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ABSTRACT We present a new family of numerical methods to solve  non-linear parabolic initial boundary
value problems with constraints imposed a priori on the solution. Firstly, we introduce our recent
results developed for the diffusion wave equation endowed with one constraint (non-negativity of the
solution). The numerical procedures are based  on a consistent first-order  approximation of çdiffusioné
and çtransporté terms combined with the Gauss-Seidel-type iterative technique. Secondly, we show that
the Richard’s type models of porous medium flows exemplify the general case of a non-linear parabolic
equation endowed with  the bilateral constraints specified by characteristics of the porous medium.
Therefore, we generalize the preceding numerical procedures to the Richard’s type models of unsaturated
flows in the soil. The Gauss-Seidel-type iterative technique is  supplemented by a three-step numerical
procedure employing auxiliary variables. We prove the convergence theorems and introduce some further
extensions of the algorithm. Finally, we verify the proposed schemes by methodological applications
and analyze the convergence rate.

KEYWORDS: finite-difference schemes, overland flow, porous medium, non-linear degenarate parabolic
equation.
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INTRODUCTION

We present a new family of numerical methods
designed to solve numerically non-linear degenerate
parabolic initial boundary-value problems endowed
with constraints imposed a priori on the solution.
The corresponding partial derivative equations are
often employed in Environmental Fluid Dynamics
to simulate open flows in the frame-work of shallow
water theory1,3,5,6,7,9,10,11,15,23-26,28,30,33,35,36,39-41,43,44 as well
as unsaturated porous medium flows in the frame
work of Richard’s equations.1,3,6,8,10,11,14,16-20,23,24,29,33,36,

38,39

There exists a number of well-established
classical methods to solve numerically the parabolic
systems37 as well as versatile techniques designed to
treat degenerate parabolic equations.2,13,21,22,32

However, to the best of our knowledge the problem
of a start-to-finish technique to treat degenerate
parabolic equations endowed with constraints
imposed a priori on the solution has received too
little attention in the Literature.

A typical example is the conventional numerical
treatment of the diffusion wave version of the shallow
water equations. A physically relevant numerical

solution must satisfy h≥0 (where h is the water
depth). However, the numerical schemes require a
sophisticated control of possible non-negative
components of the finite-difference solution in the
regions characterized by a small water depth.
Otherwise, any negative component of the numerical
solution, appearing in the regions where h is near or
equal to zero, generates undecaying oscillations
(which do not allow any physical interpretation) and
numerical instability. The current methods to
suppress the instabilities are quite heuristic having
been mainly reduced to some particular regulariza-
tion.5,6,11,32 Moreover, none of the conventional finite-
difference or finite-elements techniques guarantees
non-negativity of the flow depth without a special
kind of smoothing, artificial correction, forced
refinement of the grid or a special numerical treatment
based the boundary tracking methods (the so called
wet-dry cell policies).6,25 Besides, the schemes based
on finite elements often involve the so-called
lumping regularization techniques9 which could
substantially decrease the order of approximation.

Richard’s equation of the unsaturated porous
flows represents an initial boundary value problem
for the non-linear parabolic equation endowed with
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bilateral constraints specified by characteristics of
the porous medium. As it is the case of the diffusion
wave equation, the numerical treatment of the
Richard’s type equations requires a sophisticated
control of possible violations of the prescribed bounds.

Our new numerical algorithms entirely eliminate
the above mentioned drawbacks. We guarantee
reliable calculations for a variety of water dynamics
in the porous medium when the soil moisture
approaches the prescribed bounds.

NUMERICAL ALGORITHMS FOR THE DIFFUSION
WAVE EQUATION

In this section we present our previous numerical
methods designed to numerically solve the non-
linear degenerate diffusion wave equation. We
present some theoretical results illustrated by new
methodological applications.

The diffusion wave approach is often employed
to simulate the overland flows, the flooding waves,
flows in the open canals, estuaries, reservoirs as well
as flows in the coastal zones. The diffusion wave
equation is then derived in the frame-works of the
shallow water theory43 by assuming that the inertia
forces are negligible.

