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Abstract 
This article explains an improved method to fit the evolution dynamics of the COVID-19 pandemics in China and Thailand 

during January – April 2020. It is done by using a conventional compartmental model and piecewise linear approximation of the 
model parameters. The reported COVID-19 data of China between 22nd January and 22nd March (60 days) and Thailand between 
14th March and 16th April ( 34 days)  are considered.  According to the evolution trends, estimations on the total numbers of 
population involved in the spreading are made and they are about 83000 for China and 3000 for Thailand.  By further analyzing 
the data along with the Susceptible-Infected-Recovered model, relevant epidemiological parameters, which indicate the degree of 
the outbreak, can be extracted. For the China data, a good fit is obtained when linear time-varying functions for the parameters are 
assumed. In case of Thailand data, a reasonable fit is obtained with constant parameter values and it can be improved by considering 
the time lag of 13 days before the triggering of the recovery rate. Based on the obtained model parameters, a forecast of epidemic 
situation in Thailand is made. The expected end point of critical pandemic period is at the mid of June 2020. The calculated basic 
reproduction number of 3.39 is reported for the epidemic spreading of COVID-19 in Thailand. 
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Introduction 

 
Nowadays, Corona virus disease 2019 (COVID-19) is a well-known infectious disease with human-to-

human transmission. It originates in Wuhan city of Hubei province in the People's Republic of China in December 
2019.  The outbreak of COVID- 19 both inside and outside Wuhan city causes many unforeseen health and 
management problems that need prompt responses of Chinese government. Emergency measures were applied to 
slow down the outbreak. For example, the duration of Lunar New Year holiday was extended. Ultimately, Wuhan 
city is lockdown on 23rd January 2020.  In the meantime, the outbreak of COVID- 19 in other big cities of 
China occurred. Infected people, who is asymptomatic, can still travel to other regions and other countries. They 
become virus carriers. In most cases, other nearby persons were unaware and can easily got infected. This leads 
to the wide spreading of the COVID- 19.  On 12th March 2020, World Health Organization ( WHO, 2020) 
declared it as a global pandemic as the disease rapidly spreads across the world. On 8th April 2020, Wuhan city 
is reopened while many countries in all continents are still being suffered from the outbreaks in the countries. 
Severity, duration, and controllability of the spreading are quite different in different countries.  They might 
reflect the applied measures and the concerns of the people and government of each country. 

In order to evaluation the epidemic situation, a computer modeling is typically applied to improve the 
understanding and to further forecast for facility preparation.  Modeling can sometimes aid in determining 
measures.  Models with various degrees of complexities have been considered for dealing with COVID-19 
situation. For example, Castorina, Iorio, and Lanteri (2020) applied well-known macroscopic growth laws to 
estimate the cumulative number of COVID-19 cases. Pongkitivanichkul et al. (2020), who are motivated by 
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the renormalization group framework, have proposed a modified logistic function to fit the cumulative number. 
On the other hand, ‘ Big Data’  has been created and used for helping the response made for COVID- 19 in 
Taiwan (Wang, Ng, & Brook, 2020) while conventional compartmental models have been considered by many 
groups (Adam, 2020; Huang, Liu, & Ding, 2020; Singh & Adhikari, 2020). In all mentioned cases (including 
this work) , COVID- 19 data of China is first examined in order to gain a reasonable view of the handled data. 
In this work, we aim to do a proper forecast of COVID-19 situation in Thailand. 

Concerning the modeling of infectious diseases, the classification of population into groups is generally 
applied first ( Keeling & Rohani, 2008, Vynnycky & White, 2010) .  It is therefore called as compartmental 
models.  Susceptible- Infected- Susceptible ( SIS) , Susceptible- Infected- Recovered ( SIR) , Susceptible-
Exposed-Infected-Recovered (SEIR), Susceptible-Exposed-Infected-Susceptible (SEIS), and Susceptible-
Infected-Recovered-Deceased (SIRD) are examples of well-formulated models in epidemiology.  In general, 
number of considered groups is proportional to the number of model parameters.  In case of COVID- 19, SIR 
model is widely applied ( Adam, 2020; Huang, Yang, Dai, Tian, & Chen, 2020; Singh & Adhikari, 2020) 
because it does reflect the nature of this disease with minimum parameter set.  Unnecessary addition of group 
will increase the number of model parameters, which their values are not known beforehand.  Introduction of 
other information of the population (spatial location, age, and individual health information) might be possible 
if the complete and reliable data is available ( Huang et al. , 2020, Li et al. , 2020) .  Moreover, artificial 
intelligence might be used for forecasting the situation (Hu, Ge, Li, Jin, & Xiong, 2020). 

