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ABsTRACT This paper presents an alternative approach of the machine learning- the genetic reinforcement
learning with the updating table of the Q-value function. The proposed method in updating table is
implemented to obtain the reinforcement values of the Q-value function for given state/action pairs
corresponding to any policies during exploring environment. To search optimal policies, the fitness of
a set of policies for genetic algorithm is defined in terms of the value of the Q-value function. The
genetic algorithm and the reinforcement learning are then applied in conjunction to optimize the final
control system performance. The effectiveness of the proposed methodology is demonstrated on a real

application of the obstacle avoidance robot.
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INTRODUCTION

Recently, many researchersin the areaof machine
intelligence have attempted to develop strategies for
which acomputer has the ability to learn solving
sophisticated problems from its experience of
performingacontroltask.  *Amongpractically uses
is reinforcement learning, which isacomputational
approachto learnamapping from states (situations)
toactions by trial-and-error interactionswith a
complex and uncertain environment. In this
learning strategy, the concept of reinforcement
function is defined as the performance measurement
in the form of ascalar value. 2 In other words, the
reinforcement function is the value function
mapping state/action pairstothe reinforcementsafter
performing actions in given states according to the
given policy. Itis called the Qvaluefunction. 3
However,the Qvaluefunctionisusually represented
by using the universal model of the neural network.
Aswidely known, this mathematical model requires
computing derivatives for learning rule, ie, gradient
descent method in backpropagation training which
may not be suitable to be implemented in real time
due to the burden of computation time. Therefore,
genetic reinforcement learning with the updating
table of Q-value function is proposed here to eliminate
suchdifficulty.

GENETIC REINFORCEMENT LEARNING

In high-level control task, a control systemis
required to interact with changeable environment
inwhich it is performed. Therefore, astrategy by
which the controller is able to decide on the control
input by itself required to perform the specified
functions while interacting with adynamic environ-
ment has been of interest in intelligent control
research. Actually, leaming ofamachinetointeract
in real-time with complex and uncertain environ-
ments has direct roots in the learning of animals in
nature. Itisbased on the concept that the tendency
ofactionsfollowed byasatisfactory oranimproved
affairisreinforced. Thisform of learning iscalled
Reinforced Learning (RL). Fig 1 shows the block
diagram of the reinforcement learning. In RL, the
controller isconsidered an agentor a learner, which

not only takes an action aateachstate  xofthe
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Fig 1. Block diagram of reinforcement learning.
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environment but also receives a reward or a

reinforcement r (X, @) value from environment as

the measure of its performance. Foranexample, a

value of reward parameter r is assigned to be 1 if the

success signal is received; the reward value is assigned

tobe-1ifthefailuresignal is received and otherwise

0. The policy engine determines which action should

be performed ineach state. In otherwords, the policy

engine is a function of mapping from states to

actions. The dashed-linearrow presentsa learning

process of the adaptation in the policy engine

according to the reinforcement value r. Inour

proposed methodology, this reinforcement learning

is to use a value function of the reinforcementin

constructing an optimal policy, which is expected

to be the most suitable for interacting with the

controller's environment. The reinforcement

learning algorithm can be considered as follows.
Givenapolicy T which determinesaction that

should be performed in each state, the Qvalue

function of the state/action pair is defined as the sum

of the reinforcement value received when starting

in that state and following some fixed policy to a

terminal state.

Q,(t)=Q (x(t),a(t)) (1)

where tis the index of a time sequence.
Hence, the optimal policy is the mapping from

states to actions that maximizes the Q-value
function.
n’=argmax{Q, (x(t),a(t)} (2)

where [isthesetofall admissible policies.

The corresponding optimal
Qnﬂ(x(t), a(t)) for the optimal policy

of the reinforcements when starting from its state
and performing optimal actions until aterminal state
isreached.

By the definition ofthe ~ (Q-value function, a
relationship betweenthe  (Q-value function of two
successive states, ie, x() and x(t+1), can be expressed
asfollons.

