Left Regular and Right Regular Elements of the Semigroups of Transformations Restricted by an Equivalence

Nares Sawatraksa, Chaiwat Namnak and Ekkachai Laysirikul*

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000

* Corresponding author. E-mail address: ekkachail@nu.ac.th

Abstract

Let T(X) be the semigroup of all transformations on a set X. For an arbitrary equivalence relation σ on X, we consider a subset of T(X) defined by

 $E(X, \sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \Longrightarrow x\alpha = y\alpha \}.$

It is obvious that $E(X, \sigma)$ is a subsemigroup of T(X). In this paper, we characterize the left regular, the right regular and the completely regular for elements of $E(X, \sigma)$. Moreover, we give a necessary and sufficient conditions for the semigroup $E(X, \sigma)$ when it is left regular, right regular and completely regular, respectively.

Keywords: transformation semigroup, equivalence relation, left regular, right regular, completely regular

Introduction

An element **a** of a semigroup **S** is called *left regular* if $a = xa^2$ for some $x \in S$, *right regular* if $a = a^2x$ for some $x \in S$ and *completely regular* if a = axa and ax = xa for some $x \in S$. In fact, every completely regular element is left regular and right regular. Moreover, Petrich and Reilly (1999) proved that an element **a** of a semigroup **S** is completely regular if and only if **a** is both a left and a right regular element of **S**. If all its elements of **S** are left (right, completely) regular, we call **S** a *left* (*right, completely*) *regular semigroup*.

The full transformation semigroup on a non-empty set X is denoted by T(X), that is, T(X) is the semigroup of all mappings $\alpha : X \to X$ under the composition. Particularly, characterization of regularity on subsemigroups of T(X) have been investigated, see Choomanee, Honyam and Sanwong (2013); Laysirikul (2016); Laysirikul and Namnak (2013); Namnak and Laysirikul (2013); and Sirasuntorn and Kemprasit (2010). In Pei (2005), the author studied a subsemigroup of T(X) determined by an arbitrary equivalence relation σ , namely

$$T(X, \sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \Longrightarrow (x\alpha, y\alpha) \in \sigma \}.$$

He investigated regularity and Green's relations for $T(X, \sigma)$. After, Pei and Deng (2009) described the equivalence relation σ on X for which Green's relations D and J are coincided in the semigroup $T(X, \sigma)$. In 2013, Namnak and Laysilikul (2013) investigated a necessary and sufficient conditions when elements of $T(X, \sigma)$ to be left regular, right regular and completely regular. Recently, Mendes-Gonçalves and Sullivan (2010) introduced a subsemigroup of T(X) defined by

$$E(X,\sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \Longrightarrow x\alpha = y\alpha \}$$

and call it the semigroup of transformations restricted by an equivalence σ . Then $E(X, \sigma)$ is a subsemigroup of $T(X, \sigma)$. If $\sigma = I_X$ where I_X is the identity relation on X, then $E(X, \sigma) = T(X, \sigma)$. The authors characterized Green's relations on the largest regular subsemigroup of $E(X, \sigma)$. They also showed that if $|X| \ge 2$ and $\sigma \ne I_X$, then $E(X, \sigma)$ is not isomorphic to T(Z) for any set Z.

The aim of this paper is to characterize left regular, right regular and completely regular elements of $E(X, \sigma)$, respectively. We also investigate a condition for which of the semigroup to be left regular, right regular and completely regular.

In what follows, let σ be an equivalence relation on a nonempty set X and the quotient set is denoted by X/σ .

Main Results

We first introduce the following terminology. For $\alpha \in T(X)$, the symbol $\pi(\alpha)$ will denote the decomposition of X induced by the map α , namely

 $\pi(\alpha) = \{y\alpha^{-1} : y \in X\alpha\}.$

Hence $\pi(\alpha) = X / \ker \alpha$ where $\ker \alpha = \{(x, y) \in X \times X : x\alpha = y\alpha\}$.

The following lemma is needed for characterization of left regular.

Lemma 1. Let $\alpha \in E(X, \sigma)$. For each $A \in X/\sigma$, there exists $P \in \pi(\alpha)$ such that $A \subseteq P$.

Proof. Let $A \in X/\sigma$ and $a \in A$. Choose $P = (a\alpha)\alpha^{-1}$. If $x \in A$, then $x\alpha = a\alpha$ and hence $x \in (a\alpha)\alpha^{-1} = P$. Therefore $A \subseteq P$.