In this article, we investigate of recorded temporal COVID- 19 data of China and Thailand and transform 
them into the dataset that is suitable for further analysis.  A conventional compartmental model, which is so-
called SIR model, is applied to fit the evolution dynamic of the datasets from both countries. Rough estimations 
of total number of involved populations are made.  Piecewise linear approximation is applied for the relevant 
model parameters in order to produce an improved modeling result and reflect the epidemic situations.  This 
mathematical technique allows one to link between the temporal changes of the physical parameters.  In case of 
Thailand data, the epidemic forecast is done in order to speculate the end point of COVID-19 spreading in the 
country. The obtained basic reproduction numbers R0 are discussed. 
 

Evolution Trend 
 

Due to the severity of COVID- 19 between January and March 2020, many organizations have created 
online database for reporting statistics of the spreading (Worldometers, 2020; Foreignpolicy.com, 2020; WHO, 
2020; Johns Hopkins University, 2020) .  The general interested statistics are the cumulative numbers of 
confirmed, recovered, and death cases of each country. In this study, they are extracted from the online database 
of the Center for System Sciences and Engineering, Johns Hopkins University and be plotted in Figure 1.  In 
Figure 1(a), time evolution of the epidemic spreading in China and the world are presented. Cumulative numbers 
have been recorded since 22nd January and updated daily.  Between 22nd January and 15th February, the world 
data is largely overlapped with the China data since the epidemic spreading first occurs in China. To date (17th 
April 2020) , nearly constant values of China data are reported.  This indicates the end of epidemic outbreak. 
Good controllability of the disease spreading in China has been established. Successive measures in China might 
be able to adapt to other countries. Moreover, the data of China can be used to develop the test and understanding 



Naresuan University Journal: Science and Technology 2020; (28)4

93

the nature of this spreading.  In contrast to China, the pandemic is ongoing worldwide and become very severe 
in many countries. In case of Thailand, the cumulated numbers are presented in Figure 1(b). The first COVID-
19 case is reported in January 2020 and the number of cases slowly increases until the beginning of March 
2020.  Inset of Figure 1( b)  shows the evolution during the initial spreading interval.  Cumulative number of 
confirmed cases is more than 100 on 15th March 2020.  Differently from the world situation, the cumulative 
number of confirmed cases in Thailand becomes nearly constant earlier. This indicates the slowdown of spreading 
due to the fast response measures of Thai people and government. 
 

 
 

Figure 1  Time evolution of the epidemic spreading ( a)  in China and the world and ( b)  in Thailand.  Inset of ( b)  shows the 
evolution during the initial spreading interval in Thailand. 

 
The view of the evolution trends can be widened by plotting the data in logarithmic scale.  Figure 2 shows 

the China (Figure 2(a)) and Thailand (Figure 2(b)) data in this scale. Relevant variables are defined in the 
figure.  They are NC( t)  for the cumulative number of confirmed cases, NR( t)  for the cumulative number of 
recovered cases, and ND(t) for the cumulative number of death cases. For the data at the initial stage (the first 
8 days) of the disease outbreak, exponential fits of the numbers of confirmed cases NC(t) are done. The applied 
function is in the form: 
 

 ,0( ) t
C CN t N e  , (1) 

 
where NC,0 and  are the fitting parameters.  Good fits ( with least squares optimization)  are obtained with the 
parameters shown in the figure and plotted as solid lines at the initial stages. The parameter  indicates the speed 
of initial spread.  Well linear fits in logarithmic scale are obtained since the disease outbreak at initial stage is 
naturally multiplicative. However, they do not longer follow the multiplicative law after the initial stage. In the 
later stage (after ~8 days), the increase rate is reduced. Dashed lines in Figure 2 show the extrapolated curves 
from the good fits of the initial stage. Clear discrepancies are observed. 
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Figure 2  Time evolution of the epidemic spreading (a) in China and (b) in Thailand. Solid and dashed lines show the fitting of 

the data at initial stages (first 8 days) and the extrapolated, respectively. The variables NC(t), NR(t), and NC(t) are 

defined in the figure. Dotted line in (b) indicates the level of the assumed total number of population NT (= 3000) for 
Thailand. 

