

การเตรียมตัวตรวจวัดแก๊ส NO₂ โดยใช้ท่อนาโนคาร์บอนเจือไนโตรเจนและ ท่อนาโนคาร์บอนเจือโบรอนและไนโตรเจนสังเคราะห์จากสารตั้งต้นชนิดของแข็ง อางค์สุภา เนียมแสง¹, ชัยศักดิ์ อิสโร¹* และเอกพงษ์ สุวัฒนมาลา²

Preparation of NO_2 Gas Sensing by Using CN-NTs and BCN-NTs Synthesized

from Solid Precursor

Arngsupha Niamsang¹, Chaisak Issro^{1*} and Ekapong Suwattanamala²

1ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ชลบุรี 20131

²ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา ชลบุรี 20131

¹Department of Physics, Faculty of Science, Burapha University, Chonburi 20131

²Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131

* Corresponding author. E-mail address: chaisak@buu.ac.th

Received: 23 March 2017; Accepted: 22 June 2017

บทคัดย่อ

ท่อนาโนคาร์บอนเจือไนโตรเจน (CN-NTs) และท่อนาโนคาร์บอนเจือโบรอนและไนโตรเจน (BCN-NTs) สำหรับประยุกต์ใช้เป็น เซ็นเซอร์ตรวจวัดแก๊สไนโตรเจนไดออกไซด์ (NO₂) ถูกสังเคราะห์ด้วยเทคนิคการตกเคลือบด้วยไอระเหยทางเคมีโดยการผสมสารตั้งต้นที่ ประกอบด้วย อิมิดาโซล เฟอร์โรซีน และกรดบอริก ที่อุณหภูมิในการสังเคราะห์ 900 °C จากการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบส่องกราด (SEM) และกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) พบว่าเกิดความบกพร่องขึ้นบริเวณโครงสร้างท่อและภายในท่อ แสดงโครงสร้างคล้ายปล้องไผ่ มีขนาดเส้นผ่านศูนย์กลางเฉลี่ยของ CN-NTs และ BCN-NTs อยู่ในช่วง 145.9±11.5 นาโนเมตร และ 67.9±7.5 นาโนเมตร ตามลำดับ จากการตรวจสอบความบกพร่องในท่อนาโนคาร์บอนด้วยรามานสเปกตรัมโดยใช้อัตราส่วน I_D/I_G ซึ่งผล แสดงให้เห็นว่าอัตราส่วน I_D/I_G ของ CN-NTs และ BCN-NTs มีค่าเท่ากับ 1.10 และ 1.57 ตามลำดับ ผลการวิเคราะห์ธาตุภายในท่อนาโน คาร์บอนจากเอกซ์เรย์โฟโตอิเล็กตรอนสเปกโทรสโกปี (XPS) สามารถยืนยันได้ว่า CN-NTs และ BCN-NTs มีอะตอมไนโตรเจนและ/หรือ อะตอมโบรอนอยู่ จากผล XPS ของ CN-NTs แสดง 2 ชนิดความแตกต่างของไนโตรเจนที่รวมอยู่ภายในโครงสร้างของท่อคือ Quatemary nitrogen และ Graphitic-N-O ขณะที่ BCN-NTs มีปริมาณของโบรอนในปริมาณที่ต่ำและมีรูปแบบการรวมด้วของไนโตรเจนภายในท่อได้ หลายชนิด ผลการตรวจวัดแก๊ส NO₂ พบว่า CN-NTs มีกรตอบสนองที่รวดเร็วและมีการคืนตัวที่สมบูรณ์ เป็นไปได้ว่าความบกพร่องใน โครงสร้างของท่อจากการเจืออะตอมไนโตรเจนช่วยเพิ่มประสิทธิภาพในการดูดชับแก๊ส NO₂ ในอีกด้านหนึ่ง BCN-NTs มีการตอบสนองต่อ แก๊ส NO₂ ที่ช้าและมีการคืนตัวที่ไม่สมบูรณ์เนื่องจากอะตอมโบรอนที่ถูกเจือมีการขึดเกาะที่แข็งแงงกับโมเลกุลของแก๊ส NO₂ ดังนั้นการ สังเคราะห์ BCN-NTs ยังคงจำเป็นต้องศึกษาเพื่อเพิ่มปริมาณการยึดเกาะของอะตอมโบรอนที่เจือและควบคุมองค์ประกอบของธาตุให้ม อัตราส่วนที่เหมาะสมของงานวิจัยในอนาคต

คำสำคัญ: ท่อนาโนคาร์บอนเงือไนโตรเจน โบรอนคาร์บอนไนไตรด์ ไนโตรเจนไดออกไซด์ แก๊สเซ็นเซอร์

Abstract

Nitrogen doped carbon nanotubes (CN-NTs) and boron and nitrogen doped carbon nanotubes (BCN-NTs) were obtained for applied to nitrogen dioxide (NO₂) gas sensing. The CN-NTs and BCN-NTs in this research were synthesized by the chemical vapor deposition method at 900 °C using a mixture of imidazole/ferrocene/boric acid as a precursor. Our results showed that defect in tube structure and the tubes exhibited Bamboo-like structure from transmission electron microscopy (TEM) analysis. The average diameter of CN-NTs and BCN-NTs was in the range of 145.9 \pm 11.5 nm and 67.9 \pm 7.5 nm, respectively. Investigation of the defect in carbon nanotubes was determined from Raman spectrum by using the I_D/I_G ratio. It presented that the I_D/I_G ratio of CN-NTs and BCN-NTs were 1.10 and 1.57, respectively. The elemental analysis of the carbon nanotubes were performed by X-ray photoelectron spectroscopy (XPS) for confirming that CN-NTs and BCN-NTs contained nitrogen and/or boron atoms. The CN-NTs from XPS results presented two different types of nitrogen incorporation in the nanotubes structure as Quaternary nitrogen and