In this case, the momentum equation is given by

grad( ) | |
( )

.η
α

+ =Q Q
h

0

The first term combines the pressure and the gravity
force whereas the second term represents the fric-
tion force. grad≡(∂/∂x, ∂/∂y), x,y are the spatial
(horizontal) coordinates, η≡η(x,y,t) denotes the free
surface level, t the time coordinate. η=h+z, where
h≡h(x,y,t) is the flow depth and z≡z(x,y) the bottom
level. Q≡Q(x,y,t) denotes the discharge vector and
α≡α(h) a semi-empirical function which characterizes
the friction.

Substituting the corresponding components of
the discharge vector into the continuity equation
yields the diffusion wave equation given by

    
w

t
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where T≡T(x,y,t,h) denotes the source (sink) and
wh≡wh(x,y,h) a coefficient related to the cross-
sectional area of the flow.

Furthermore,  D D h≡ =( ) ( ) | |sign α α  is inter-

preted as the diffusion coefficient. In the case of one

dimensional open flows, 
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wh≡ w/ h, wher e w=w(x,h) denotes the cross-
sectional area of the flow, R=R(x,h) the hydraulic
radius8 and nf≡nf(x,y) is the Manning coefficient
characterizing roughness of the river or canal surface.

The two dimensional case implies wh≡1,
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Note that although we only involve the
hydrodynamic interpretation of the equations, our
theoretical results are valid for non-linear parabolic
equations satisfying D(x,y,0)=0, D/h <+∞, |T/h|<+∞,
if T≤0. In what follows we shall always assume (if
not stated otherwise) that the above conditions hold.

Consider a one dimensional version of the
equation. An obvious substitution η=h+z yields
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Note, that the third term constitutes a sup-
plementary source(sink) which could produce
negative values of the flow depth. Furthermore, if h
is close or equal to zero the diffusion term D(h)
degenerates. However, although h→0 implies,
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0→ ,  may not be vanishing.

Therefore, the degenerate diffusion coefficient
invokes “hyperbolic” properties of the equation. A
numerical scheme which does not “recognize” this
phenomenon typically generates negative values of
h leading to numerical instability. Fig 1 and Fig 2
illustrate instability of the conventional (uncon-
ditionally stable for the linear case !) fully implicit
symmetric scheme employed to solve numerically a
problem of overflow. The water flow is characterized
by the linear friction D=χh, χ=10-3 m2/s. 0≤x≤ 1000,
w=100m, the time step τ=20min, the space step
∆h=15 m. The boundary conditions are given by Q
(0, t)= 10m3/s, Q(1000, t)=0. The calculations clearly
demonstrate that even small violations of the positivity
of the water depth (Fig 1) induce unwanted oscilla-
tions and instability (Fig 2). Observe that the in-
stabilities display the well-established phenomenon
of a finite velocity of the disturbance propagation
for non-linear parabolic equations first espoused by
Barenblatt and Vishik.4 As a matter of fact, further
analysis of non-linear degenerate parabolic systems
shows that under certain conditions the equations
generate breaking of waves and the shock waves.13
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It should be noted, that there is an intuitive under-
standing of the impact of non-linearity of the
de-generate diffusion wave equation in the hydro-
logical literature as well. For instance,38 proposes
the so-called generalized flux law given by

Q a h a hm= − −1 2grad( ) , where a1 a2 and m are the
empirical constants. However, such a representation
may not be always accurate since the transport term
is actually induced by non-linearity of the equation.
Consequently, there is no need for the proposed
additional term -a1h

m.
Finally, an efficient numerical scheme must

combine properties of the conventional procedures
for parabolic equations with properties of the
absolutely stable schemes for hyperbolic equations
characterized by the Courant-Frederich-Levy-type
(CFL) condition.

