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ABSTRACT Several chemical industrial plants such as electroplating and metal finishing plants have
used strong acids and strong bases in production lines.  These acids and bases are then released from the
production lines to a wastewater treatment system and then treated to achieve compliance with an
effluent standard.  It is well known that the pH control of a wastewater treatment process is one of the
most challenging control problems due to high non-linearity and time-variance of the pH value during
pH titration.  A conventional PID controller and an on-off controller are rarely able to handle this non-
linearity resulting in poor control performances.  Therefore, advanced nonlinear control techniques are
needed.
This research presents simulation study of Globally Linearizing Control (GLC) together with an extended
Kalman Filter to control pH of the wastewater treatment process of an electroplating plant.  The GLC,
one of the advanced nonlinear model-based control techniques, has been developed for both Single-
Input and Single-Output (SISO) or Multi-Input and Multi-Output (MIMO) nonlinear process systems.
Since the GLC is a model-based control technique, it needs measurements and values of states and
parameters, which are neither all measurable nor known exactly.  Therefore, the extended Kalman
Filter, a state and parameter estimation technique, is applied to estimate unavailable or unknown states
and parameters, and these estimates are incorporated in the control action determination of the GLC
algorithm.  Simulation results have shown that in a nominal case, the GLC is able to control the pH of
the system to a desired set point and its control performance is equivalent to that of a PID one.  In the
presence of plant/model mismatch, the GLC is still able to handle this mismatch and gives good control
performance whereas the PID gives poor control response; the GLC is much more robust than the PID
controller.

KEYWORDS: Globally Linearizing Control (GLC), an extended Kalman Filter, Integral of Absolute
Error (IAE) and plant/model mismatch.
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INTRODUCTION

Electroplating plants are one of the industries that
cause numerous pollution problems due to waste-
water released from the metal finishing process
containing heavy metals eg Nickel, Chromium -
c.  The heavy metals in the wastewater are a poiso
 in the environment.  Therefore, it is necessary to 
ave a reliable wastewater treatment system, w
ich includes a measurement monitoring device a
d a controlling system.  A conventional method is 
sed to control the pH value of the wastewate
 to precipitate the heavy metals by adjusting acid or 
ase in appropriate amounts.  Either batch or contin
ous processes can be used depending on the quantit
 of wastewater and reaction time.  However, pH con

of the wastewater treatment is difficult because of
nonlinear behavior and sensitivity to changes in
manipulated variables.1

Normally, several industries use linear
controllers, such as PID, and on-off controllers to
control the pH of wastewater to a desired set point,
however the performance of such controllers are
poor.  Chemicals overdose can occur, therefore, the
closed-loop control response oscillates and is
sometimes unstable.  Advanced nonlinear model-
based control techniques that can handle these
processes are needed.2

Globally Linearizing Control (GLC) is one of the
advanced nonlinear model-based control techniques,
that has been proposed and applied to control
nonlinear system.  The basic concept of GLC is to
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transform nonlinear process models to linear process
models by input-output linearization.3  Feedback
control law4, via external linear controller, is in-
corporated to reduce offset of controlled variables.5

The GLC was applied to control batch, semi-batch
and polymerization processes with great success.6, 7

This work presents simulation study of GLC to
control pH values of wastewater from an electro-
plating plant.  The extended Kalman Filter8 is
included to estimate unmeasured concentrations of
heavy metal ions in wastewater.  These estimates are
incorporated into GLC control formulation to
determine manipulated input in order to control the
pH to a desired set point.

PROCESS AND MATHEMATICAL MODELING

A wastewater treatment process of an electro-
plating plant as shown in Figure 1 is studied here.
Wastewater from the electroplating process consists
of alkali wastewater, acid wastewater, chrome
wastewater and wastewater.  Each wastewater is fed
into a reduction tank, then, the flow rate of
hydrochloric acid is adjusted to reduce hexavalent
chromium ions to be trivalent chromium ions.