 

Comparison between China and Thailand data reveals that the disease spreading in Thailand is slower (smaller 
value of ) .  Not only the number of cases in Thailand is much smaller ( e. g.  2672 << 81305)  but also the 
percentage number (i.e., the number of cases divided by the total number of population in the country) is also 
smaller.  These might be due to the high awareness of people to this disease before the outbreak event in the 
country. At present, the number of confirmed cases in China (Thailand) is about 81300 (2700). According to 
the trends and these numbers, we assume that the total numbers of population NT, who involves in this epidemic, 
are 83000 and 3000 for China and Thailand, respectively. 
 

Compartmental Model 
 
A conventional model used to describe the number of people involved in an outbreak is so-called SIR model 

(Adam, 2020, Li et al., 2020, Keeling & Rohani, 2008). It is a kind of compartmental model where the total 
population is divided into 3 groups. They are Susceptible S: the group of people who have the possibility to get 
infected, Infected I: the group of infected people, and Recovered R: the group of people who get recovered from 
the disease and is assumed to gain immunity. In case of fatal disease, the last group (R) is the sum of those who 
have recovered and those who die from the disease.  The numbers of people in each group are first normalized 
by the assumed total number of involved population NT. Population ratios of people in each group are defined as 
S( t) , I( t) , and R( t) , respectively.  The modeling of epidemic situation is essentially the study of dynamics of 
people moved from the group S to the I and then to the R.  The continuous- time homogeneous SIR model 
describes the change in population of each group by using differential equations ( Keeling & Rohani, 2008, 
Linge & Langtangen, 2020): 
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where  and  are model parameters. The  is so-called mass-action term and it indicates average number 

of contact events multiplied by the virus transmission probability for each contact.  The  is the recovery rate. 
Reciprocal of this  term (i.e. 1/) represents the average infectious period. According to the model, the basic 
reproduction number R0 can be defined as the ratio of  and  ( R0 = / ) .  The outbreak condition of any 
epidemics can be mathematically expressed as R0 > 1 (Keeling & Rohani, 2008, Kermack & McKendrick, 
1927). This R0 parameter is thus an important indicator for the epidemic spreading. In order to solve Eqs. (2), 
initial conditions must be set. For this model, they generally are R(0) = 0, I(0) =  (0 <  << 1) and S(0) = 1 

-  (because S(t) + I(t) + R(t) = 1, see Eqs. (2)). In this work, we first transform the reported data into S(t), 
I( t) , and R( t)  and then fit the infected data I( t)  with its numerical solution ( obtained by solving Eqs.  (2)) . 
Temporal scale is in the unit of day while  and  are treated as the fitting parameters. 

Figure 3 shows the time evolution of the numbers of members in S, I and R group for China (Figure 3(a)) 
and Thailand (Figure 3(b)) data. In case of China (Thailand) data, total number of involved population NT of 
83000 ( 3000)  is assumed for calculating the population ratios.  According to the plot, China has obviously 
passed the peak of spreading period ( between 12th February and 18th February)  and the number of present 
infected people is now rather small and decay slowly.  In case of Thailand, it has passed the peak spreading 
period (between 2nd April and 10th of April). Formula for the variable transformation from NC(t), NR(t), ND(t) 

and NT to S( t) , I( t) , and R( t)  for SIR model are shown in the inset of Figure 3(b).  It is noteworthy that the 
group R is the combination of the number of recovered and death cases (R( t)  =  (NR( t)  +  ND( t) ) /NT) , we 
therefore do not account for the death rate within this model and the S(t), I(t), and R(t) cannot directly conversed 
back to NC( t) , NR( t) , and ND( t) .  Interestingly, the observed R( t)  of Thailand data show an abrupt change on 
29th March.  This is generally an indication of a nonlinear step- like behavior of the model parameter.  In this 
case, it is the recovery rate . 
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Fitting Procedure and Results 
 
The SIR model is applied to fit the observed infected data I(t). The fit is done by numerically solving Eqs. 