The key idea of such an algorithm for the one-
dimensional case is based on the consistent first-
order approximation of the hyperbolic (transport)
terms by directed differences combined with the
corresponding right-hand (left-hand) approxima-
tions for the diffusion terms and the Gauss-Seidel-
type iterations.26

First, we represent the transport term by ∂(hd)/
∂x, where the identity d=D/h always holds for small
h (in so far that D/h→0 as h→0). Secondly, we appro-
ximate the transport term by directed differences in
accordance with the hyperbolic properties of the
diffusion wave equation. Thirdly, we use an implicit
approximation of the diffusion term employing the
corresponding right-hand(left-hand) grid points for
(dh)k.

Algorithm 1
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The source term is approximated by means of
the following regularization
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Theorem 1 The numerical solution   h̃ k  is non-
negative.26 Fig 3. displays a numerical solution to
the overflow problem produced by the proposed
scheme. The time and the space steps are identical
to those employed by the conventional scheme (Fig
1-2). Clearly, the method establishes convergence
and generates an oscillation-free numerical solution.

A two-dimensional version of the scheme is a

Fig 1. Numerical solution of the overflow problem. Development
of instability for the conventional scheme, 10 iterations.
(1) the ground level, (2) the water level        the negative
flow depth

➡

Fig 2. Overflow problem. Development of instability for the
conventional scheme, (1) the ground level, (2) the water
level, 30 iterations, (3) 40 iterations.

Fig 3. Overflow problem. (1)-the ground level, (2) the water level,
80 min, (3) -250 min, (4)-330 min, (5)-3000 min.
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sum of the one- dimensional non-negative schemes
with regard to the x and y direction.

Algorithm 2
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and   ̂Tk  is an approximation analogous to that
introduced in the 1D case.

Theorem 2 The numerical solution   
˜

,h k l  is non-

negative.27

Theorem 3 Algorithm 2 converges.29

A large series of methodological 1D and 2D open
flow modeling28, 30 as well as modeling of the flood
in the Eastern Areas of Bangkok28, 30 has shown
advantages the proposed method. Fig. 4-5 illustrate
the typical test. The simulated 2D wave enters the
region, propagates inside it and leaves across a
section of the boundary. The flow is characterized
by non-linear friction, nf=0.02 m-1/3/s. Fig. 4 displays
the ground elevations whereas Fig. 5 shows the depth
of the open flow for t=4 and 10 h.

Table 1 reveals an overall priority of the proposed
scheme with regard to conventional methods. S1

denotes the average number of iterations required
by the proposed method, S2 the number of iterations
required by the standard three point, second order
implicit scheme, Sτ the number of the time steps
required by the fully explicit, second order scheme,
∆=∆x=∆y, symbol (-) indicates presence of negative
components, shadowed cells in the table specify the
most suitable schemes.

Finally, we analyze the convergence rate. The

error is estimated by   || || , || ||h h h hf C f L− − 1 and,

|| ||h hf L− 2 where hf is the solution obtained by the
conventional scheme on a fine grid. The numerical
experiments reveal that the convergence rate varies
between ∆0.81 and ∆1.22 irrespectively of the norm.

Table 1. Efficiency of the algorithm. 2D surface wave.

S1 S2 Sτ τ, sec ∆, m

11 7(-) 7 10000 500

21 Diverges 34 50000 500

22 Diverges 67 100000 500

23 Diverges 334 500000 500

14 12(-) 14 10000 250

25 Diverges 67 50000 250

21 Diverges 134 100000 250

27 Diverges 667 500000 250

20 Diverges 27 10000 125

21 Diverges 134 50000 125

26 Diverges 267 100000 125

30 Diverges 1335 500000 125

Fig 4. Surface wave propagation. Ground elevations. Fig 5. Surface wave propagation, t=4 and 10h.
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RICHARD'S EQUATION
In this section we generalize our numerical

procedures to the Richard’s type models to simulate
unsaturated porous medium flows.