The reaction in a reduction tank is as follows:

CrO
3
   +   3HCl   →   CrCl

3
   +   3(H

3
O)+

Next, trivalent chromium ions are precipitated
in the reaction tank, by adjusting pH value to over 9
with sodium hydroxide.  Nickel ions are precipitated
in another precipitating tank, by adjusting pH value
to over 11 with sodium hydroxide.  Then, the heavy

metal ions-free wastewater is neutralized in a
neutralizing tank.

The reaction in a reaction tank is as follows:

CrCl3   +   3NaOH   →   3NaCl3   +   Cr(OH)
3

The objective of this work is to control nickel
concentration and pH in the precipitating tank as
well as pH in the neutralizing tank to desired set
points as illustrated in Figure 2.  Inlet wastewater
(Fin) has pH value about 9 and nickel ions con-
centration (CNi,in) about 8.5179x10-5 mole per liter.
Flow rate of sodium hydroxide is adjusted for
controlling pH to 11, equivalent to hydroxide ions
concentration (COH,out) of 10-3 mole per liter.  With
this pH, nickel ions are completely precipitated.
Outlet wastewater from the precipitating tank with
the pH of 11 and Nickel ions (CNi,out) not exceeding
1.7036x10-5 mole per liter is then sent to the
neutralizing tank.  Then, flow rate of hydrochloric
acid (Fa) is used to adjust the pH to 7.  The neutralized
water is then released to environment.

It is assumed that both tanks are perfectly mixed
and isothermal.  Other assumptions made in the
formulating process models include; reactions
involved are irreversible reactions, all pH values are
measurable, and the feed concentration is known.
Under the assumptions above, material balances of
the precipitating tank can be written as follows:

• Total mass balance (Density is assumed to be
constant)

dV

dt
F F Fin out b= − + (1)

Fig 1. Wastewater treatment process of electroplating plant.
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• Hydroxide ions (OH -) balance

  

dVC

dt
F C F C F C VN r

OH out

in OH in out OH out b OH b OH

,

, , ,= − + − 2

(2)
• Nickel ions (Ni2

+) balance

  

dVC

dt
F C F C VN r

Ni out

in Ni in out Ni out Ni

,

, ,= − − 1

(3)

The reaction rate of hydroxide ions (OH -) per unit
volume is

  
r k C COH Ni out OH out= 1

2

, , (4)

The reaction rate of Nickel ions (Ni2
 +) per unit

volume is

  
r k C CNi Ni out OH out= 1

2

, , (5)

Similarly, with the assumptions above, material
balances of the neutralizing tank are as follows:

• Total mass balance

  

dV

dt
F F Fout out a= − +2 (6)

• Hydroxide ions (OH -) balance

  

dVC

dt
F C F C F C

OH out

out OH out out OH out a H a

,

, , ,

2

2 2= − −

(7)

Replacing equations (1) and (4) into equation (2),
equations (1) and (6) into equation (7), and equations
(1) and (5) into equation (3), we obtain

  

dC

dt V
F C C F C C

OH out

in OH in OH out b OH b OH out

,

, , , ,( ) ( )
2 1= − + − −(
        N k C CNi out OH out, ,2 1

2− ) (8)

  

dC

dt V
F C C

OH out

in OH out OH out

,

, ,( )
2

2

1= − +(

 F C C F C Cb OH out OH out a OH out H a, , , ,( ) ( )2 2+ − − + )
(9)

  

dC

dt V
F C C F C

Ni out

in Ni in Ni out b Ni out

,

, , ,( )= − −( ) −1

       N k C CNi out OH out, ,− 1 1

2 (10)

Fig 2. Precipitating tank (left) and neutralizing tank (right).
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GLOBALLY LINEARIZING CONTROL (GLC)

Globally Linearizing Control (GLC), one of the
advanced nonlinear control techniques, uses
mathematical models of a plant to determine control
action.  Process models used can be either linear or
nonlinear.  In this work, mathematical models of
the system written in the ODE form are as follows:

  

dx

dt
f x g x F g x Fb a= + +( ) ( ) ( )1 2 (11)

Here, 
  
x C C COH out OH out Ni out

T= [ ], , ,2

f x

F C C V N k C C

F C C V

F C C V N k C C

in OH in OH out Ni out OH out

in OH out OH out

in Ni in Ni out Ni out OH out

( )