(2) with Euler forward difference method (Linge & Langtangen, 2020). Time resolution of 0.01 day is chosen 
for this numerical integration as it gives negligible numerical errors for the obtained solution.  The relevant 
parameters (and ) are first estimated from the observed dataset and obtained  from the exponential fit of 
the initial stage ( Initially, ) .  Computational code is developed in Python 3.7 language with the aid 
of Scipy and Numpy packages ( Johansson, 2019) .  The model parameters are then optimized with 
optimize. leastsq method in Scipy package.  Basically, the optimization is done by minimizing the sum of the 

squares of errors SSE between the observed population ratio of infected I(t) and the calculated one ˆ( )I t : 
 

 2ˆ(δ,  β,  γ) ( ( ) ( ))
t

SSE I t I t   (3) 

 
In our model validation, other ratios (S(t) and R(t))  are considered as well.  For improving the fit of the 

observed data, time- varying parametric values of and  is tested.  In the numerical experiment, we have 
performed the fit with constant, linear time-dependent, and step-like function for and  values. Only relevant 
and meaningful results are presented. 
 
 

 
 

Figure 3  Time evolution of the numbers of people in S, I and R groups for ( a)  China and ( b)  Thailand data.  Formula for the 
variable conversion are shown in the inset of (b). Upper red triangle in (b) marks the onset of the abrupt recovery (from 
I to R). 
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Figure 4(a) shows the results from the fitting of the China data (60 days, 22nd January – 22nd March) with 
constant model parameters. It is obvious that the fit with constant values does not produce the correct numerical 
values while the tentative trends of all functions (S(t), I(t), and R(t)) are correct. The obtained SSE is 0.265. 
In case of linear time- dependent parameters, it provides a good fit and the optimized result is shown in Figure 
4( b) .  The calculated SSE is reduced to 0. 0352.  In this case, both  and  are changed to time- dependent 
parameters ( t)  and ( t)  and they are linearly varied from i and i ( at the 0th day)  to f and f ( at the 59th 
day), respectively. All i, f, i and f are treated as the fitting parameters. The time-dependency of both and 
 reflects the change of control measures during the epidemic spreading in China. The trends of these parameters 
provide the decrease of R0 over time.  The obtained numerical values of the optimized parameters are presented 
as graphs in Figure 6 and discussed below. 

Figure 5(a) shows the results from the fitting of available Thailand data (34 days, 14th March – 16th April) 
by using SIR model with constant parameters. The calculated SSE is 0.0172 in this fit. The optimized constant 
parameters can well fit the observed I( t)  and they also provide correct trends for both S( t)  and R( t)  as well. 
However, the discrepancy of the numerical values between observed S( t)  and R( t)  and the calculated ones is 
clearly observed in this case. Because the smooth increasing function is a general solution of R(t) from the Eqs. 
( 2) , it is hard to represent a piecewise linear trend of the observed R( t) .  We therefore consider the piecewise 
constant function of  in this fitting case. The assumed  is in the form 
 

 0

0

0,        < 
γ( )

γ ,      c

t t
t

t t


 


, (4) 

 
where t0 and c are constants.  Both parameters are treated as the fitting parameters.  Note that the parameter 

 is still considered as a constant since the inclusion of the  variation does not improve the fit (not shown). 
 

 
 

Figure 4  Fit of China data by using SIR model with (a) constant parameters and (b) linear time-varying parameters. Observed 
data are shown as background.  
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Figure  5 Fits of available Thailand data by using SIR model with ( a)  constant parameters and ( b)  13-day- delayed constant 
parameter for . Observed data are shown as background. Dashed lines show the forecast of these values. Right axis of 
(b) shows the unnormalized scale. Numerical values near the right axis of (b) shows unnormalized numbers of population 
in each group after 60 days (on 13th May). 

 
Figure 5(b) shows the results from the fitting with 13-day-delayed parameter for  ( t0 = 13 days). The 

good fit of I(t) is preserved while the matched trends and values of both S(t) and R(t) are clearly observed. The 
calculated SSE is reduced to 0. 0133 in this fit.  This result and the fit of China data confirm the advantage of 
the mathematical model proposed in this work.  Piecewise linearity of the R( t)  can well be reproduced with the 
piecewise constant  value proposed in Eq. (4). This might response to the delayed recovery of the COVID-19 
patients in Thailand because all infected persons need some reasonable time to recover.  In addition, due to the 
small number of infected cases in Thailand, the smooth function cannot represent the trend of R(t). 