Introduce a control volume of the porous
medium ∆V. The volume of water in ∆W being
measured by the moisture content is defined by
θ≡∆W/∆V. The porosity of the medium is defined
by θmax≡∆P/∆V, where ∆P is the volume of voids. If
the moisture content is equal to the porosity we shall
call the porous medium saturated. Finally, the
residual moisture content is defined by θmin≡∆R/∆V,
where ∆R is a volume of water remaining in the
porous medium after it has been thoroughly drained.

Furthermore, the theory of porous medium flows
assumes that θ, θmax and θmin are piecewise
continuous functions defined for ∀  x,y,z,t. This
approach to model porous medium flows has been
extensively applied in groundwater hydrology to
simulate saturated and unsaturated flows in the
soil.1, 3, 6, 7, 8, 10, 11, 14, 16-20, 23, 24, 29, 33, 36, 38, 39

The case of saturated flow through the soil
implies that the momentum equation is represented
by Darcy’s Law

Q=-Kgrad(η),

where Q denotes the discharge, K≡K(x,y,h) the
hydraulic conductivity of the medium, η the free
surface level and h the depth of the flow.

However, the unsaturated flows may not allow
formulation in terms of a free-boundary problem.
Consequently, η is thought of as the energy per unit
weight of the fluid8 where a part of the total energy
is referred as the capillary potential (the suction
head) ψ. The total energy is then composed of the
gravity and the capillary forces , η=ψ −z, where z is
the vertical coordinate being positive downwards
from an arbitrary datum within the soil column.
Consequently, Q=-Kgrad(η)=-K[grad(ψ)-(0, 0, 1)].
Consider the one dimensional case. A 1D vertical

flow implies 
  
Q K

z
= − ∂

∂
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ψ
1

Substituting Q into the continuity equation yields
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z
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z
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where T=T(θ,t) denotes the source(sink).
There exists a number of well-established

parametric models of the soil hydraulic functions
K≡K(θ,z) and ψ≡ψ(θ,z). The largest group is based
on the Brooks and Corey type formulas7, 8, 14 given
by

ψ≡ψ (s,z)=ψ1s
-1/p,K≡K(s, z) =K1s

c, c≡ c(z) = (2+3p)/p,

where K1≡K1(z), ψ1≡ψ1(z), p≡p(z) depend on the
type of soil (for instance, for clay K1 = 3.4 10-5 cm
s-1, ψ1 = 90 cm and p = 0.44 whereas for sand K1 =
8.6 10-3 cm s-1, ψ1 = 15 cm and p = 5.4.). The para-
meterizations are given in terms of a new variable
s = (θ-θmin)/(θmax-θmin)called the effective saturation.
Typical graphs of the soil hydraulic functions are
shown in Fig. 6-7. Finally note, that ψ(1)=ψ1≠0 only
in the sense of the best empirical fit to the data. The
theoretical value of ψ at s=1 (θ=θmax) is zero.8

An equally popular Genuchten’s parameteriza-
tion18, 19 is given by

  ψ ψ ψ≡ = −−( , ) ( ) /s z s
p

p p
1

1 11

Clearly, ψ(1)=0. However, the first derivative of
Genuchten’s type functions is infinite at s=1. This
feature presents some difficulties in constructing an
appropriate approximation of Richard’s equation
with regard to θ . However, only the θ-version of
Richard’s equation allows an efficient control of the
inequality θmin ≤θ≤θmax.

Fig 6. Parametric models of the capillary potential (1) the Brooks-
Corey model, (2) Genuchten's model.

200

100

0
0

0.5 1

1

2

ψ ,cm

s

Fig 7. Typical soil hydraulic functions. (1) log(D(s))-Brooks-
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log(K(ss))

1

2

3

5

0 0.5 1 s

0

-5

log(D), cm

-10



56 ScienceAsia  27 (2001)

We derive the θ-version by writing
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z z
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diffusivity by D = KΦ. Substituting into Richard’s
equation yields
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It is easy to verify that, in the case of the Brooks-

Corey model 
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=
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. Therefore D(0)<∝ ,

moreover, D/s→0, D/s2→0 as s→0, ∀ p>1 although
ψ(0)=∝  if p>1.