Graphitic-N-O, while the BCN-NTs exhibited low boron content and having many types of nitrogen incorporation in nanotubes. The NO_2 gas detection on CN-NTs showed faster response time and the complete recovery. The defect structure of nanotubes from nitrogen atoms doped in carbon nanotubes may response for the improved NO_2 adsorption on CN-NTs. On the other hand, BCN-NTs showed long response time to NO_2 and incomplete recovery because boron atoms dopant has strong binding to NO_2 molecules. Therefore, the synthesis of BCN-NTs is still needed to study for increased quantity of boron atoms and controlled compositions of element in appropriate ratio in the future work.

Keywords: Nitrogen doped carbon nanotubes, Boron carbon nitride, Nitrogen dioxide, Gas sensor

บทนำ

เนื่องจากปัจจุบันโลกมีปัญหาด้านมลพิษทางอากาศ มี การปล่อยแก๊สชนิดต่าง ๆ ออกสู่สิ่งแวดล้อมเป็นจำนวน มาก ทำให้แต่ละปีมีปริมาณการสะสมของแก๊สที่เป็นมลพิษ ต่อสิ่งแวดล้อมเพิ่มขึ้นและมีผลกระทบต่อสิ่งมีชีวิตบนโลก ดังนั้นจึงจำเป็นต้องมีการศึกษาและพัฒนาอุปกรณ์ตรวจวัด แก๊สที่มีประสิทธิภาพในการตรวจวัดแก๊สพิษในสิ่งแวดล้อม เพื่อช่วยป้องกันและหาวิธีลดปริมาณแก๊สพิษในบริเวณที่มี ความเสี่ยงที่อาจเป็นอันตรายต่อมนุษย์และสิ่งมีชีวิต

ท่อนาโนคาร์บอน (Carbon nanotubes) ถูกค้นพบในปี 1991 โดย Lijima (1991) และต่อมาได้ถกพัฒนาและ นำมาใช้ประโยชน์ในด้านต่าง ๆ มากขึ้น เนื่องจากมีสมบัติ นำไฟฟ้าที่ดี มีพื้นที่ผิวสงและมีความแข็งแรงยืดหย่นสง รวมทั้งมีสมบัติในการปลดปล่อยอิเล็กตรอนได้ดี (Kaushik & Majumder, 2015) จึงถูกนำมาประยุกต์ใช้เป็นอุปกรณ์ ทางด้านอิเล็กทรอนิกส์หลายชนิด เช่น เซลล์เชื้อเพลิง (fuel cell), แบตเตอรี่, ตัวเก็บประจุและเซ็นเซอร์ตรวจวัด แก๊สพิษชนิดต่าง ๆ เป็นต้น (Elrouby, 2013) ต่อมาได้มี การพัฒนาสมบัติของท่อนาโนคาร์บอนให้มีประสิทธิภาพ มากขึ้นโดยการเจืออะตอมของโบรอนหรือไนโตรเจนเข้าไป ในท่อนาโนคาร์บอน ตัวอย่างเช่น ท่อนาโนคาร์บอนเจือ ในโตรเจน (CN-NTs) และท่อนาโนคาร์บอนเจือโบรอน และไนโตรเจน (BCN-NTs) เป็นต้น เนื่องจากการเจือ อะตอมโบรอนและไนโตรเจนมีผลทำให้ท่อนาโนคาร์บอน ถกปรับเปลี่ยนสมบัติทั้งทางกายภาพและทางเคมีเกิดขึ้น โดยเฉพาะการเปลี่ยนแปลงสภาพการละลายได้และเพิ่ม ปฏิกิริยาพื้นผิวการเจืออะตอมของธาตุโบรอนและ ไนโตรเจนทำให้มีความหนาแน่นของความบกพร่องภายใน โครงสร้างของท่อเพิ่มขึ้น และภายในท่อยังแสดงลักษณะ โครงสร้างคล้ายปล้องไผ่ (Bamboo-like structure) (Adjizian et al., 2014) การเจืออะตอมไนโตรเจนทำให้