Q-value function
rtisthe sum

Qq(x(t),a(t) =r(x(t),a(t) +Q (x(t +1),a(t +1)) (3)
where r(x, a) is the reinforcement value.

Ingeneral, the  Q-value function ofany statesis
unknown before learning process is complete.
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Hence, let's define the approximation ofthe Qvalue

function of state/action pairs to be an( x(t),a(t)).
Thismeansthatthetrue  Qwvaluefunctionisequal
tosummation of the approximationofthe  Q-value
function and aresidual error e(x(),a()).

Qu(x(t),a(t) =@ (x(t),a(t) +e(x(t),a(t) (4)

The expression in Eq (4) can also be true for the
optimal policy. The relation can be written as:

Q,.(x(D),a(t) =@ (x(b),a(t) +e(x(b),a(t)) (5)

or, by using definitionofthe  Qalue functioninEq
(3), the residual error can be defined by:

e(x(t),a(t) = max{r(x(t),a(t)) +Q (x(t +1),
nion

a(t+1)} -G (x(t)at))  (6)

To obtain the optimal ~ Q-value function, the
minimization-maximization problem is established
asfollons

minimize {max{r(x(t),a(t)+ Q(x(t +1),

at+ D} -0 xtnav)) (@)

With Eq (7), it can be interpreted that learning
is accomplished when each update of the appro-
ximation of the optimal ~ (Q-value function reduces
the value of the residual error to zero. Atthe same
time, the optimal policy can be obtained when the
maximum values ofthe  Q-value function at each
state/action pairsare found. Itshould be noted that
without searching the optimal policy (do not
maximize), as the residual error approaches zero,
the approximation ofthe  Q-value function will
convergetothetrue  (Q-value function. The true
(Qvalue function obtained corresponds the
performance of one policy among other policiesina
setof admirable policies. Hence, if the maximization
in Eq (7) can also be accomplished, the optimal
policy is then  obtained. The difficult issue of the
problem statement in Eq (7) is that the minimization
and maximization must be achieved simultaneously
in order to obtain the optimal policy. Tosolve the
problem, the updating table as discussed later on is
proposed in order to provide the values of the Q
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value function inaway that the condition on
isalways satisfied. With thisresult, the problemin
Eq (7) can be reduced to Eq (8).

e®)=0

maximize {r(x(t),a(t)+Qu(x(t+1),a(t+1)} (8)

Inthis study, the principle of genetic algorithm 4
is used to search the optimal policy Tton the setof
the policies by stochastically creatinganew policy
[and exploring the state-action space. The Qvalue
function for given state/action pairs are computed
to measure the fitness of each policies. During
iteration, the “best” one that has the highest fitness
will be chosen as offspring to generate the new
generation of the policies. This procedure continues
during the exploration of the agent. The
arrangement of the genetic reinforcement learning
can beillustrated by Fig 2.

UprDATING TABLE METHOD

Asmentioned in the previous section, the values
of Qvalue functionare used as the fithessindexes
of the policies for the optimization with the genetic
algorithm. The updating table method is thus
proposed to provide the values of the Q-value
function of the state/action pairs corresponding toa
given policy in simple way. Referringto Eq (3), the
successive values of Q-value function can be
obtained by calculating the presentvalue of Qvalue
function backward to the values of Qvaluefunction
ofthe transition state/action pairsandfinally tothe
one of the initial state/action pair. For anexample,
suppose that the agent performs the actions
accordingtothe policy  rifrom the initial state
x(0)until the final state X(N). The corresponding
reinforcementvalues  r(x(),a(t))for each state/action
pairs have been credited from environment to the
agent. For agiven value of Qx(N),a(N\)), all the
valuesof  Q(x(t),a(t)) for t=N-1,..,2,1,0canbe
determined by Eq (9).

