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Abstract 
Regression analysis is extensively used in a wide variety of fields, especially for predictive purpose.  Its assumptions play a 

crucial role in parameter estimation. This paper focuses on parameter estimation in multiple linear regression when the assumptions 
are violated with simultaneous presence of autocorrelated random errors of AR(1)  structure and heavy- tailed distribution, using 
hierarchical Bayes approach, which prior information about parameters, both noninformative and informative priors, is incorporated 
into the model.  The result is also compared with frequently used method, maximum likelihood estimation, using the mean square 
error (MSE)  as a criterion for comparison.  The result reveals that hierarchical Bayes with informative priors outperform the 
maximum likelihood method, yielding the smallest MSEs for all sample sizes and correlation coefficients. 
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Introduction 

 
The relationship of explanatory variables on the interest outcome is usually performed using the well-known, 

traditional approach, so called multiple linear regression.  The postulated assumptions on random error about 
independent and normally distributed with constant variance are noteworthy in inferential statistics.  For predictive 
purpose, the reliability of parameter estimation is of concern to most researchers. However, data that are collected 
over time usually violate the independency among observations, often called autocorrelation or serial correlation. 
In addition, the outliers or influential points hidden in data can damage the assumptions about normality and 
constant variance, leading to data not conforming to the imposed method. As a consequence, parameter estimation 
based on the usual ordinary least square method ( OLS)  is no longer efficient and does not have the best linear 
unbiased estimator (BLUE) property.  

Various alternatives to the least square method have been proposed to improve the estimated values of 
parameters when data do not follow the underlying assumptions.  Beach and MacKinnon ( 1978)  estimated 
parameters in simple linear regression model with autocorrelated errors of order 1, or AR(1), using the maximum 
likelihood method.  Pires and Rodrigues ( 2007)  compared two methods of parameter estimation in multiple 
linear regression; the classical method, OLS , and maximum likelihood ( ML)  estimation.  Tanizaki ( 2003) 
studied two parameter estimation methods; maximum likelihood estimation and Bayesian method, on regression 
model in small sample when errors were assumed to be related.  Farrell and Ludwig ( 2008)  presented the 
estimation of parameters in hierarchical response time models, using Bayesian and maximum likelihood 
estimations.   Liu and Dey (2007)  estimated parameters in hierarchical overdispersed Poisson model with the 
presence of autocorrelation.  Besides the problem of dependent random error, data may possess heavier tail than 
normal, such as Student- t, Cauchy or logistic distributions, which usually appeared in finance and economic 
fields (Ravi and Butar, 2010). Lange, Little, and Taylor (1989) studied robust statistical models, both linear 
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and non- linear regression, when random error having multivariate- t distribution. Fernandez and Steel (1999) 
performed multivariate regression analysis with multivariate- t distributed errors.  Rahman and Khan ( 2007) 
focused on predictive distribution using Bayesian approach in linear regression model when errors distributed as 
multivariate-t. Nadarajah and Kotz (2008) illustrated the maximum likelihood method using EM algorithm to 
estimate parameters in multivariate- t distribution.  Roy and Hobert ( 2010)  utilized Monte Carlo method in 
Bayesian multiple linear regression analysis with heavy- tailed error.  Li and Zhao ( 2015)  proposed a robust 
coefficient estimation and variable selection method based on Bayesian adaptive Lasso t- regression, along with 
an application to real data.  Zellner and Ando ( 2010)  used Bayesian and non- Bayesian approaches in the 
seemingly unrelated regression model with Student-t errors, accompanying by the application for forecasting.  