เกิดความบกพร่องเพิ่มขึ้นในโครงสร้างท่อและมีส่วนช่วย ในการยึดเกาะกับโมเลกุลของแก๊สไนโตรเจนไดออกไซด์ (NO,) เรียกว่าการดูดซับทางเคมี (Bai & Zhou, 2007) โดยปฏิกิริยาระหว่างแก๊ส NO, กับท่อนาโนคาร์บอนเจือ ไนโตรเจนมีการยึดเกาะที่แข็งแรงกว่าท่อนาโนคาร์บอน เพียงเล็กน้อย ซึ่งจากผลการวิจัยก่อนหน้านี้ได้รายงานว่า ท่อนาโนคาร์บอนเจือไนโตรเจนมีสมบัติในการตรวจวัด แก๊ส NO, ได้ดี จากการศึกษาท่อนาโนคาร์บอนแบบผนัง หลายชั้น 2 ชนิด คือ ท่อนาโนคาร์บอนเจือโบรอนและท่อ นาโนคาร์บอนเจือไนโตรเจน เพื่อนำมาตรวจวัดแก๊ส NO ที่ความเข้มข้น 50, 100, 200, 500 ppb และ 1 ppm พบว่าท่อนาโนคาร์บอนมีการตอบสนองที่น้อยต่อแก๊สNO แต่ในทางตรงกันข้ามทั้งท่อนาโนคาร์บอนเจือโบรอนและ ท่อนาโนคาร์บอนเจือไนโตรเจนแสดงการตอบสนองต่อ แก๊ส NO, ได้สูง โดยความเข้มข้นของแก๊ส NO, ที่สามารถ ตรวจวัดได้คือตั้งแต่ 50 ppb ขึ้นไป พบว่าการตอบสนอง ของตัวตรวจวัดมีค่าเพิ่มขึ้นกับการเพิ่มความเข้มข้นของ NO, และเริ่มอิ่มตัวที่ความเข้มข้นสูง นอกจากนี้ยังพบว่าใน ท่อนาโนคาร์บอนเจือไนโตรเจนมีการคืนตัวได้อย่าง สมบูรณ์แต่มีการคืนตัวที่ไม่สมบูรณ์เกิดขึ้นในท่อนาโน คาร์บอนเจือโบรอน (Adjizian et al., 2014) งานวิจัย ต่อมาได้มีการศึกษาผลของหมู่ฟังก์ชัน B-, N- และ O-ที่ถูกเจือในท่อนาโนคาร์บอน โดยท่อนาโนคาร์บอนเจือ โบรอนและท่อนาโนคาร์บอนเจือไนโตรเจนถูกนำมา ตรวจวัดแก๊ส NO, ที่ความเข้มข้น 100, 200, 500 และ ppb ภายใต้อุณหภูมิห้อง และพบว่าท่อนาโน 1000 คาร์บอนเจือไนโตรเจนมีประสิทธิภาพในการตรวจวัดแก๊ส พิษที่เป็นอันตรายได้ดีเนื่องจากปรากฏความบกพร่อง ภายในโครงสร้าง เช่น ไพริดีนไนโตรเจน (pyridine-type) อย่บริเวณพื้นผิวและมีการคืนตัวที่สมบรณ์หลังการตรวจวัด แก๊ส แต่ในท่อนาโนคาร์บอนเจือโบรอนมีการคืนตัวที่ต่ำ เนื่องจากอะตอมโบรอนมีการยึดเกาะกับโมเลกุล NO, ที่ ้แข็งแรงกว่า ทำให้ยากต่อการกำจัดโมเลกุล NO₂ ออกไป (Leghrib, Felten, Pireaux, & Llobet, 2011) สำหรับใน กรณีการเจือทั้งอะตอมโบรอนและไนโตรเจนพร้อมกันใน ท่อนาโนคาร์บอน (BCN-NTs) ได้มีการศึกษาโดยใช้การ สังเคราะห์ด้วยเทคนิค CVD ด้วยอัตราส่วนของ B, C และ N เท่ากับ 1:4:1 เพื่อนำมาประยุกต์ใช้ตรวจวัดแก๊ส NO ที่ความเข้มข้น 0.97-97 ppm พบว่า BCN-NTs มีการ ตอบสนองที่ดีและรวดเร็ว ผลเกิดจากโครงสร้างท่อที่เป็น เอกลักษณ์และมีสมบัติทางอิเล็กทรอนิกส์ที่เพิ่มขึ้นหลังจาก เจือด้วยอะตอม B และ N ในท่อนาโนคาร์บอน ซึ่งอะตอม B และ N มีผลทำให้เกิดโฮลหรืออิเล็กตรอนขึ้นในท่อนาโน ้คาร์บอนทำให้ท่อมีสมบัติเป็นสารกึ่งตัวนำ อีกทั้งโมเลกุล แก๊ส NO, ยังสามารถจับกับอะตอม N ในผนัง BCN-NTs ้ได้ สำหรับในส่วนของการเจือ B นั้นทำให้มีความสามารถ ในการยึดเกาะเชิงเคมีกับ NO, ได้สูงขึ้น (Yang et al., 2013)

งานวิจัยนี้มีความสนใจที่จะศึกษาผลของการสังเคราะห์ CN-NTs และ BCN-NTs จากสารตั้งต้นที่เป็นของแข็ง แทนการใช้สารตั้งต้นในรูปของเหลวและแก๊สเพื่อนำมา ทดสอบตรวจวัดแก๊ส NO₂ ที่ความเข้มข้นต่าง ๆ ภายใต้ อุณหภูมิห้อง เพื่อเป็นแนวทางในการพัฒนาปรับปรุงตัว ตรวจวัดที่มีคุณภาพ โดยทำการศึกษาลักษณะโครงสร้าง และความบกพร่องของท่อนาโนคาร์บอนหลังจากการเจือ โบรอนและไนโตรเจนที่มีผลต่อการตรวจวัดปริมาณแก๊ส ในโตรเจนไดออกไซด์ วิเคราะห์ลักษณะโครงสร้างของ CN-NTs และ BCN-NTs ด้วยเทคนิค SEM, TEM และ รามานสเปกโทรสโกปีรวมทั้งวิเคราะห์องค์ประกอบธาตุ และชนิดพันธะภายใน CN-NTs และ BCN-NTs ด้วย เทคนิค XPS เพื่อใช้เป็นข้อมูลและพัฒนาวัสดุในการ ประยุกต์ใช้เป็นเซ็นเซอร์ตรวจวัดแก๊สต่อไป