F

Fig 2. Arrangement of genetic reinforcement learning.
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Q,(x(N -1),a(N -1)) =r(x(N -1),
a(N-1))+Q, (x(N),a(N))

Qn(x(1),a(1)) =r(x(1),a(1)) +Q (x(2),a(2))
Q(x(0),a(0)) =7(x(0),a(0)) +Q (x(1),a(1))
(9

According to the conceptabove, thearchitecture
of the updating table can be illustrated as Fig 3.
The rows and columns of the updating table are
classified by the initial state and the transition state
respectively. The dimension of the updating table is
defined by the number of the possible states in
environ-ment. Let'sassume that thereareall n
different types of the states, which the agent can
observe from environment.

x:{xl,xz,...,x”} (10)
Additionally, the agent has the choices of actions.
a:{al,az,...,am} (11)

After the agent performs series of actionswith a
giveninitial state, all the values of Q. (x(t),a(t))for
t=0,1,2,...,Ndetermined from Eq (9) are stored at
the same corresponding row. Each of the values of
Q,.(x(t),a(t)) and the corresponding choices of the
actionsfor t=0,1,2,..,Narefilled up to their
columns according to the route of the transition
states before the final state is reached. Therefore, if
the agent is perturbed and the deviation from the
final state occurs to another state. That state is
regarded as the initial state. The registration of the
values  Q, (x(t),a(t))ofandthechoicesoftheactions
are handled as mentioned above after the final state
is found again.

To get more concrete understanding, an example
isgivenasthe case that the three possible statescan
be monitored and the two actions can be made by

Transition
state X, X, X,
Initial state
Xl
X2

<

Ef

Fig 3. Architecture of updating table.
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the agent. The updating table can be constructed as
shown in Fig 4. The final state, which is desired to
reach,isthestate  x,. Beforestarting toexplore the
environment, the updating table is blank. The policy

is first defined by randomly mapping the state to
theaction until the agentfinds the final state, that is

thestate x,. Ateachtimestep, if the presentstate is
notthefinalstate  x,, the constant reinforcement
value isgiven by -1. This penalty of reinforcement
undergoes until the final state X, is obtained. Now,
let'sconsider two caseswith twoinitial states X,and
X

xz(O)ﬁIl x,(1)

500 5,0 x,0)

Incase of the initial state X,, theagentcanreach
thefinalstate  x,withoneaction a, while the agent
starts exploring environment at the state X,with the
action a,, passesthrough the state X, With the action
a, ,andthen reaches the final state X,. Corresponding
to the policy given in the updating table, all the
valuesof  Q, (x(#),a(t))canbecalculated backward
byEq(9)and Q,(x,)=0 asshowninFig.4. Inthis
case, it should be noted that the maximum value of
Q nﬂ(x(o),a(o)) indicates the shortest path from that

initial state to the final state.

ProceDURES IN GENETIC REINFORCEMENT
LEARNING

The following steps of the genetic reinforcement
learning proceed during the exploration of the
agent.

Performing phase

Step 1.

(1.1) Checkwhether the policiesare available at
theinitial state where the agent is.

Transition
state
Initial state X X X
Xy 0
Xy 0 1 a,
Xﬂ 0 1 a2 -2 al

Fig 4. Values of Q value-function with three states and two
actions.
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- Ifnot, go to Step 2.
- Ifthe policies are available, the agent
performs according to them.

(1.2) Check whether the value is greater than
other values in the same column of the updating
teble.

- Ifnot (the policies are not optimal), use
them as a parent for generating the
policies for new learning. Goto Step 2.

- Ifitsvalue isgreater than the others, go
to (1.3).

(1.3) Check whether that the sequence of state
is similar to one in the updating table in the manner
ofstateby state.

- If not (the environment may be changed),
goto Step 2.

- Ifthe sequence of state is similar, the
agentcontinues performing until the final
state isfound.

Learning phase
Step 2. Check whether the parents in the genetic
algorithmareavailable for generating the policy.

- Ifnot, initiate the policy randomly.

- Iftheparentsare available, use themto

generate the offspring for the policies. Go
to Step 3.
Step 3. Continue on learning according to the
generated policies in Step2 and record the values of
Q,,(x(t),a(t)) and the actions for new policiesin the
updating table accordingly when the final state is
reached.