( )

( )

( )

, , , ,

, ,

, , , ,

=
− −

−
− −

















2 1

2

2

1 1

2

  

g x

C C V

C C V

C V

OH b OH out

OH out OH out

Ni out

1 2( )

( )

( ) ,

, ,

, ,

,

=
−
−

−

















g x C C VOH out H a2 2

0

0

( ) ( ), ,= − +
















  
y C y C h x C h x COH out OH out OH out OH out1 2 2 1 2 2= = = =, , , ,, ( ) , ( )

The controlled variables (x) are COH,out, COH,out2,
CNi,out, the manipulated variables (u) are Fb, Fa and
the measured outputs (y) are COH,out, COH,out2,.  Then,
we obtain

  
F V C Cb OH b OH out= −( )β11 ( ) *, ,

       
  

v C F C COH out in OH in OH out1 10 11− − −( β β, , ,( ( )

        V N k C CNi out OH out2 1

2− ), , ) (12)

  
F V C Ca H a OH out= +( )β21 2( ) *, ,

       
  
( ( ) ), , ,β β21 2 2 20 2C C F V v COH out OH out b OH out− − + +(

        ( ( ) ), ,β21 2F C C Vin OH out OH out+ − ) (13)

Where:

  

v C t K C t C tOH out

sp

C OH out

sp

OH out1 10 1
= + − +β , , ,( ) [ ( ) ( ) ]

       
K

C t C t dt
C

I

OH out

sp

OH out

t

0

1

1

+ −∫τ , ,[ ( ) ( ) ]

  

v C t K C t C tOH out

sp

C OH out

sp

OH out2 20 2 2 22
= + − +β , , ,( ) [ ( ) ( ) ]

       
K

C t C t dt
C

I

OH out

sp

OH out

t

2 2

0

2

2

+ −∫τ , ,[ ( ) ( ) ]

GLOBALLY LINEARIZING CONTROL WITH STATE
AND PARAMETER ESTIMATOR

The GLC technique uses process models of a
system to determine control action, however, in
reality neither process variables nor parameters are
all measurable or known exactly.  In this situation,
state and parameter estimator is incorporated to
estimate unmeasurable variables and unknown/
uncertain parameters.  Here, the extended Kalman
Filter is applied to produce estimates of true process
values.  These estimates are then incorporated into
the GLC technique to control the tanks as well as
cater for plant/model mismatch.  Details regarding
the extended Kalman Filter are given in Appendix
A.  Figure 3 shows the flowchart of Globally Lineariz-
ing Control with state and parameter estimator.

Here, the extended Kalman Filter is used to
estimate unmeasured state variable CNi,out based on
information of measured, manipulated variables Fb

and Fa, and measured process output variables COH,out

and COH,out2.  Then GLC uses these estimates as well
as all measured variables to calculate appropriate Fb

and Fa in order to control variables COH,out and COH,out2

to desired values.

SIMULATION RESULTS

 The GLC with the extended Kalman Filter is
applied to control the pH in the precipitating tank
to 11.  With this pH, the nickel concentration of
wastewater in the precipitating tank is below
1.7036x10-5 mole per liter.  Simultaneously, another
GLC with the extended Kalman Filter is used to
control the pH of the heavy metal ions-free
wastewater to 7.  The performance of GLC with the
extended Kalman Filter is then compared to those
of conventional PID controller.  To have a fair
comparison of both the GLC and PID controllers,
both controllers are turned to give about the
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same control responses in the nominal case; the
performance indices (IAE) of both the GLC and the
PID controllers are equivalent in the nominal case.
In addition, the tuning parameters of the extended
Kalman filter; P, Q and R, are tuned to have good
estimates of CNi,out.  The values of PID and GLC
tuning parameters are given in Table 1 and 2,
respectively and the extended Kalman filter tuning
parameters are shown below.

The extended Kalman Filter parameters are as
follows:

  

P Q R=
















=
















=










0 1 0 0

0 0 01 0

0 0 0 01

100 0 0

0 10 0

0 0 1

0 1 0

0 0 01

.

.

.

.

.