Finally, the soil moisture content must not only
satisfy Richard’s equation but the inequality θmin ≤
θ≤θmax as well. Therefore, a problem of the un-
saturated porous medium flow constitutes an initial
boundary value problem for a non linear degenerate
parabolic equation endowed with bilateral con-
straints.29

A numerical treatment of such a boundary-value
problem requires a sophisticated control of possible
violations of the inequality. Otherwise, the numerical
scheme typically generates undecaying oscillations
and numerical instability near θ = θmin or θ= θmax.
Development of such instability is displayed in
Fig 8-9. The figures demonstrate the numerical
solution of an infiltration problem (propagation of
water from the soil surface). Richard’s equation is
approximated by the conventional fully implicit
symmetric iterative scheme. 0≤z≤200 cm, z=0
corresponds to the soil surface, the time step τ=3min,
the spatial step ∆z=5 cm. The boundary conditions
are given by θ(0,t)=θmax(0)=0.5, θ(200,t )=0.3
where θmax, θmin are the piecewise linear functions
depicted in Fig 9.

 The calculations clearly demonstrate that even
small violations of the prescribed bounds (Fig. 8)
could lead to the catastrophic oscillations shown in
Fig. 9.

In order to construct a stable procedure which
guarantees the prescribed constraints, we generalize
the numerical algorithms proposed in the preceding
chapters.

First, we consider the case θmax=const, θmin

=const. Moreover, in what follows we shall always
assume that |T/(θ-θmin) |<∞, if T≤0, |T/(θmax-θ) |<∞ if
T>0.

Algorithm 2
Step 1 is based on the following representation
K=(θ-θmin)a=µa. a≡a(θ)=[K(θ)-K(θmin)]/(θ-θmin).

Clearly, a(θmin)<∝  since K(θmin)=0 and 
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Next, we introduce an auxiliary variable µ=θ-θmin

and apply Algorithm 2 to Richard’s equation
represented in terms of µ.
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where   [ ] ( ) [ ] (f . f | f | , f . f | f |+ −= + = −0 5 0 5 )
Step 2 represents Richard’s equation in terms of the
second auxiliary variable ν=θmax-θ.

Fig 9. Numerical solution of Richard's equation. Development
of instabilities for a conventional scheme, (1)-θmin, (2)-
θmax, (3)-θ, 10 iterations, (4) -θ, 15 iterations.

Fig 8. Numerical solution of Richard's equation. Development
of instability for a conventional scheme, 5 iterations (1)-
θmin, (2)-θmax, (3)-θ,         -points where the constraints are
violated.
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It may seem that the new variable does not allow
the required “diffusion-transport” form. However,
since K(θmax)= K1=const
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A straightforward application of Algorithm 2 yields
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where   ̂Tm
µ  is a regularization analogous to that

introduced at step 1.
Finally, we perform the following correction

procedure 
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..., N-1.
Note, that step 3 guarantees the identity µ+ν≡

θmax-θmin which otherwise does not hold at the
discrete level.

Furthermore, we prove basic properties of Algo-
rithm 3.

Theorem 4 The numerical solution satisfies

  θ θ θmin max
˜≤ ≤+

m
n 1 .

Proof. It is sufficient to establish µ≥0 and ν≥0.
We shall only prove that µ≥0. A proof of the
inequality ν≥0 is identical and therefore omitted.

Consider the first stage of the algorithm. Suppose
that although at the previous time step µm≥0, ∀ m,
after n+1 iterations the procedure generates negative
components located at the interval [m1,m2] . In other

words, ˜ , ,...,µm
n m m m+ < =1

1 20

Summation of the finite-difference equations over

,...,m m m= 1 2 yields
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After some technical manipulations we have
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Clearly, the left hand side is non positive.