As aforementioned, several methods have been proposed to improve parameter estimation in regression 
analysis when the underlying assumptions about constant variance and independent, normally distributed random 
errors are violated. However, most studies focused only on one problem at a time.  Although some transformation 
techniques can abate the present problem, another problem can occur.   For example, the method to solve for 
non- constant variance may result in heavy- tailed data instead.  This paper is thus aimed to propose the use of 
hierarchical Bayes to estimate parameters in multiple linear regression model when two problems of correlated 
random errors with heavy-tailed distribution occur simultaneously. In hierarchical Bayes, prior information about 
parameters is incorporated into consideration. The results are then compared with the commonly used approach, 
maximum likelihood estimation.   

The remaining of this paper is organized as follow. In the next section, multiple linear regression with 
correlated and heavy-tailed distributed random error, parameter estimation methods following by Gibbs sampler 
procedure are expressed. The result of simulation study is demonstrated in the third section. Conclusion, 
discussion and suggestions are then provided in the last section. 

 
Methods and Materials 

 
1.  Multiple Linear Regression with Autocorrelation and Heavy-tailed Distributed Errors   
     The standard form of multiple linear regression model is written as 
 
        y X = + ,                      (1)        

 
where y  is an 1n  vector of response variable, X  is an n p  matrix of regressors,    is a 1p  vector 

of the regression coefficients and   is an 1n  vector of random errors. The underlying assumption about   is 
assumed to be independent and normally distributed with zero mean vector and constant covariance matrix, 

2( ,  )N  0 I
%

, where I  is an n n  matrix of identity.   
As previously mentioned, data collected over time usually violate the assumption about independent random 

errors. At the same time, a few anomaly observations lurking in data may damage the normal assumption, causing 
inefficient least square estimators in model building. In this paper, we focus on parameter estimation in multiple 
linear regression model when random errors are correlated in the form of autoregressive of order 1, or AR( 1) , 
with heavy- tailed distribution, assumed to be multivariate t- distribution, 1 ,   1, 2,...,i i iu i n 

−
= + = , where 

( )20,  ,  iu t n .  The response vector y  is accordingly distributed as a multivariate Student- t distribution, 
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( ),  ,  Y t X    , where 2=   is an n n  positive definite matrix and   is the degrees of freedom. 
Let   be an n n  correlation coefficient matrix, illustrated as 
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where   denotes population correlation coefficient, representing relationship between pairs of measurement.  
The joint probability density function of 2| ,y    is defined as 
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After rearranging the term  ( ) ( )1y X y X −−  − , we obtain 
 

            ( ) ( ) ( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ  y X y X y X y X X X       − − −   −  − = −  − + −  − ,  (4) 
 

where  ( ) 11 1ˆ   X X X y
−− − =   . 

Substituting (4) into (3), the joint probability function of  2| ,y    is rewritten as 
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2. Methodology for Parameter Estimation  
    2.1 Maximum Likelihood Method (ML) 
 The parameter estimation in regression model is usually performed using a well- known method of 

maximum likelihood. For convenience, the likelihood function is replaced by the log-likelihood function. Values 
of parameters that maximize the log-likelihood function are then calculated as following: 

 Consider the likelihood function based on multivariate t-distribution 
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Differentiate (6) with respect to    and 2 , we obtain 
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.

  Setting ( 7)  and ( 8)  to zero and solving both equations for   and 2 , the maximum likelihood 
estimators of   and 2 are resulted as
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  2.2 Hierarchical Bayes Method (HB)  
  Parameter estimation based on classical approach, such as least squares method or maximum 

likelihood method, regards the parameters of a probability density function as unknown, but constant, while 
Bayesian approach consider parameters as random variables with some probability density function, known as 
prior distribution. The prior distribution form is characterized by its own parameters, called hyperparameters. 
Hierarchical Bayes approach arises when the form of probability density function of hyperparameters are known 
(Gill, 2008). Thus, parameter estimation can be derived from the joint posterior distribution functions of all 
parameters. 
 In this paper, noninformative and informative priors on parameters are considered in calculating the 
estimated values of parameter, as follows. 
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The full conditional posterior distribution function of   with squared error loss function can be derived as 
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Solving the joint posterior distribution functions of   and 2 in equation (9), then we obtain the full 
conditional posterior distribution function of 2  as 
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 Because the full conditional posterior distribution function of 2 is complicated and cannot be solved 
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 Similarly,   and 2 are assumed to be independent for simplicity.  The joint posterior distribution 