 Figures 4 - 7 show the control responses of GLC
with the extended Kalman Filter and PID controller

in nominal case with the disturbance of inlet
wastewater flowrate of 30 % at time 0.5 minute.  Both
GLC with the extended Kalman Filter and PID
controller can control the pH of wastewater in
the precipitating tank at the set point with small
overshoot (figures 4 and 5, respetively).  With this
pH, nickel ions are precipitated;  what remains in
the wastewater is compliance to the effluent
wastewater standard.  However, the performance of
both controllers in the control of pH of wastewater
in the neutralizing tank are different as can be seen
from figures 6 and 7.  The GLC with the extended
Kalman Filter gives a good control response while
the PID controller provides a poor control response;
the PID controller gives oscillatory control response.
These results show that the GLC with the extended
Kalman Filter can cope with high non-linearity of
the change in pH of the system because the GLC is a
nonlinear controller with external linear control.

Fig 3. Flowchart of Globally Linearizing Control with state and parameter estimator.

Table 1. Tuning parameter of PID for pH and nickel concentration control of wastewater in precipitating tank and
pH control of wastewater in neutralizing tank.

PID Tuning Parameters

KC1 = 45000 τI1 = 0.4728 τD = 0.001

KC2 = 5.0900 τI2 = 0.31 τD = 0.1

Table 2. Tuning parameter of GLC for pH and nickel concentration control of wastewater in precipitating tank and
pH control of wastewater in neutralizing tank.

Controller Parameters

KC1 = 0.479 KC2 = -2

τI1 = 0.505 τI2 = 0.65

β10 = 1 β11 = 1

β20 = 1 β21 = 1
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Fig 4. The pH and nickel concentration control in precipitating
tank using the GLC with the extended Kalman Filter, when
Fin is increased by 30%.

Fig 5. The pH and nickel concentration control in precipitating
tank using the PID controller, when Fin is increased by
30%.

Fig 6. The pH control of wastewater in neutralizing tank using
the GLC with the extended Kalman Filter, when Fin is
increased by 30%.

Fig 7. The pH control of wastewater in neutralizing tank using
the PID controller, when Fin is increased by 30%.

The GLC uses process models of the plant to
determine control action, so the nonlinear behavior
of the plant is included in the GLC formulation.  On
the other hand, PID controller is a linear feedback
control and the control performance is tuned at an
operating condition, therefore, the PID controller
cannot handle the nonlinear system.

ROBUSTNESS TEST

It is well known that not all process parameters
are known exactly.  Robustness tests are needed to
evaluate the performance of the GLC with the
extended Kalman Filter in the presence of plant/
model mismatch.  Here, the plant/model mismatch

in the reaction rate constant and the tank volume
are considered as follows:

a. The reaction rate constant (k1) decreases 30%,
b. The tank volume (V) decreases 30%

Figures 8 - 11 show the control responses of GLC
with the extended Kalman Filter and PID controller
in the presence of plane/model mismatch in the
reaction rate constant (k1) (decrease 30%).  In this
case, both GLC with the extended Kalman Filter and
PID controller can control the pH in the precipitating
tank at the set point with small overshoot.  They
also give desired control responses for the neutralizing
tank.  This means meant that both controllers can
handle with the plant/model mismatch in the
reaction rate constant.
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Fig 8. The pH and nickel concentration control in precipitating
tank under plant-mismatch, in which k1 decreases 30%,
using the GLC with the extended Kalman Filter.

Fig 9. The pH and nickel concentration control in precipitating
tank under plant-mismatch, in which k1 decreases 30%,
using the PID controller.

Fig 10. The pH control in neutralizing tank under plant-
mismatch, in which k1 decreases 30%, using the GLC with
the extended Kalman Filter.

Fig 11. The pH control in neutralizing tank under plant-
mismatch, in which k1 decreases 30%, using the PID
controller.