Therefore, either or both 
  
µ̃m

n
1 1
1
−

+  and 
  
µ̃m

n
2 1
1
+

+  are not

positive. Consequently the interval [m1, m2] can be
expanded to [m1-1, m2] or to [m1, m2+1] or to
[m1-1, m2+1]. Continuing the same argument
˜ , ,...,µm

n m N+ ≤ =1 0 0  yields. However, the statement
is in contradiction with apparently non-negative
˜ , ˜µ µ0

1 1n
N
n+ + . Therefore ˜ ,µm

n+ ≤1 0,∀ m.

Remark Clearly, if T≡0 then µ̃m
n+1 ≡0⇔ µ̃0

1n+ =

, µ̃ 1
N
n+ =0.

The scheme is a discrete analogy of the mass
conservation law.

This property can be easily verified by a
straightforward summation over the computational
domain.

Theorem 5 Let a,b satisfy the Lipschitz-type
conditions given by

|[a(θ1)-a(θ2 )]/(θ1-θ2)|≤A<∝ , |[b(θ1)-b(θ2)]/(θ1-
θ2)|≤B<θ∝ ,

∀θ 1, θ2, θ1−θ2≠0 . where A, B are some constants,
then Algorithm 3 converges.

Consider step 1. Let. σ µ µm
n

m
n

m
n+ += −1 1˜ ˜ . Obvious

technical manipulations yield
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CA z2 ∆ . It is easy to verify that

coefficients of the 3-diagonal form of the system

given by   A C B Fk l k l
n

k l k l
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k l k l
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, , , , , , .σ σ σ−
+ +

+
+− + = −1

1 1
1
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  A B D C A Bk l k l k l k l k l k l, , , , , ,, ,> > = − − >0 0 0.

Therefore, by theorem 337, page. 47.   || || || ||σn
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n
CF+ ≤1

Consequently, there exist such q1, q2 that

|| || || || || || ,σ σn
C

n
C

n
Cq q+ +≤ < +1

1
1

2∆  where q1, q2 can
be made small enough by choosing an appropriate
τ. It is also plain that, an analogous estimate can be

derived with regard to   (ṽ )m
n

m
n+ −1 ν . Therefore, the

method converges.
Remark. Observe that coefficients a and b

corresponding to the Brooks and Corey model satisfy
the conditions of Theorem 5.

Next, consider a porous medium with z-dependent
characteristics, i.e. θmin =θmin (z), θmax=θmax(z),
K1=K1(z), etc. Note, that in this case Richard’s
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equation no longer satisfies the maximum principle.
For instance, the boundary conditions θ(0, t)=
θ(200, t)=const do not necessarily lead to the steady-
state solution θ(z,t)=const (Fig. 10).

Algorithm 4
Consider step 1. A change of variables µ=θ-θmin

yields K=µa1, a1(θmin)<∝ , ∂
∂
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An approximation corresponding to the first step is
then given by

( ˜ ( ˜ ˜ ) /µ µ τ µ µαm
n

m m
n

m /
n

m
n

m
n)/ K z+

+ + +
+ +− = − +1

1 2 1
1 1 2Φ ∆

( ) ( ) ˜ // µα αm m
n

m
na a z+ + +

+ −1 2
1

1 2 ∆   Km
n

m /
n

m
n

m
n

− + −
+

−
+−1 1 2

1
1

1
β µ µΦ ( ˜ ˜ )

z a a z Tm m /
n

m
n

m− + − − +
+− +2

1 1 2 1 2 1
1

β β
µµ∆ ∆/ ( ) ( ) ˜ / ˆ ,

where

  
( ) ( ) ),/

min
/a

d
dz

m
n

m /
n

m2 1 2 1 2 1 2 1+ + += −Φ θ

  
( ) [( ) ( ) )]/ ,min

/ min min
d

dz
zm m m

θ θ θ+ += −1 2 1 ∆

  

α α= =
≤






+

( )
, ) ,

,

/

m
a n

m0 0

1

2 1 2if  (

otherwise,

  

β β= =
≤






−

( )
, ) ,

,

/

m
a n

m0 0

1

2 1 2if  (

otherwise.
,

Unfortunately, θmax=θmax(z) does not allow a
complete “diffusion-transport” form.