Now, we investigate the condition under which an element in $E(X, \sigma)$ is left regular.

Theorem 2. Let $\alpha \in E(X, \sigma)$. Then α is left regular if and only if for every $P \in \pi(\alpha)$, there exists $x \in X$ such that $x\alpha \in P$.

Proof. Assume that α is left regular. Then $\alpha = \beta \alpha^2$ for some $\beta \in E(X, \sigma)$. Let $P \in \pi(\alpha)$ and $y \in P$. Then

$$y\alpha = y\beta\alpha^2 = y\beta\alpha\alpha$$

and hence $y\beta \alpha \in (y\alpha)\alpha^{-1} = P$. Therefore for any $P \in \pi(\alpha)$, there is $x = y\beta \in X$ such that $x\alpha \in P$.

Conversely, for each $P \in \pi(\alpha)$, we choose and fix an element $x_p \in X$ such that $x_p \alpha \in P$. Let $x \in X$. Since $\pi(\alpha)$ is a partition of X, there exists $P_x \in \pi(\alpha)$ such that $x \in P_x$. We then have $x_{P_x} \alpha \alpha = x \alpha$. Define $\beta : X \to X$ by

$$x\beta = x_{P_x}$$
 for all $x \in X$.

Let $x, y \in X$ be such that $(x, y) \in \sigma$. Then there exists $A \in X/\sigma$ such that $x, y \in A$. By Lemma 1, there is $P \in \pi(\alpha)$ such that $A \subseteq P$. Thus $x, y \in P$ and so $x_{P_x} = x_P = x_{P_y}$. This implies that $x\beta = y\beta$. Hence $\beta \in E(X, \sigma)$. If $x \in X$, then $x\beta\alpha^2 = x_{P_x}\alpha\alpha = x\alpha$ which gives $\alpha = \beta\alpha^2$. We conclude that α is left regular.

An element \mathbf{x} of a semigroup \mathbf{S} is called *idempotent* if $\mathbf{x}^2 = \mathbf{x}$. Clearly, if \mathbf{x} is idempotent, then \mathbf{x} is both a left and a right regular element. For $\mathbf{\alpha} \in T(\mathbf{X})$, we have that every constant mapping is an idempotent element. If $\mathbf{\sigma} = \mathbf{X} \times \mathbf{X}$, then every element of $E(\mathbf{X}, \mathbf{\sigma})$ is constant. Hence every element of $E(\mathbf{X}, \mathbf{\sigma})$ is idempotent.

Next, using the fact above proves a necessary and sufficient conditions for the semigroup $E(X, \sigma)$ which is left regular.

Theorem 3. If $|X| \leq 2$, then $E(X, \sigma)$ is a left regular semigroup.

Proof. Suppose that $|X| \le 2$. If |X| = 1, then $E(X, \sigma)$ contains only one element. Clearly, $E(X, \sigma)$ is a left regular semigroup. Assume that |X| = 2. Then $\sigma \in \{I_X, X \times X\}$. If $\sigma = X \times X$, then every element of $E(X, \sigma)$ is idempotent and hence $E(X, \sigma)$ is a left regular semigroup. If $\sigma = I_X$, then we have

 $E(X,\sigma) = \left\{ \begin{pmatrix} a & b \\ a & a \end{pmatrix}, \begin{pmatrix} a & b \\ a & b \end{pmatrix}, \begin{pmatrix} a & b \\ b & a \end{pmatrix}, \begin{pmatrix} a & b \\ b & b \end{pmatrix} \right\}$

where $X = \{a, b\}$. It is easy to see that $E(X, \sigma)$ is a left regular semigroup by Theorem 2.

Theorem 4. Let $|X| \ge 3$. Then $E(X, \sigma)$ is a left regular semigroup if and only if $\sigma = X \times X$.

Proof. Suppose that $\sigma \neq X \times X$. Then there exist distinct elements $A, B \in X/\sigma$. Let $a \in A$ and $b \in B$. Since $|X| \ge 3$, there is an element $c \in X \setminus \{a, b\}$. We distinguish two cases.