วิธีการศึกษาและวัสดุอุปกรณ์

การสังเคราะห์ท่อนาโนคาร์บอนชนิดเจือโบรอน และไนโตรเจน

ในกระบวนการสังเคราะห์ CN-NTs และ BCN-NTs ด้วยเทคนิคการตกเคลือบด้วยไอระเหยทางเคมี (CVD) ด้วยสารตั้งต้นชนิดของแข็งประกอบด้วย อิมิดา โซล เฟอร์โรซีน และกรดบอริก ในการสังเคราะห์แบ่ง ออกเป็น 2 ส่วน โดยส่วนที่ 1 เป็นการสังเคราะห์ CN-NTs (1) ใช้แผ่นรองรับที่ประกอบด้วยขั้วอิเล็กโทรด ทองคำที่เคลือบบนแผ่น SiO,/Si โดยใช้การผสมสารตั้ง ต้นระหว่าง อิมิดาโซล 2.0 กรัม และเฟอร์โรซีน 1.0 กรัม ส่วนที่ (2) BCN-NTs สังเคราะห์โดยใช้การผสมสารตั้ง ต้นระหว่าง อิมิดาโซล 2.0 กรัม เฟอร์โรซีน 1.0 กรัม และ กรดบอริก 1.0 กรัม ผสมในภาชนะควอทซ์ ภายใต้ กระบวนการสังเคราะห์ทั้ง 2 แก๊สอาร์กอนถูกปล่อยเข้าสู่ ระบบที่อัตราการไหล 500 sccmและลดลงเหลือ 300 sccm เมื่ออุณหภูมิของระบบมีค่า 900 °C เคลื่อนเตาจาก บริเวณที่วางวัสดุรองรับมายังบริเวณที่วางภาชนะควอทซ์ที่ บรรจุสารตั้งต้น ใช้เวลาในการสังเคราะห์ 30 นาที จากนั้น หยุดให้ความร้อนและปล่อยให้ระบบเย็นลงสู่อุณหภูมิห้อง ภายใต้บรรยากาศของแก๊สอาร์กอน องค์ประกอบของ ระบบการสังเคราะห์ท่อนาโนคาร์บอนด้วยเทคนิค CVD แสดงดังในรูปที่ 1 นำตัวอย่างมาทำการวิเคราะห์ลักษณะ ทางโครงสร้างด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง กราด (SEM) และกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง ผ่าน (TEM) ศึกษาความสมบูรณ์และความบกพร่องของ โครงสร้างท่อนาโนคาร์บอนด้วยรามานสเปกโทรสโกปี วิเคราะห์ชนิดพันธะและองค์ประกอบธาตุด้วยเทคนิคเอกซ์ เรย์โฟโตอิเล็กตรอนสเปกโทรสโกปี (XPS) ของตัวอย่าง ทั้ง 2 ชนิด

ร**ูปที่ 1** ระบบการสังเคราะห์ท่อนาโนคาร์บอน (CVD system)

2. การตรวจวัดแก๊สไนโตรเจนไดออกไซด์

ตัวอย่างท่อนาโนคาร์บอนเจือไนโตรเจน (CN-NTs) และท่อนาโนคาร์บอนเจือโบรอนและไนโตรเจน (BCN-NTs) ที่สังเคราะห์ได้ถูกนำมาตรวจวัดแก๊ส ไนโตรเจนไดออกไซด์ (NO₂) ที่ความเข้มข้น 100, 200 และ 300 ppm ที่อุณหภูมิห้อง ภายใต้ระบบการทดสอบ แก๊สแสดงดังรูปที่ 2 โดยมีขั้นตอนการทดสอบดังนี้ ปรับ บรรยากาศภายในระบบการวัดโดยปล่อยแก๊สไนโตรเจน (N₂) พร้อมกับวัดค่าความต้านทานไฟฟ้าเริ่มต้นของตัว ตรวจวัด ทำการทดสอบการตอบสนองของตัวตรวจวัดโดย ปล่อยแก๊ส NO_2 เข้าสู่ระบบเป็นเวลา 30 นาที ที่ความ เข้มข้นต่าง ๆ สังเกตการเปลี่ยนแปลงของความต้านทาน ไฟฟ้าของตัวตรวจวัดหลังจากนั้นหยุดการปล่อยแก๊ส NO_2 และปล่อยแก๊ส N_2 เข้าไปในระบบอีกครั้งเปิดระบบให้ ความร้อนแก่ตัวตรวจวัดแก๊สที่อุณหภูมิ 100 °C เพื่อกำจัด โมเลกุลของแก๊ส NO_2 โดยสามารถพิจารณาหา ความสัมพันธ์ของประสิทธิภาพของการตรวจวัดแก๊ส NO_2 ได้จากค่าการตอบสนอง (Response) ตามสมการที่ 1 (Adjizian et al., 2014)

Response (%) =
$$\frac{\left|R_{NO_2} - R_{N_2}\right|}{R_{N_2}} \times 100$$
(1)

โดยที่ R_{NO2}คือ ค่าความต้านทานไฟฟ้าของตัว ตรวจวัดขณะปล่อยแก๊สไนโตรเจนไดออกไซด์ และ R_{N2}คือ ค่าความต้านทานไฟฟ้าเริ่มต้นของตัวตรวจวัดภายใต้ บรรยากาศของแก๊สไนโตรเจน