During the exploration of the agent, check
whether the limit cycle occurs or the transition state
isrepeated.

- Ifnot, goto Step 1.

- Ifthe limit cycle occurs, go to Step 1 by

setting the current transition state tobe
theinitial state.

ResuLts AND DiscussioNs

The viability of the proposed method is demon-
strated by solving the obstacle avoidance problem
of the mobile robot. The robot has to produce a
“best” sequence of control actions or set of policies
by itself in order to move forward when possible
andavoid obstacles. Asillustrated in Fig 5 (2), the
robotwith 5-inch diameter was independently driven
by two DC motors. Six infrared proximity sensors
were placed around the front of robot to perceive its
environment. The location of the sensors and two
DC motors is shown as Fig 5(b). The micro-
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controller of ATMEL-AVR90S8535 was used to
handle the input-output signals. 11, 12,..., 16 and
M1aswellas M2 represent the infrared sensorsand

the DC motor. The two successive infrared sensors

were grouped to provide a wider range of the
detection. The possible eight states (2 =8) can be
defined in combination of S1, S2 and S3 in Table 1.
There are five specified actions of the robot, that is,

move forward a,, rotate in counter-clockwise
direction a,, rotate in clockwise direction a,, turn
leftwith the rotation of the left wheel backward a,
and turn right with the rotation of the right wheel
backward a. Itcan beexpected that the robot will

try to make rotations and turnswhen the obstacle is
founded. Afterthestate  Xgisreached or the obstacle

is not found, the robot will move forward with action

&,. Fig 6 shows the obstacle environmentof the wall
arrangementin learning. Itsdimension of the square
fieldis 1.2x1.2 m 2. Based on eight states in Table 1,

the updating table has the eight rows and eight

Microcontroller

(b)

Fig 5. Diagram of mobile robot: (a) miniature mobile robot and
(b) location of sensors and DC motors.
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columns. Toavoid the unavailable policies at the
beginning, the valuesof ~ Q-value function and the
policies for given initial states are first filled up
randomly. Foran example of one experiment, the
initial updating table is presented as Fig 7. Fora
giveninitial state, the fitness of a set of the policies
in the same row is defined with the value of
function of that initial state. Thisdefinitionisbased
onthe hypothesisthat if each fitnessineachiinitial
state is maximized, the fitness of overall policies is
also maximized. The performance index is defined
asthesummationoffitnessvaluesforallinitial states.
Intuitively, the performance index of thefitness-value
summation from the genetic reinforcement can be
used to quantify the capacity of the robot inavoiding

the obstacles. This means that the more the perfor-

mance index increases, the less the number of the
penalties due to the unsuitable tumsfor the obstacle
avoidance. Referring to Fig 7, the initial value of

the performance index is equal to -49. Next, the
proposed procedures in genetic reinforcement
learning is implemented during the exploration of
therobot. During first 100 seconds, the performance

index against time is plotted in Fig 8. The performance

Qvalue

Table 1. Definition of observed states.

States S1 (11+12) S2 (13+14) S3 (15+16)
X, 1 1 1
X, 1 1 0
Xg 1 0 1
X, 1 0 0
Xs 0 1 1
Xg 0 1 0
X, 0 0 1
Xg 0 0 0

1-found obstacle; 0- not found obstacle.

.

Raobol
|'rd-ﬁ

\_/

4

Fig 6. Obstacle environment of wall arrangement in top view.
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index increases during the exploration of the robot.
This means that the improved policies for environ-
ment in Fig 6 can be obtained. After 60 seconds,
the performance index converges to the value of
-17. During that time, the updating table at time of
30 seconds is picked as shown in Fig 9. Only the
initial states %, X;and x, are found and are learnt.
The corresponding performance index is-35. Itis
observed from experiment that after the 15-minute
exploring of the robot is taken for finding all initial
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interpreted from the experiment results in the case
thatthestate X istheinitital stateas follows. When

the robotstartsat the initial state X, the robot will
choosetoturntotheright. The state Xsisthenfound.
Rotation counter-clockwise is performed toavoid the
obstacle to the right. Next, the state X, is founded.
Therobotmakesalefttum. Finallly, thefinal state