functions of 2,  ,  ,       and  are obtained as follow.      
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After integrating (13) with respect to 2 ,  ,      and  , the conditional posterior distribution function of   
is obtained up to proportionality as 
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Likewise, the conditional posterior distribution functions of 2  can be derived by integrating (13) with respect 
to ,  ,      and  , yielding 
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Similarly, the conditional posterior distribution functions of   after integrating out (13) with respect to 
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 , respectively. 
 Since the full conditional distribution function of   and 2 are quite complicated and cannot be 

derived into an analytic- closed form. The Gibbs sampler is accordingly adopted to find the estimators of   
and 2 . 

 
 2.3.  Gibbs Sampler Procedure 
            With hierarchical Bayes approach, the estimate values of parameters in regression model cannot be 

obtained directly due to the complicated distributional forms, as mentioned in the previous section.  Numerical 
method, such as Gibbs sampler, is implemented by sequentially drawing from these conditional distributions to 
create the realization of parameter values. 

            2.3.1. Gibbs sampler for noninformative priors  
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     2.3.2. Gibbs sampler for informative priors  
              The conditional posterior distributions of   and 2 are constructed according to the 
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Results 
 
In this paper, the multiple linear regression model with two predictors are considered under the situation of 

autoregressive of order 1 ( AR( 1) )  random error with heavy- tailed distribution.  All predictors are generated 
from standard normal distributions. The study is performed on the sample size of 50, 200 and 500 with 3 levels 
of correlation coefficient:  low ( )0.1 = , moderate ( )0.5 =  and high ( )0.9 = .  Data are simulated and 
repeated 1,000 times and Gibbs sampler is implemented for parameter estimation.  Three estimators obtained 
from maximum likelihood (ML) , hierarchical Bayes using vague priors (HBV)  and informative priors (HBI) 
are compared. The mean square error is utilized as a criterion for comparison. 
 
Table 1 Mean square error (MSE) of regression coefficient 0 . 

n    
MSE 

ML HBV HBI 
50 0.1 1.2051x10-5 0.7514 0.0271 
 0.5 1.7785x10-4 0.7774 0.0876 
 0.9 4.7038x10-4 0.9006 1.6646 

200 0.1 2.2304x10-5 0.2050 0.0066 
 0.5 1.0250x10-5 0.2720 0.0215 
 0.9 1.6175x10-3 0.6334 0.4503 

500 0.1 2.1427x10-5 0.0346 0.0025 
 0.5 2.0564x10-5 0.0595 0.0078 
 0.9 4.2012x10-8 0.3407 0.1954 
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Table 1 Mean square error (MSE) of regression coefficient 0 . 

n    
MSE 

ML HBV HBI 
50 0.1 1.2051x10-5 0.7514 0.0271 
 0.5 1.7785x10-4 0.7774 0.0876 
 0.9 4.7038x10-4 0.9006 1.6646 
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Table 2  Mean square error (MSE) of regression coefficient 1 . 

n    
MSE 

ML HBV HBI 
50 0.1 1.0814 0.7592 0.0218 
 0.5 1.0805 0.7755 0.0309 
 0.9 1.0747 0.8688 0.0848 

200 0.1 1.0169 0.2089 0.0056 
 0.5 1.0177 0.2739 0.0069 
 0.9 1.0124 0.5864 0.0242 

500 0.1 1.0083 0.0343 0.0020 
 0.5 1.0033 0.0560 0.0029 
 0.9 0.9965 0.3040 0.0099 

   
Table 3  Mean square error (MSE) of regression coefficient 2 . 