Therefore, we represent 
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∂
K
z
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Next, consider the diffusion term D≡KΦ, where

Φ = ∂
∂
ψ
θ

. Note, that neither the Brooks and Corey

nor the Genuchten’s type functions satisfy 
  

∂
∂
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s

0

at s=1. Therefore, we “repair” ψ(s) at the interval
[1-ε,1] by means of the following regularization.
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(See Fig. 11, where   ψ ψa ds= ∫ ).
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Fig 10.Violation of the maximum principle. (1)-θmin, (2)-θmax,
(3) the steady-state solution corresponding to the
boundary conditions θ(0, t)=0.35, θ(200, t)=0.35.
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The right hand side of Richard’s equation becomes
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Therefore, step 2 is given by
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Finally, the correction step does not require
modifications.

Remark Our numerical experiments reveal that
a substantial correction is only required if at least
one of the auxiliary functions contacts the curve
χ(z)=θmax(z)-θmin(z) or the line z=0. In this case con-
ventional schemes are practically inefficient whereas
our method converges to the numerical solution
which satisfies the prescribed constraints. However,
if θ(z,t) does not approach the prescribed bounds,
the three-step procedure does not have particular
advantages. In this case our algorithm generates
numerical solutions practically identical to those
produced by the conventional schemes.

Theorem 6 The numerical solution satisfies

  ( ) ( )min maxθ θ θm m
n

m≤ ≤+1 .
A proof of the theorem can be obtained along the
lines of Theorem 4.

Fig 12 shows calculations performed by the
proposed method in the case of the infiltration
problem. The time and the space step are identical
to those employed by the conventional method (Fig
8-9). The solution corresponds to the so-called
Hortonian classical mechanism of the runoff
production.8 When a precipitation rate at the upper
boundary exceeds K(θmax) the moisture profile
increases at the soil surface as a function of time. At
some point the surface becomes saturated and the
inverted zone of saturation begins to propagate
downward into the soil.

Clearly, the method establishes the convergence
and generates an oscillation-free numerical solution.
Fig 13 shows the relationship between µ(z, t) ,ν(z, t)
and χ(z). The auxiliary variables satisfy 0≤µ(z, t)≤
χ(z), 0≤ν(z, t)≤χ(z),∀ t.

Table 2 reveals an overall priority of the proposed
scheme with regard to conventional methods. S1

denotes the maximum/average number of iterations

Fig 13.Numerical solution of the infiltration problem, (1) -θmax-
θmin, (2) and (3) the auxiliary variables corresponding to
step 1 and 2 at t=2h. (2)-m (z, t) τ=2h, (3) ν(z,t)
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Fig 12.Numerical solution of the infiltration problem, (1) -θmin,
(2)-θmax, (3) θ(z, t), t=0.25h, (4) θ(z, t), t=0.5h, (5)-t=2h,
(6)-t=4h, (7)t=6h.
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Table 3. Efficiency of the algorithm.  Saturation wave.
Randomly perturbed constraints.

S1 S2 Sτ τ, sec ∆, cm

12/8 3/2(-) 0.05 10 10

18/10 5/3(-) 0.1 10 5

26/12 7/5 0.2 10 2.5

36/20 14/7 0.4 10 1.25

18/10 10/6(-) 0.25 50 10

19/11 Diverges 0.5 50 5

46/14 Diverges 1.1 50 2.5

48/22 Diverges 2.2 50 1.25

30/10 Diverges 4.7 1000 10

44/19 Diverges 8.3 1000 5

64/21 Diverges 16.3 1000 2.5

98/25 Diverges 32.6 1000 1.25

40/14 Diverges 41 10000 10

58/18 Diverges 81 10000 5

90/25 Diverges 163 10000 2.5

138/30 Diverges 326 10000 1.25

required by the proposed method, S2 the number of
iterations required by the standard symmetric fully
implicit, iterative scheme, the symbol (-) indicates
violations of the prescribed bounds. Sτ=τ/τCFL where
τCFL is the time step required by the fully explicit,
second order scheme, characterized by the CFL-type
condition, Note, that although Sτ<1 implies that the
explicit scheme converges, it does not necessarily

guarantee   ( ) ( )min maxθ θ θm m
n

m≤ ≤+1 .