Xg isreached. However, atinitial state Xs, another
feasible action is clockwise rotation which can be

states, the value of the performance index is equal Transition
to-14. The optimal policiesare shown as Fig 10. It i) e o e e L e [ |
should be noted that learning may take longer time state S R R R U ERA N IR B
to reach the optimal policies in the cases of more
i i i X 7 |6 |5 |4 |3 |2 |1 |0
complicated environment. Furthermore, it can be 1 a| %a| e a P a e e
Transition X, 6 -7 |5 |4 (3 |2 |1 |0
state a a8 a| a| a| a| a| a
Initial Xp | Xp | Xg | X | X5 | X | Xp | Xg X 5 |6 |7 |4 |3 |2 |1 lo
state a,| a,| a| a| a| a| a| a
X 7 |6 |5 |4 |3 |2 |1 |o X, 4 |5 |6 |7 |3 |2 |1 |0
a| ag| a| a| a;| a| a| a a| a| a| a| a| a| al| a
X, 6 |7 |5 |4 |3 |2 |1 |o Xg ) -1 o
| &l a| al| a| a| a| a a | a| a| al| al a| al| a
Xs 5 |6 |7 |4 |3 |2 |1 |0 X6 -3 2 |-4 |1 |o
| &l a| al| a| a| a| a a,| a| a | al| a| a| a| a
X 4 |5 |6 |7 |3 |2 |1 |o i -1 o
a| ag| a| a| a| a| a| a a | a,| a| a| a| a| a| a
Xs 3 |4 |5 |6 |7 |2 |1 |0 Xg 0
a,| al| a| al| a| a| a| a a,
X 2 |3 |4 |5 |6 |7 |1 |0 i ; ; .
6 a, a, a, 8l a| e el Fig 9. Updating table with policies at 30 seconds.
X 1 |2 |3 |4 |5 |6 |7 |0 -
7 a a, a, a| Ca| a| al a Transition
state
X 0 Initial Xy X, X3 Xg | X5 | Xo | X7 | Xg
G state
Fig 7. Initial updating table of values of Q-value function with X, -2 -1 0
eight states and five actions. A I N I A N
e 2 |3 -1 0
= ] :] a, a, a, a3 as ay ag a,
e 2 |1 0
a| a | ay| a| a| a| a
=] =] o =] =] =]
204
T Xy -1 0
= a a | as| as al a,| al| a| a
u X 2 |1 0
g - 1 ? | A | | | H| | 8| &
E ' - X 2 |3 |1 |o
& il as | a, | a| ag| a| a| a| a
L 40
By J R X -1 o
i | ag| | a| a| a| a| a
i} :
Mo 200 4 &0 80 100 % %a,

Time (5)
Fig 8. Performance index of learning against time.

Fig 10. Updating table with optimal policies at 900 second.
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performed to avoid the obstacle. Ifitissuch case,
the sequence of action and states will be changed
accordingly. Also, itis found that the robot can
always avoid the wall obstacles during longer
experiment run. This control scheme is thus quite
robust to the variations in environment such asthe
friction and slipping of the wheel.

CONCLUSION

Inthis paper, the genetic reinforcement learning
withthe updatingtableofthe  (Q-valuefunction has
been described. The genetic algorithm provides a
systematicway of creating new policiesfor efficiently
and effectively exploring the state/action space,
which is required in reinforcement learning scheme.
Without the computation burden, the updating table
isexploited to yield the value of the fitness of the
policiesin such away that the optimal policiesare
eventually obtained. According to the experimental
results, it can be shown that the proposed metho-
dology can be effectively used to solve the obstacle
avoidance problemin real-time implementation. The
robot learns and improves the policies for better
performance indriving itselffrom an arbitrary state
toaspecified final state within a finite time.
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