Figures 12 - 15 show the control responses of
GLC with the extended Kalman Filter and PID
controller in the presence of plant/model mismatch
in the volume of the tank (V) (decrease 30%).  It
can be seen from figures 12 and 14 that the GLC
with the extended Kalman Filter is still able to give
a good control response with some overshoot.  The
pH in the precipitating tank is controlled at 11 and
the nickel ions are compliance to the wastewater
effluent standard.  The pH in the neutralizing tank
is regulated at 7.  The PID controller, on the other
hand, cannot provide good control responses.
Obviously, in the neutralizing tank, the PID
controller cannot control the pH at the desired set

point; unstable response occurs.  This means that
the GLC with the extended Kalman Filter can handle
with the plant/model mismatch in the volume of the
tank whereas the PID cannot handle this plant/model
mismatch.

As mentioned above, as the GLC is a model-based
controller, the performance of the GLC is poor in
the presence of plant/model mismatch.  However,
the inclusion of the extended Kalman Filter can cater
for the plant/model mismatch as seen in this
simulation result.

The performances of both GLC with the extended
Kalman Filter and PID controller are compared based
on a performance index: Integral of Absolute Error
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(IAE) as shown in Table 3 and Table 4.  Obviously,
the performances of the GLC with the extended
Kalman Filter are better than those of the PID

Fig 12. The pH and nickel concentration control in precipitating
tank under plant-mismatch, in which V decreases 30%,
using the GLC with the extended Kalman Filter.

Fig 13. The pH and nickel concentration control in precipitating
tank under plant-mismatch, in which V decreases 30%,
using the PID controller.

Fig 14. The pH control in neutralizing tank under plant-
mismatch, in which V decreases 30%, using the GLC with
the extended Kolman Filter.

Fig 15. The pH control in neutralizing tank under plant
mismatch, in which V decreases 30%, using the PID
controller.

Table 3. Integral of Absolute Error (IAE) of the pH control in the precipitating tank.

Case study GLC with Kalman PID

1. Disturbance change

a.  Fin (30%increase ) 4.467e-2 5.158e-2

2. Robustness test

Plant/model mismatch case

a.  k1 (30%decrease) 4.450e-2 4.454e-2

b.  V (30%decrease) 4.427e-2 4.444e-2

controller in the cases of feed flow rate disturbance
and the plant/model mismatch in the volume of the
neutralizing tank.  For other cases, both controllers
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give almost the same control performances as
indicated by the values of IAE.

CONCLUSION

The control of a wastewater treatment process of
an electroplating plant is studied in this work.  This
process consists of the precipitating and neutralizing
tanks.  The Globally Linearizing Control (GLC) with
the extended Kalman Filter is applied to control the
pH of the precipitating and neutralizing tanks.  The
performance of GLC is compared to that of the PID
controller.  Both controllers are tested in the presence
of plant/model mismatches in the reaction rate
constant and the volume of the tanks.  Simulation
results have shown that in a nominal case, GLC is
able to control the pH of the system to a desired set
point and its control performance is equivalent to
that of the PID.  Both controllers can also handle
the plant/model mismatch in the reaction rate
constant.  In the presence of plant/model mismatch
in the tank volume, GLC with the extended Kalman
Filter is still able to handle this mismatch and gives
a good control performance whereas PID gives a poor
control response.  By this is meant that GLC with
the extended Kalman Filter can cater the plant/model
mismatch and is much more robust than PID.

NOMENCLATURE

Ak,Bk,Ck ‘locally’ linearized and depend upon the
current estimate of x

C concentration, mole/liter
F volumetric rate, liter/min
k1 reaction rate constant, (min)-1.(mole/liter)-

2

Kc gain of PI and PID controller
K Kalman gain
N1, N2 stoichiometric constant, mole fraction
pH pH value
P the covariance of estimated errors
Q the covariance of process noise

r rate of reaction based on unit volume
R the covariance of measurement noise
t time
u manipulated variables of process
v manipulated variables from external linear

controller
V volume, liter
x state variables
y output variable

Greek Symbols
τD derivative time constant of PID controller
τI integral time constant of PI and PID

controller
β tuning parameter of input-output

linearization
ε a non-zero mean Gaussian process noise
η a non-zero mean Gaussian measurement

noise

Symbols
∧ estimated value

Subscripts
a acid
b base
H hydrogen ions
in inlet wastewater from the precipitating tank
Ni nickel ions
OH hydroxide ions
out outlet wastewater from the precipitating

tank
out2 outlet wastewater from the neutralizing

tank
sp set point
upper upper bound

Abbreviation
IAE integral absolute error
ODE ordinary differential equations
PID ?????