Case 1. Either $c \in A$ or $c \in B$. Without loss of generality, we may assume that $c \in A$. Define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} a & \text{if } x \in A, \\ c & \text{otherwise.} \end{cases}$$

Then $\alpha \in E(X, \sigma)$. Let $P = c\alpha^{-1}$. Then $P \in \pi(\alpha)$ and $P = X \setminus A$. Since $a, c \in A$, $P \cap X\alpha = \emptyset$. Therefore $x\alpha \notin P$ for all $x \in X$ and thus α does not satisfy Theorem 2. Hence α is not a left regular element of $E(X, \sigma)$.

Case 2. $c \notin A$ and $c \notin B$. Then there is $C \in X/\sigma$ such that $c \in C$. Thus $C \notin \{A, B\}$. Define

 $\alpha: X \to X$ by

$$x\alpha = \begin{cases} a & \text{if } x \in A \cup B, \\ b & \text{otherwise.} \end{cases}$$

Obviously, $\alpha \in E(X, \sigma)$ and the set $P = b\alpha^{-1} \in \pi(\alpha)$. Then $P = X \setminus (A \cup B)$ and so $P \cap X\alpha = \emptyset$. Hence by Theorem 2 we obtain that α is not a left regular element of $E(X, \sigma)$.

From the two cases, we conclude that $E(X, \sigma)$ is not a left regular semigroup.

Conversely, if $\sigma = X \times X$, then every element of $E(X, \sigma)$ is idempotent and hence $E(X, \sigma)$ is a left regular semigroup.

Next, we give a characterization of the right regular elements in $E(X, \sigma)$.

Theorem 5. Let $\alpha \in E(X, \sigma)$. Then α is right regular if and only if $\alpha|_{X\alpha}$ is an injection.

Proof. Assume that α is right regular. Then $\alpha = \alpha^2 \beta$ for some $\beta \in E(X, \sigma)$. Let $x, y \in X\alpha$ be such that $x\alpha = y\alpha$. Then $x = x'\alpha$ and $y = y'\alpha$ for some $x', y' \in X$. Thus $x = x'\alpha = x'\alpha^2\beta = x\alpha\beta = y\alpha\beta = y'\alpha^2\beta = y'\alpha = y$. This means that $\alpha|_{X\alpha}$ is an injection.

Conversely, suppose that $\alpha|_{X\alpha}$ is an injection. Let $A \in X/\sigma$ be such that $A \cap X\alpha^2 \neq \emptyset$. We choose and fix an element $x_A \in A \cap X\alpha^2$. For each $x \in A \cap X\alpha^2$, there exists a unique $x' \in X\alpha$ such that $x = x'\alpha$ by assumption. We observe that $(x'\alpha, x'_A\alpha) = (x, x_A) \in \sigma$. This implies that $x'\alpha\alpha = x'_A\alpha\alpha$. By assumption, we get that $x'\alpha = x'_A\alpha$. Since $x', x'_A \in X\alpha$ and $\alpha|_{X\alpha}$ is injective, $x' = x'_A$. Define $\beta_A : A \to X$ by

$$x\beta_A = x_A$$
 for all $x \in A$

Then we define the map $\beta : X \to X$ by

$$\beta|_{A} = \begin{cases} \beta_{A} & \text{if } A \cap X\alpha^{2} \neq \emptyset, \\ c_{A} & \text{otherwise,} \end{cases}$$

for all $A \in X/\sigma$ where c_A is the constant mapping from A into X. Since X/σ is a partition of X, β is welldefined. Obviously, $\beta \in E(X, \sigma)$. Finally, we will show that $\alpha = \alpha^2 \beta$. Let $x \in X$, so $x\alpha^2 \in X\alpha^2$. Then there exists $A \in X/\sigma$ such that $x\alpha^2 \in A$. By the definition of β_A , $x\alpha^2\beta_A = (x\alpha^2)'_A = (x\alpha^2)'$ where $(x\alpha^2)'\alpha = x\alpha^2 = (x\alpha)\alpha$. By the uniqueness of $(x\alpha^2)'$, we obtain that $(x\alpha^2)' = x\alpha$. Thus $x\alpha^2\beta = x\alpha^2\beta_A = x\alpha$. We conclude that α is right regular, as asserted.

The proof of the next result is similar to Theorem 3.

Theorem 6. If $|X| \leq 2$, then $E(X, \sigma)$ is a right regular semigroup.

Theorem 7. Let $|X| \ge 3$. Then $E(X, \sigma)$ is a right regular semigroup if and only if $\sigma = X \times X$.