ผลการศึกษาและอภิปรายผลการศึกษา

ผลการวิเคราะห์โครงสร้างท่อนาโนคาร์บอนชนิด ต่าง ๆ ด้วยกล้องจุลทรรศน์อิเล็กตรอน

จากผลการวิเคราะห์ด้วยกล้อง SEM ในรูปที่ 3 แสดงลักษณะของท่อนาโนคาร์บอนชนิดเจืออะตอมโบรอน และไนโตรเจน ประกอบด้วยรูป (a) CN-NTs และ (b) BCN-NTs เมื่อพิจารณาท่อจากรูปที่ 3(a) พบว่า CN-NTs มีลักษณะท่อที่ยาวไม่สม่ำเสมอและท่อมีขนาดใหญ่ และรูป 3(b) แสดง BCN-NTs ที่มีลักษณะท่อโค้งงอ รวมกันเป็นกลุ่มอะมอร์ฟัสคาร์บอน ท่อมีความยาว แตกต่างกัน

รูปที่ 3 ภาพ SEM ของ (a) CN-NTs และ (b) BCN-NTs

รูปที่ 4 ภาพ TEM ของ (a) CN-NTs และ (b) BCN-NTs

เมื่อพิจารณาจากภาพถ่ายด้วยกล้อง TEM ของ CN-NTs ดังแสดงในรูปที่ 4 พบว่าในรูป (a) CN-NTs ซึ่งเป็น ท่อนาโนคาร์บอนที่ถูกเจือด้วยอะตอมของไนโตรเจนแสดง ท่อที่มีขนาดใหญ่ ผนังท่อบาง และมีลักษณะโครงสร้าง ภายในคล้ายปล้องไผ่ (Bamboo-like structure) ซึ่ง องค์ประกอบภายในท่อมีลักษณะเหมือนกรวยซ้อนทับกัน พบว่าท่อมีขนาดเส้นผ่านศูนย์กลางเฉลี่ยเท่ากับ

145.9±11.5 นาโนเมตร และ (b) BCN-NTs ท่อนาโน คาร์บอนที่ถูกเจือด้วยอะตอมของโบรอนและไนโตรเจน มี ลักษณะของผนังท่อบางและมีลักษณะโครงสร้างคล้าย ปล้องไผ่เช่นเดียวกัน แต่มีความถี่ของการเกิดปล้องไผ่ น้อยลง ลักษณะปล้องไผ่ค่อนข้างห่างโดยมีขนาดเส้นผ่าน ศูนย์กลางเฉลี่ยเท่ากับ 67.9±7.5 นาโนเมตร

รูปที่ 5 รามานสเปกตรัมของ (a) CN-NTs และ (b) BCN-NTs

D แบนด์ ซึ่งแสดงลักษณะความไม่เป็นระเบียบและความ บกพร่องของโครงสร้างของชั้นแกรฟันภายใน CN-NTs ที่ บริเวณตำแหน่ง 1350 cm⁻¹ หาค่าอัตราส่วน I_D/I_G ได้ เท่ากับ 1.10 และในส่วนของ BCN-NTs พบว่าเกิดพีคG

ผลจากการวิเคราะห์ความสมบูรณ์และความบกพร่อง ของ CN–NTs และ BCN–NTs ด้วยเทคนิครามานสเปกโท รสโกปี พบว่าเกิดพีค G แบนด์ ซึ่งแสดงลักษณะโครงสร้าง ของชั้นแกรฟีน ที่บริเวณตำแหน่ง 1580 cm⁻¹ และเกิดพีค แบนด์ ที่บริเวณตำแหน่ง 1584 cm^{-1} และเกิดพีค D แบนด์ ที่บริเวณตำแหน่ง 1347 cm^{-1} มีค่าอัตราส่วน $I_{\text{D}}/I_{\text{G}}$ อยู่ที่ 1.57 จากผลการวิเคราะห์สังเกตเห็นได้ว่า BCN-NTs มีอัตราส่วน $I_{\text{D}}/I_{\text{G}}$ มากที่สุด ซึ่งแสดงผลโครงสร้าง ของ BCN-NTs มีความบกพร่องภายในท่อมากกว่า CN-NTs สอดคล้องกับปริมาณของสารตั้งต้นที่มีปริมาณการ เจือของอะตอม B และ N ในปริมาณที่สูง ทำให้ใน BCN– NTs มีโครงสร้างการแทรกตัวของอะตอม B และ N บริเวณท่อนาโนคาร์บอนได้หลายรูปแบบ ซึ่งสัมพันธ์กับผล ของการวิเคราะห์องค์ประกอบของธาตุภายในท่อด้วย เทคนิค XPS ที่สามารถพบได้ว่าทั้งอะตอมของ C, B และ N เกิดอยู่ภายในท่อ มีการยึดเกาะด้วยพันธะแบบต่าง ๆ

รูปที่ 6 XPS สเปกตรัมของ CN-NTs (a) สเปกตรัมของ CN-NTs ที่พลังงานยึดเหนี่ยวพันธะในช่วง 0-1200 eV และ (b) สเปกตรัมของ N 1s ของ CN-NTs

ผลการวิเคราะห์องค์ประกอบธาตุจาก XPS สเปกตรัม ในรูป 6(a) ของ CN-NTs พบสเปกตรัมของ C 1s, N 1s และ O 1s เกิดพีคหลักที่บริเวณตำแหน่ง 284.4 eV, 401.4 eV และ 532.4 eV ตามลำดับ สำหรับรูปที่ 6(b) แสดง XPS สเปกตรัมของพันธะอะตอมของไนโตรเจนที่ ปรากฏโดยประกอบไปด้วย 2 พันธะหลัก ที่ระดับพลังงาน 401.4 eV (Quaternary nitrogen) (Kelemen, Gorbaty, & Kwiatek, 1995) และ 402.4 eV (Graphitic-N-O) (Artyushkova et al., 2013)