According to the obtained optimized parameters of Thailand data, the forecast of S(t), I(t) and R(t) can be 
made and it is shown as dashed lines in Figure 5.  Numerical values the right axis of Figure 5( b)  shows 
unnormalized numbers of population in each group after 60 days (on 13th May). According to the applied SIR 
model and its assumptions, least than 101 people will involve in the epidemic spreading after the date. Number 
of infected cases is below 300 and most of population are recovered.  By further extrapolating the function, the 
expected end point of critical pandemic in Thailand at the mid of June 2020 (~123 days after the starting day) 
is predicted.  After that date, the occurrence of new infected cases is much less than 1, the number of infected 
cases is below 10 and 97% of the total population becomes recovered. However, this predicted scenario is under 
the condition that the obtained epidemiological parameters, which relate to the applied public health management 
of the whole country, are not altered with time. If it is not the case, the epidemic spreading can prolong. Migration 
of patients can be another factor that extend the epidemic period in the country.  In the worst scenario, another 
outbreak in a new group of population occurs. The number of total population NT will increase. The cumulative 
numbers of all cases will go up again and they will eventually saturate at some higher values. 
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Figure 6  Evolution of the model parameters (upper panel) and the basic reproduction number R0 (lower panel) from the fitting 
of (a) China and (b) Thailand data. Dashed lines are from the fits with constant parameters and the solid lines are from 
the fits with piecewise linear function. In (b), predicted period of parameter values are shaded. 

 
Concerning the values of parameters obtained from the applied optimization scheme, they are plotted and 

compared in Figures 6( a)  and 6( b)  for China and Thailand data, respectively.  Since the good fit is obtained 
only when the time- dependent parameters are considered for China data, we discuss mainly this case.  By 
allowing the time-variation of the parameters  and , the obtained basic reproduction number R0 decreases with 
time. At the initial stage of the outbreak, the R0 value is very high (> 10, as shown in Figure 6(a)) because of 
small and uncertain  value. This might response to the first unforeseen event of the COVID-19 outbreak in the 
country and the world.  The calculated R0 is eventually reduced to 2. 31.  It is rather low compared with the 
recently reported value by Sanche et al.  ( 2020)  but it does agree with other studies of the similar data.  For 
example, Li et al.  ( 2020)  reported the R0 value of 2. 2.  This value has been mentioned in many subsequent 
studies. 

In case of Thailand data, the small variations of obtained parameters from the fit are observed.  Value of R0 
is decreased from 4. 96 to 3. 39 when the 13- day- delayed recovery rate is assumed.  Both values are higher 
than the above-mentioned R0 value of China data. Different degree of restriction to the applied measures might 
response for this difference.  In case of Thailand, infection among involved people can happen easier and it 
indicates the high severity of the epidemic spreading in Thailand.  Fortunately, the involved population is much 
lower in Thailand. It thus has less infected and death cases. 
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Conclusion and Suggestions 
 

In conclusion, we have presented the reported epidemic data of COVID-19 in China and Thailand. The data 
are transformed for applying into SIR model.  The method to fit the evolution dynamics is explained.  It is done 
by solving the set of nonlinear differential equations.  The reported COVID- 19 data of China between 22nd 
January and 22nd March and Thailand between 14th March and 16th April are considered for the fitting with the 
SIR model. In case of the China data, a good fit is obtained when linear time-varying functions are assumed for 
the model parameters. For Thailand data, a reasonable fit is obtained with constant parameter and the fitting can 
be further improved by including the delay of 13 days before the starting of recovery event. A forecast is made 
based on the extrapolation of the model solution. The expected end point of critical pandemic period in Thailand 
is at the mid of June (~123 days after 14th March). Finally, the basic reproduction numbers are calculated. In 
case of Thailand, we report the R0 value of 3.39, which indicates the severity of the disease spreading. 

As suggestions for future researches, the considerations of data from other countries and the world data are 
possible within this model. Comparisons of the obtained parameter values can be used to quantitatively evaluate 
the effects of epidemic and forecast the situation.  The scenarios might be changed according to the applied 
policies in each country.  Further researches are needed to quantitatively evaluate the influences.  In addition to 
the proposed model, modeling with other functional forms of parameters (e.g. exponential growth/decay or delta 
function)  are possible and it might be done to reflect the occurred events during the observation.  Since the 
epidemic of COVID- 19 is still ongoing, new related publications are rapidly emerging.  Some of them are 
collected by several publishers ( Chen, Allot, & Lu., 2020; AAAS Science, 2020; Elsevier, 2020) .  The 
readers, who are interested in the study related to COVID-19, are suggested to explore the mentioned resources. 
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