n    
MSE 

ML HBV HBI 
50 0.1 1.0655 0.7699 0.0230 
 0.5 1.0782 0.7878 0.0280 
 0.9 1.0745 0.8790 0.0859 

200 0.1 1.0102 0.2063 0.0048 
 0.5 1.0281 0.2723 0.0060 
 0.9 1.0084 0.5950 0.0272 

500 0.1 1.0066 0.0344 0.0021 
 0.5 1.0055 0.0551 0.0025 
 0.9 0.9954 0.3019 0.0098 

   
Table 4  Mean square error (MSE) of all regression coefficients ( )0 1 2, ,    and variance 2( ) .  

n    
MSE 

 
( )0 1 2, ,  

    
 

                   
2  

ML HBV HBI ML HBV HBI 
50 0.1 2.2118 2.2805 0.0719 3.7830 5.0174 0.0817 

 0.5 2.3163 2.3408 0.1464 6.0553 3.0398     0.5313 

 0.9 4.6925 2.6484 1.8353 8.2235 5.4041 0.7047 
200 0.1 2.0436 0.6201 0.0170 4.0368 0.4606 0.0206 

 0.5 2.0761 0.8182 0.0345 6.2097 2.9244 0.4648 

 0.9 3.1740 1.8148 0.5017 7.0706 4.8055 0.8199 
500 0.1 2.0217 0.1032 0.0066 4.0825 0.0249 0.0086 

 0.5 2.0211 0.1706 0.0132 6.2350 0.7916 0.4599 

 0.9 2.3793 0.9465 0.2151 7.1226 3.8812 0.9316 
 
The result shown in Table 1 reveals that the estimate of parameter 0 which represents an intercept term in 

regression model using ML yields the least MSEs for all sample sizes and three levels of correlation coefficient, 
mostly followed by HBI and HBV, respectively.  On the contrary to the parameters 1 and 2 estimates, HBI 
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mostly results in the smallest MSEs, successively followed by HBV and ML, as illustrated in Table 2 and Table 
3 respectively. 

On overall, the MSEs of each method for estimating 0 1,    and 2 are summed together, as displayed in 
Table 4 and disclosed that the MSEs of estimates obtained from HBI are smallest for all sample sizes at low, 
moderate and high correlation coefficients. In addition, the MSEs of ML tends to be smaller than those of HBV 
as n =50, and vice versa for n =200 and 500. Similar results are also obtained for 2 with the smallest MSEs 
of the estimate using HBI, followed by ML and HBV as n = 50 and vice versa for n = 200 and 500. It is also 
observed that the MSEs of all three methods tend to be lower when the sample sizes increase but tends to higher 
with increasing the levels of correlation coefficient.  

 
Conclusion Discussion and Suggestions 

 
The Validity of assumptions in regression model makes a major contribution to the quality of parameter 

estimators. Alternative to searching for technique to solving the problem of assumption violation which is difficult 
in practice, especially when a few assumptions are violated simultaneously, this study instead focuses on 
incorporating information into the estimation in order to mitigate the problem using hierarchical Bayes approach 
and comparing the result with classical approach, maximum likelihood.  Based on simulated study, the results 
indicate that hierarchical Bayes approach using both noninformative and informative priors to estimate parameters 
in multiple linear regression model with correlated and heavy-tailed random error performs rather well, especially 
when correlation between observations are large. As larger sample size, the hierarchical Bayes also outperformed 
the widely used method, maximum likelihood.  

This study indicates that hierarchical Bayes approach performs superior to the maximum likelihood method 
when data do not follow the independent and normal distribution assumptions.  The result is also evident when 
data are highly correlated with large sample sizes.  As a consequence, prior information incorporating into the 
model with the hierarchical Bayes approach is able to mitigate the problem of dependent and nonnormal data. 
This finding is benefit for practical use of regression model, especially in predictive purpose. For further study, 
the comparison of parameter estimation can perform on other circumstances of assumption violation. 
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