รูปที่ 7 XPS สเปกตรัมของ BCN-NTs (a) สเปกตรัมของ BCN-NTs ที่พลังงานยึดเหนี่ยวพันธะในช่วง 0-1200 eV (b) สเปกตรัมของ N 1s และ (c) สเปกตรัมของ B 1s ของ BCN-NTs

รูปที่ 7 (a-c) แสดงผลการวิเคราะห์ BCN-NTs ด้วย เทคนิค XPS ในรูปที่ 7(a) แสดงผลของสเปกตรัมอะตอม ของธาตุต่าง ๆ ภายในท่อ ซึ่งพบว่ามีองค์ประกอบของ อะตอม B, C, N และ O อยู่ภายในท่อ ปรากฏสเปกตรัม ของ B 1s, C 1s, N 1s และ O 1s เกิดพีคหลักที่บริเวณ ตำแหน่ง 191.0 eV, 284.8 eV, 398.8 eV และ 531.8 eV ตามลำดับ แต่ในส่วนของพีค B 1s ปรากฏให้เห็น ความเข้มที่ต่ำ เมื่อพิจารณาการเกิดพันธะของอะตอมแต่ละ ชนิดภายใน BCN-NTs ในรูป 7(b) แสดงการแจกแจง พันธะของอะตอมไนโตรเจนที่ปรากฏในรูปของพันธะต่าง ๆ สามารถจำแนกได้ 5 แบบ ตามระดับพลังงานพันธะ โดยพบว่าการเกิดพันธะในรูปของ Pyridinic nitrogen, Amine และ Quaternary nitrogen เกิดขึ้นได้ในปริมาณ ความเข้มที่สูงกว่าพันธะอื่น ๆ กรณีพันธะของอะตอม โบรอนสังเกตได้จากสเปกตรัมในรูปที่ 7(c) แสดงการเกิด พันธะระหว่าง B กับ N แต่ไม่พบพันธะระหว่าง C กับ B เนื่องจากมีปริมาณอะตอมของโบรอนเจือได้ปริมาณที่น้อย ในโครงสร้างของท่อนาโนคาร์บอน

2. ผลการตอบสนองต่อแก๊สไนโตรเจนไดออกไซด์ (NO_2)

จากการทดสอบการตอบสนองต่อแก๊ส ${
m NO}_2$ ของ CN-NTs และ BCN-NTs ที่ความเข้มข้นต่าง ๆ ภายใต้ อุณหภูมิห้อง แสดงในรูปที่ 8 และ 9 ตามลำดับ

รูปที่ 8 ผลการตอบสนองต่อแก๊ส NO, ของ CN-NTs

แสดงผลการตอบสนองต่อแก๊ส NO2 ของ CN-NTs ที่ ระดับความเข้มข้นของแก๊ส NO2 ต่างกัน ดังรูปที่ 8 พบ การตอบสนองต่อแก๊ส NO_2 สังเกตได้จากการเปลี่ยนแปลง ค่าความต้านทานไฟฟ้าที่ลดลง มีความเสถียรหลังการคืน ้ตัว สังเกตค่าความต้านทานไฟฟ้าหลังการคืนตัวแต่ละครั้ง มีค่าใกล้เคียงกัน แสดงการกำจัดแก๊ส NO₂ ที่ยึดเกาะได้

เกือบหมด และเมื่อเพิ่มความเข้มข้นของแก๊สในการ ทดสอบ การตอบสนองต่อแก๊ส NO, มีค่าเพิ่มขึ้น สังเกต ได้จากการลดลงของค่าความต้านทานไฟฟ้าที่มีค่ามากกว่า กรณีที่มีความเข้มข้นของแก๊ส NO, ต่ำ แต่มีเปอร์เซ็นต์การ ตอบสนองต่ำเนื่องจากมีค่าความต้านทานไฟฟ้าเริ่มต้นที่สูง

รูปที่ 9 ผลการตอบสนองต่อแก๊ส NO, ของ BCN-NTs

จากรูปที่ 9 แสดงการตอบสนองต่อแก๊ส NO, ของ BCN-NTs ที่ความเข้มข้นเดียวกับกรณีของ CN-NTs พบว่าการตอบสนองของ BCN-NTs มีความไม่เสถียรเมื่อ ทำการคืนตัว ภายใต้การให้ความร้อนในบรรยากาศของ ้ในโตรเจน แต่ค่าการตอบสนองมีค่าเพิ่มขึ้นตามปริมาณ ความเข้มข้นของแก๊ส NO₂ และมีเปอร์เซ็นต์การตอบสนอง ที่ใกล้เคียงกับ CN-NTs ทั้งนี้อาจเกิดจากการที่มีปริมาณ ของอะตอมโบรอนแทรกตัวอยู่ภายในท่อในปริมาณที่ต่ำ และปริมาณอะตอมของไนโตรเจนส่วนใหญ่ที่ยึดเกาะเป็น การยึดเกาะบริเวณผนังท่อทั้งในรูปโมเลกุลและเกิดพันธะ กับออกซิเจน ทำให้โมเลกุลของแก๊ส NO₂ มีโอกาสจับผนัง ท่อได้ค่อนข้างยาก ประกอบกับอะตอมของโบรอนเมื่อจับ กับแก๊ส NO₂ จะมีพันธะที่แข็งแรงกว่ากรณีจับกับอะตอม ของไนโตรเจน ทำให้ยากต่อการคืนตัวของท่อ BCN–NTs สำหรับรายละเอียดของการเปลี่ยนแปลงความต้านทาน ไฟฟ้าและเปอร์เซ็นต์การตอบสนองแสดงในตารางที่ 1 ของท่อนาโนคาร์บอนทั้ง 2 ชนิด ภายใต้การทดสอบของ แก๊ส NO, ที่ความเข้มข้น 100, 200 และ 300 ppm