Proof. Assume that $\sigma \neq X \times X$. Then there are $A, B \in X/\sigma$ with $A \neq B$. Let $a \in A$ and $b \in B$. From $|X| \ge 3$, we let $c \in X \setminus \{a, b\}$.

Case 1. Either $c \in A$ or $c \in B$. Without loss of generality, we let $c \in A$.

Define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} a & \text{if } x \in A, \\ c & \text{otherwis} \end{cases}$$

Then $\alpha \in E(X, \sigma)$. Since $a, c \in X\alpha$ and $a\alpha = c\alpha, \alpha|_{X\alpha}$ is not injective.

Case 2. $c \notin A$ and $c \notin B$. Define $\alpha : X \to X$ by

$$\alpha = \begin{cases} a & \text{if } x \in A \cup B, \\ b & \text{otherwise} \end{cases}$$

Obviously $\alpha \in E(X, \sigma)$. Since $c \notin A$ and $c \notin B$, $a, b \in X\alpha$. Note that $a\alpha = b\alpha$. Thus $\alpha|_{X\alpha}$ is not injective. Form the discussion above, they follow from Theorem 5 that $E(X, \sigma)$ is not a right regular semigroup. The converse of theorem is clear.

Finally, we give a characterization of the completely regular elements in $E(X, \sigma)$.

Theorem 8. Let $\alpha \in E(X, \sigma)$. Then α is completely regular if and only if $|P \cap X\alpha| = 1$ for all $P \in \pi(\alpha)$. *Proof.* Suppose that α is a completely regular element. Then α is a left and a right regular element. Let $P \in \pi(\alpha)$. By Theorem 2, there exists $x \in X$ such that $x\alpha \in P$. Thus $P \cap X\alpha \neq \emptyset$. If $x, y \in P \cap X\alpha$, then $x\alpha = y\alpha$. It follows from Theorem 5 that x = y. Hence $|P \cap X\alpha| = 1$, as required.

Conversely, suppose that for each $P \in \pi(\alpha)$, $|P \cap X\alpha| = 1$. Let $x, y \in X\alpha$ be such that $x\alpha = y\alpha$. Then $x, y \in P \cap X\alpha$ for some $P \in \pi(\alpha)$. By assumption, we obtain that x = y, so that $\alpha|_{X\alpha}$ is an injection. By Theorem 5, we have α is right regular. From assumption and Theorem 2, we get that α is left regular. Hence α is completely regular.

Theorems 3, 4, 6 and 7 can be summarized as follows:

Corollary 9. $E(X, \sigma)$ is a completely regular semigroup if and only if $|X| \le 2$ or $\sigma = X \times X$.

Acknowledgement

The authors would like to show gratitude to the Science Achievement Scholarship of Thailand (SAST) for the full scholarship to one of the authors and support in academic activities.

References

- Choomanee, W., Honyam, P., & Sanwong, J. (2013). Regularity in semigroups of transformations with invariant sets. International Journal of Pure and Applied Mathematics, 87, 151–164.
- Laysirikul, E. (2016). Semigroups of full transformations with restriction on the fixed set is bijective. *Thai Journal of Mathematics*, 14(2), 497-503.
- Laysirikul, E., & Namnak, C. (2013). Regularity for semigroups of transformations that preserve equivalence. *JP Journal of Algebra, Number Theory and Applications, 28,* 97–105.
- Namnak, C., & Laysirikul, E. (2013). Right regular and left regular elements of E-order-preserving transformation semigroups. *International Journal of Algebra*, 7, 289-296.

- Pei, H. (2005). Regularity and Green's relations for semigroups of transformations that preserve an equivalence. *Communications in Algebra*, *33*, 109–118.
- Pei, H., & Deng, W. (2009). A note on Green's relations in the semigroups T(X,σ). Semigroup Forum, 79, 210-213.
- Petrich, M., & Reilly, N. R. (1999). Completely Regular Semigroups. New York: Wiley.
- Sirasuntorn N., & Kemprasit, Y. (2010). Left regular and right regular elements of semigroups of 1–1 transformations and 1–1 linear Transformations. *International Journal of Algebra*, *4*, 1399–1406.
- Sullivan, R. P., & Mendes-Gonçalves, S. (2010). Semigroups of transformations restricted by an equivalence. *Central European Journal of Mathematics*, *8*, 1120–1131.

