consists of the contributions from
the convection and diffusion terms, and the load matrix
{R} represents the heat flux along the element boundary
as,

 (16)

These element equations are again assembled to
yield the global temperature equations. Appropriate
boundary conditions are applied prior to solving for
the new temperature values.

Computational ProcedureComputational ProcedureComputational ProcedureComputational ProcedureComputational Procedure
The computational procedure is illustrated in Fig 1.

A set of initial nodal velocity components, pressures,
and temperatures are first assumed. The new nodal

temperatures are computed using Eq (15). The new
nodal velocity components and pressures are then
computed using Eqs (5a-b) and Eq (13), respectively.
The nodal velocity components are then updated using
Eqs (8a-b) with the computed nodal pressures. This
process is continued until the specified convergence
criterion is met. Such segregated solution procedure
helps reducing the computer storage because the
equations for the velocity components, the pressure,
and the temperature are solved separately.
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The idea behind the adaptive meshing technique
presented herein is to construct a new mesh based on
the solution obtained from the previous mesh. The new
mesh consists of small elements in the regions with
large change in solution gradients and larger elements
in the other regions where the change in solution
gradients is small. To determine proper element sizes
at different locations in the flow field, the solid-
mechanics concept for determining the principal
stresses from a given state of stresses at a point is
employed. Since small elements are needed in the
regions where the high value of heat flux occurs, thus
the flow temperature can be used as an indicator for
the determination of proper element sizes.

To determine proper element sizes, the second
derivatives of the temperature with respect to the global
coordinates x and y are first computed,

(17)

The principal quantities in the principal directions
X and Y where the cross derivatives vanish, are then
determined,

(18)

The magnitude of the larger principal quantity is
then selected,

(19)

This value is used to compute proper element size,
h, at that locations from the condition13,

(20)

where h
min

 is the specified minimum element size, and
λ

max
 is the maximum principal quantity for the entire

model.
Based on the condition shown in Eq. (20), proper

element sizes are generated according to the given
minimum element size h

min
. Specifying too small h

min

may result in a model with an excessive number of
elements. On the other hand, specifying too large h

min

may result in an inadequate solution accuracy or
excessive analysis and remeshing cycles. These factors
must be considered prior to generating a new mesh.

����2��

In this section, two example problems are presented.
The first example, thermally driven cavity flow, is chosen
to evaluate the finite element formulation and to validate
corresponding computer program with previously
published results. The second example, thermally driven
flow in concentric cylinders, is presented to illustrate
the capability of the adaptive meshing technique for
the analysis of viscous incompressible thermal flow.

Thermally Driven Cavity FlowThermally Driven Cavity FlowThermally Driven Cavity FlowThermally Driven Cavity FlowThermally Driven Cavity Flow
The first example for evaluating the finite element

formulation and validating the developed computer
program is the problem of free convection in a square
enclosure. The square enclosure (Fig 2) is bounded by
the two vertical walls with specified temperatures of
20°C and 60°C and insulated along the top and bottom
surfaces. The problem was analyzed by the penalty
finite element method14 for which the result can be
used for comparison. The finite element model
consisting of 2,809 nodes and 5,408 elements, is used
in this study. Fig 3 and 4 show the predicted velocity
vectors and temperature contours, respectively, for
the case with the Rayleigh number of 104. The figures
show relatively smooth velocity vectors of the flow that
circulates in the counterclockwise direction and the
smooth temperature distribution. The same analysis is
repeated but with the Rayleigh number of 105. Different
flow patterns of the velocity vectors and temperature
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contours are obtained as shown in Fig 5 and 6. The flow
velocity pattern indicates two regions of circulation,
both in counterclockwise direction. The predicted
velocity profiles and the temperature distributions along
the mid-height of the square enclosure for both flow
cases are compared with the results from Ref. [14] as
shown in Fig 7 and 8, respectively. The figures show
good agreement of the solutions for both the flow
cases.

Thermally Driven Flow in Concentric CylindersThermally Driven Flow in Concentric CylindersThermally Driven Flow in Concentric CylindersThermally Driven Flow in Concentric CylindersThermally Driven Flow in Concentric Cylinders
To demonstrate the capability of the combination

of adaptive meshing technique with the finite element
method, the problem of thermally driven flow in
concentric cylinders is selected. The fluid is freely
convected in the annular space between long, horizontal
concentric cylinders due to high temperature on the
inner cylinder and lower temperature on the outer

 

 

Fig 3.Fig 3.Fig 3.Fig 3.Fig 3. Predicted velocity vectors of thermally driven cavity flow
at Ra = 104.
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cylinder (Fig 9). This problem was previously studied
by experiment15 for which the result can be used for
comparison. The comparison of the results presented
herein are at Rayleigh number of 4.7×104 and Prandtl
number of 0.706 with a ratio of gap width to inner-
cylinder diameter (L/D) of 0.8.

Due to symmetry of the flow solution, only the right
half of the concentric cylinders is analyzed. The adaptive
meshing technique starts from creating a relatively
uniform mesh as shown in Fig 10. This initial mesh
consists of 1,045 nodes and 1,942 elements. The figure
also shows the predicted temperature contours on the
left half.

The numerical solution obtained from the initial
mesh is then used to construct the second adaptive
mesh as described in Section 3. The second adaptive
mesh and the predicted temperature contours are
shown in Fig 11. The figure shows smaller elements are
generated in the region near the cylinder surfaces where
large change in temperature gradients occurs.

The entire procedure is repeated again to generate
the third adaptive mesh and the predicted temperature

contours as shown in Fig 12. Fig 13 shows the
comparisons of the equivalent conductivities between
the initial and the third adaptive meshes at the inner
and outer cylinder surfaces with the experimental
results. The equivalent conductivity is defined as the
actual heat flux divided by the heat flux that would
occur by pure conduction in the absence of fluid motion.
The figure shows the adaptive mesh provides higher
solution accuracy compared to the experimental results
because small elements are generated automatically in
the regions of complex flow behavior.

����2������

This paper presents the development of the
streamline upwinding finite element method using the
three-node triangular element for the analysis of viscous
incompressible thermal flow problems. The presented
solution algorithm employs equal-order interpolation
functions for the velocity components, pressure and
temperature of the triangle. The finite element
formulation and its computational procedure are first
described. The procedure uses a segregated solution
algorithm to compute the velocities, pressure and
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temperature separately for improving the
computational efficiency. A streamline upwinding
formulation is applied to the convection terms in the
momentum and the energy equations to suppress the
non-physical spatial oscillation in the numerical
solutions. The corresponding finite element equations
are derived and a corresponding computer program
has been developed. The finite element method is
combined with an adaptive meshing technique to
improve the flow solution accuracy. The adaptive
meshing technique generates an entirely new mesh
based on the solution obtained from a previous mesh.
The new mesh consists of clustered elements in the
regions with large change in the temperature gradients
to provide higher solution accuracy. And at the same
time, larger elements are generated in the other regions
to reduce the computational time and the computer
memory. The capability of the finite element solution
algorithm and the corresponding computer program
has been evaluated by examples that have prior
numerical solutions and experimental results. The
combined finite element solution algorithm and the
adaptive meshing technique has demonstrated the

efficiency of the entire process for improved solution
accuracy at the reduced computer memory and
computational time.
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