Table 4. Integral of Absolute Error (IAE) of the pH control in the neutralizing tank.

Case study GLC with Kalman PID

1. Disturbance change

a.  Fin (30%increase) 3.367 6.066

2. Robustness test

Plant/model mismatch case

a.  k1 (30%decrease) 3.355 4.078

b.  V (30%decrease) 3.657 55.075
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Appendix A

The Extended Kalman Filter

The Kalman Filter is a recursive algorithm which
is easily to be implemented on a digital computer.
This method determines the estimate of states which
minimizes the variance of an estimation error.  There
are many versions of the Kalman Filter technique.
Here, the extended Kalman Filter version is demon-
strated.

The extended Kalman Filter is a popular tech-
nique for treating nonlinearities in the design of
minimum variance estimators.  Other methods of
the same origin (Taylor series expansion) are iterative
extended Kalman Filter, Guassian Second-Order
Filter, and Linearized Kalman Filter.

By the extended Kalman Filter, the states of a
system can be estimated with two steps.  Firstly, using
a Taylor’s series expansion of the dynamic and
measurement nonlinearities, neglecting second or
higher-order terms, the nonlinear functions are
linearized around a current point so that the
nonlinear estimation problem is reduced to a linear
one.  Secondly, using a known solution to this linear
estimation problem, the states are estimated.

The basic algorithm of the extended Kalman
Filter can be summarized as follows:

Model Structure
Nonlinear models are denoted by the nonlinear

differential equations:

dx

dt
f x u k= ( ) +, ε (A1)

where f is a vector function of the state x and the
controls u and measurements are expressed by the
relation:

  
y h xk k= ( ) + η (A2)

where h is a matrix function of the state variables.
εk is a non-zero mean Gaussian process noise

representing not only actual input disturbances but
also the uncertainty of process models and is a non-
zero mean Gaussian measurement noise.

The covariance of εk and ηk are Q and R
respectively.  Xj/i denotes the estimate of state x at
time j given measurements at time i Similarly, Pj/i

denotes the covariance of estimated errors at time j
given measurements at time i.

The linearization of these two equations (A1, A2)
is produced, respectively, as follows:

  

dx

dt
A x B uk

k k k k k= + + ε (A3)

  y C xk k k k= + η (A4)

where Ak, Bk, Ck are ‘locally’ linearized and depend
upon the current estimate of x.

Given, 
  

∧ ( ) ( )x P0 0 0 0/ , / ,  Q and R the estimation

is obtained by a set of prediction and correction
equations.

Prediction
Integrate the nonlinear state and covariance

equations from time k to k+1 in order to acquire

estimate 
  

∧

+xk k1/
 and Pk+1/k, we have

  

∧

+

∧
=





x xk k k k kf u

1/ /
, (A5)

  P A P A Qk k k k k k

T

+ = +1/ / (A6)

Correction
Calculate the Kalman gain matrix at time k+1

  
K P C C P C Rk k k k

T

k k k k

T

+ + + + + +

−
= +( )1 1 1 1 1 1

1

/ / (A7)

Compute the new estimate

  

∧

+ +

∧

+ + +

∧

+= + −











x x xk k k k k k k k
K y h

1 1 1 1 1 1/ / /
(A8)

Determine the new weighting matrix

  
P I K C P I K C K RKk k k k k k k k

T

k k

T

+ + + + + + + + += −( ) +( ) +1 1 1 1 1 1 1 1 1/ /

(A9)
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The performance of the extended Kalman Filter

is relied on the choice of, 
  

∧ ( ) ( )x P0 0 0 0/ , / ,  Q and R.

  

∧ ( )x 0 0/   can be determined from the initial condition,

physical properties and process data of the system.

( )P 0 0/  can be estimated from the uncertainty of the

initial state estimate.  Q and R can be chosen based
on the error of process models and measurements
respectively.
The extended Kalman Filter algorithm