$NO_2(ppm)$	ตัวอย่าง	$\Delta \mathbf{R} (\mathbf{R} - \mathbf{R}_{_0}) (\Omega)$	$(R-R_0/R_0)x100 (\%)$	เวลาในการตอบสนอง(วินาที)
	CN-NTs	-0.3	-0.56	18
100	BCN-NTs	-0.12	-0.58	23
	CN-NTs	-0.35	-0.65	15
200	BCN-NTs	-0.16	-0.76	18
	CN-NTs	-0.45	-0.84	12
300	BCN-NTs	-0.22	-1.04	16

ตารางที่ 1 แสดงค่าความต้านทานไฟฟ้าที่เปลี่ยนไปและเปอร์เซ็นต์การตอบสนองต่อแก๊ส NO, ที่ความเข้มข้นต่าง ๆ ของ CN-NTs และ BCN-NTs

จากตารางที่ 1 แสดงผลการตอบสนองต่อแก๊ส NO, ของท่อนาโนคาร์บอนทั้ง 2 ชนิด เมื่อพิจารณาการ เปลี่ยนแปลงของความต้านทานไฟฟ้าที่ลดลง CN-NTs มี การเปลี่ยนแปลงความต้านทานไฟฟ้าสูงสุดเมื่อเทียบกับ BCN-NTs โดยใน CN-NTs มีเวลาในการตอบสนองที่ รวดเร็วที่สุด คือ 18, 15 และ 12 วินาที ที่ความเข้มข้น ของแก๊ส NO, 100, 200 และ 300 ppm ตามลำดับ ซึ่ง พบว่ามีเวลาในการตอบสนองที่รวดเร็วมากขึ้นเมื่อเพิ่ม ความเข้มข้นของแก๊ส NO, ทั้งนี้เนื่องจาก CN-NTs มี ลักษณะของพันธะในการแทรกตัวของอะตอมไนโตรเจน ภายในท่อในปริมาณที่สูงทำให้อะตอมไนโตรเจนช่วยใน การยึดเหนี่ยวกับโมเลกุลของแก๊ส NO, ได้ดีกว่าท่อชนิด อื่น สำหรับ BCN-NTs มีการเปลี่ยนแปลงของความ ต้านทานไฟฟ้าต่ำ สาเหตอาจเกิดจากปริมาณอะตอมของ โบรอนและไนโตรเจนที่แทรกตัวในท่อมีปริมาณที่น้อย ส่วนใหญ่อะตอมไนโตรเจนเกาะบริเวณผนังท่อ สังเกตจาก ผลการวิเคราะห์ด้วยเทคนิค XPS ทำให้การตอบสนองต่อ แก๊ส NO, มีปริมาณต่ำ รวมทั้งอะตอมโบรอนยังไม่สามารถ เกิดพันธะกับอะตอมของคาร์บอนภายในท่อ โดยจะจับใน รูปพันธะ B-N ทำให้ประสิทธิภาพในการตรวจจับแก๊ส NO_2 ลดลง ดังนั้นจึงจำเป็นต้องศึกษาเพื่อเพิ่มปริมาณการ ยึดเกาะของอะตอมโบรอนที่เจือให้สามารถแทรกตัวภายใน ้โครงสร้างของท่อนาโนคาร์บอนให้มีปริมาณที่มากขึ้น ซึ่ง อาจส่งผลในการช่วยเพิ่มประสิทธิภาพการดูดซับแก๊ส NO, ได้ในปริมาณที่สูงขึ้น

สรุปผลการศึกษาและข้อเสนอแนะ

จากการศึกษาการสังเคราะห์ท่อนาโนคาร์บอนเจือ ไนโตรเจน (CN-NTs) และท่อนาโนคาร์บอนเจือโบรอน และไนโตรเจน (BCN-NTs) ด้วยเทคนิค CVD เพื่อนำมา ทดสอบประสิทธิภาพในการตรวจวัดแก๊ส NO, ที่ความ เข้มข้นต่าง ๆ ภายใต้อุณหภูมิห้อง จากการวิเคราะห์ ลักษณะโครงสร้างสัณจานวิทยาของท่อนาโนคาร์บอนด้วย เทคนิค SEM พบว่าใน BCN-NTs แสดงโครงสร้างความ บกพร่องที่สูง สังเกตได้จากท่อมีลักษณะโค้งงอและมีขนาด ไม่สม่ำเสมอ พบกลุ่มอะมอร์ฟัสคาร์บอนในปริมาณที่ มากกว่า CN-NTs และเมื่อทำการศึกษาลักษณะโครงสร้าง ภายในท่อด้วยเทคนิค TEM พบว่าทั้ง CN-NTs ແລະ BCN-NTs แสดงลักษณะโครงสร้างของท่อคล้ายปล้องไผ่ แต่ใน CN-NTs มีความถี่ของชั้นปล้องไผ่ที่สูงและมีขนาด เส้นผ่านศูนย์กลางใหญ่กว่า BCN-NTs ซึ่งจากผลรามาน สเปกตรัมสามารถวิเคราะห์ความสมบรณ์และความ บกพร่องที่เกิดขึ้นในท่อนาโนคาร์บอนได้จากการหาค่**า** อัตราส่วน $I_{\rm D}/I_{\rm G}$ พบว่าใน BCN-NTs แสดงค่าอัตราส่วน $\mathbf{I}_{\mathrm{D}}/\mathbf{I}_{\mathrm{G}}$ ที่สูงมากกว่า CN-NTs สอดคล้องกับการเจืออะตอม โบรอนและไนโตรเจนในปริมาณที่สูงส่งผลทำให้ท่อแสดง ความบกพร่องสูงขึ้น และสามารถยืนยันการมีอยู่ของ ปริมาณธาตุไนโตรเจนและ/หรือโบรอนใน CN-NTs และ BCN-NTs ได้ด้วยเทคนิค XPS พบว่าจากผลการวิเคราะห์ CN-NTs มีการแทรกตัวของอะตอมไนโตรเจนภายใน โครงสร้างของท่อนาโนคาร์บอนได้ดีกว่า BCN-NTs