We have performed a large series of numerical
experiments to simulate the soil water propagation
characterized by randomly perturbed bounds given by

  θ θ θ θmax max max min min min( ) ( ) , ( ) ( ) ,z z z z= + = +Θ Θ

where   θ θmax min( ), ( )z z  correspond to average values

of θmax(z) and θmin(z), whereas   Θ Θmax min,  are the
“high frequency components” generated randomly.
Although such examples are not likely to often
appear in the practice of conventional soil water
modeling, the simulations constitute a very good test
of reliability of the numerical schemes.

A typical example(Fig 14) is a “saturation wave”
propagating inside the soil.

The wave is modeled by means of the following
boundary conditions

  
θ θ θ θ( , ) ,

, . ( ) ( , )max
max0 0

0 0 5 200t t t= ≤ ≤{ =otherwise.
hour .

The example can be interpreted as a model of
the soil saturation induced by a storm following a
dry period. The upper zones are quickly saturated
or nearly so, establishing two opposite gradients of

the soil moisture(curve 3 , 4 and 5). The moisture
decreases with the depth up to a point when it starts
increasing from the previously dry conditions. After
the soil water percolates down, the system returns
to the initial state.

Table 3 reveals an overall priority of the proposed
scheme with regard to the conventional methods.
Note, that in this case S1, S2 and Sτ represent average
values obtained after 100 trials of the random
components.

Finally, we analyze the convergence rate. The

error is estimated by || || , || ||θ θ θ θ− −f C f L1 and

|| ||θ θ− f L2, where   θf  is the solution obtained by the
conventional scheme on a fine grid. The numerical
experiments reveal that the convergence rate varies
between ∆z0.9 and ∆z1.35 irrespectively of the norm.

Table 2. Efficiency of the algorithm. Infiltration problem.

S1 S2 Sτ τ , sec ∆, cm

8/6 4/3(-) 0.11 10 10
8/7 5/4(-) 0.22 10 5

13/9 13/11 0.43 10 2.5

20/12 20/12 0.88 10 1.25

10/9 9/7(-) 0.55 50 10

13/11 Diverges 1.1 50 5

20/13 Diverges 2.15 50 2.5

28/21 Diverges 4.4 50 1.25

22/16 Diverges 11 1000 10

30/21 Diverges 22 1000 5

46/27 Diverges 44 1000 2.5

72/30 Diverges 88 1000 1.25

46/20 Diverges 110 10000 10

65/28 Diverges 220 10000 5

100/46 Diverges 430 10000 2.5

154/65 Diverges 880 10000 1.25

Fig 14. Saturation wave. The numerical solution in the case of
randomly perturbed bounds (1)-θmin, (2)-θmax, (3) θ(z,t),
t=2h(3) t=3h (4) t=4h (5) t=5h (6)t=6h.
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CONCLUSIONS

We introduce two new numerical algorithms to
treat numerically the Richard’s type models of
unsaturated porous medium flows. The algorithms
generalize our previous results obtained for the
diffusion wave equation. The basic properties of the
algorithms include convergence and the discrete
mass conservation law.

The methodological applications show that when
the solution approaches the prescribed boundaries
our schemes establish the convergence, stability and
produce an oscillation free numerical solution
whereas conventional methods are practically
inefficient. Moreover, for large time steps, the
algorithms (as applied to simulate the unsaturated
porous medium flows) provide an overall priority
with regard to standard methods in terms of required
iterations

Finally, the presented algorithms combined with
the preceding results constitute a new family of
numerical methods designed to solve the degenerate,
non-linear parabolic equations with the constraints
imposed a priori on the solution.
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