เนื่องจากใน BCN-NTs โมเลกุลส่วนใหญ่ที่เจือจะยึดเกาะ ที่บริเวณผิวของท่อ ไม่สามารถแทรกตัวอยู่ภายใต้ ้โครงสร้างของท่อนาโนคาร์บอน อีกทั้งยังเจือโบรอนได้ใน ปริมาณที่ต่ำ หลังจากการนำท่อนาโนคาร์บอนทั้ง 2 ชนิด มาทดสอบประสิทธิภาพในการตรวจวัดแก้ส NO, พบว่า CN-NTs มีการตอบสนองต่อแก๊ส NO₂ ได้รวดเร็วกว่า BCN-NTs สังเกตได้จากหลังกระบวนการตรวจวัดแก๊ส CN-NTs มีการเปลี่ยนแปลงของความต้านทานไฟฟ้า มากกว่า BCN-NTs และมีการเปลี่ยนแปลงของความ ต้านทานไฟฟ้าที่สูงขึ้นเมื่อเพิ่มความเข้มข้นของแก๊ส NO₂ และมีการคืนตัวที่สมบูรณ์หลังจากถูกให้ความร้อนเพื่อ กำจัดโมเลกุลแก๊ส NO, แต่ใน BCN-NTs มีการ ตอบสนองที่ช้าต่อแก๊ส NO, และเกิดการคืนตัวที่ไม่ สมบูรณ์ เนื่องจากอะตอมของโบรอนที่ถูกเจือใน BCN-NTs มีการยึดเกาะที่แข็งแรงกับโมเลกุล NO, จึงทำให้ยาก ต่อการคืนตัวส่งผลทำให้ประสิทธิภาพในการตรวจวัดแก๊ส ในครั้งต่อไปลดลง จากผลการวิจัยนี้จึงสรุปได้ว่าความ บกพร่องที่เกิดขึ้นในโครงสร้างท่อจากการเจือด้วยอะตอม ในโตรเจนมีส่วนช่วยเพิ่มประสิทธิภาพในการตรวจวัดแก๊ส NO, ดังนั้น CN-NTs จึงเป็นทางเลือกหนึ่งที่เหมาะสมที่จะ ประยุกต์ใช้เป็นวัสดุในการตรวจวัดแก๊ส NO, นอกจากนี้ หากสามารถควบคุมองค์ประกอบของอะตอมโบรอนและ ้ไนโตรเจนที่เจือในท่อนาโนคาร์บอนได้ในอัตราส่วนที่ เหมาะสม อาจเป็นแนวทางในการช่วยพัฒนาประสิทธิภาพ ของ BCN-NTs ต่อการตรวจวัดแก๊ส NO, ได้ดียิ่งขึ้น

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับทุนสนับสนุนจากงบประมาณเงินรายได้ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา และจากทุน สำนักงานคณะกรรมการการวิจัยแห่งชาติ (วช.) ประจำปี งบประมาณ 2557

เอกสารอ้างอิง

Adjizian, J. J., Leghrib, R., Koos, A. A., Suarez-Martinez, I., Crossley, A., Wagner, P., ... & Ewels, C.
P. (2014). Boron-and nitrogen-doped multi-wall carbon nanotubes for gas detection. *Carbon*, *66*, 662–673.

Artyushkova, K., Kiefer, B., Halevi, B., Knop-Gericke, A., Schlogl, R., & Atanassov, P. (2013). Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. *Chemical Communications*, 49(25), 2539–2541.

Bai, L., & Zhou, Z. (2007). Computational study of
B-or N-doped single-walled carbon nanotubes as NH
3 and NO 2 sensors. *Carbon*, 45(10), 2105–2110.

Elrouby, M. (2013). Electrochemical applications of carbon nanotube. *Journal of Nanotechnology & Advanced Materials*, 1, 23–38.

Kaushik, B. K., & Majumder, M. K. (2015). Carbon Nanotube Based VLSI Interconnects. New Delhi: Springer India.

Kelemen, S. R., Gorbaty, M. L., & Kwiatek, P. J. (1995). Quantification of nitrogen forms in coals. *Energeia*, 6, 1–5.

Leghrib, R., Felten, A., Pireaux, J. J., & Llobet, E. (2011). Gas sensors based on doped-CNT/SnO 2 composites for NO 2 detection at room temperature. *Thin Solid Films*, 520(3), 966-970.

Lijima, S. (1991). Helical microtubules of graphitic carbon. *Nature*, *354*, 56–58.

Yang, Y., Zhang, Z. F., Kan, K., Ge, Y. L., Sun, Y. L. & Shi, K. Y. (2013). Preparation and characterization of BCN nanotubes and their sensitivity to NO_x at room temperature. *Advanced Materials Research*, *616–618*, 1778–1782.