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Abstract 
 Using the chi-square test with a small expected cell frequency is an important problem in generally survey and experimental 
research because it cannot control type-I error led to amiss conclude the result in our work. The purposes of this work were first to 
develop a correction method for ensuring a continuity value of the chi-square test and secondly to compare its efficiency with other 
methods, namely; Yate’s correction and William’s correction by using simulation data. The comparisons were made with the 
following condition; two significant levels of 0.01 and 0.05, six contingency table sizes (2x2, 2x3, 2x4, 3x3, 3x4 and 4x4), a 
small expected cell frequency up to 30% of the total cell and a sample size between 5 to 10 times that of the total cell.  
 We found that type I error in chi-square test with developed correction and significant level is similar values (can control type I 
error). The similarity values are higher than chi-square test without correction, Yate’s correction and William’s correction. Larger 
sample sizes resulted is better control type I error at both levels of significance. For the contingency table size 2x2 to 4x4, chi-
square test with developed correction can control type I error better than chi-square test without correction and William’s correction 
at both 0.01 and 0.05 significant levels. The correction method used to control the type-I error was obtained using a developed 
correction in every condition. 
 
Keywords: Test of independent, Chi-Square Test, Correction method, Type-I error 

 
Introduction 

 
 In social and behavioural science research, surveys 
and experiments use qualitative or categorical 
measurement methods to determine the results rather 
than quantitative methods; that is, a quality or 
characteristic is measured for each experimental unit. 
We can summarize this type of data by creating a list 
of the categories or characteristics and report a count of 
the number of measurements that fall into each 
category. These are some of the many situations in 
which the data set has characteristics appropriate for 
the multinomial experiment. The statistics test created 
for the multinomial experiment was derived by a 
British statistician named Karl Pearson in 1900 and is 

called the ‘Chi-square statistic test’. (Mendenhall, 
Beaver, & Beaver, 2013) 
 The Chi-square test is only an approximate large-
sample test and it is recommended that it not used 
when one (or more) of the expected frequencies is less 
than five (Freund, 2004). When the sample sizes are 
too small, you should not use chi square test or G–test. 
However, how small is "too small"? The conventional 
rule of thumb is that if all of the expected numbers are 
greater than 5, it's acceptable to use the chi square or      
G–test; if an expected number is less than 5, you 
should use an alternative (McDonald, 2014). At large 
sample sizes, many asymptotic properties of test 
statistics derived for independent sample comparison 
are still applicable in adaptive randomization provided  
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Introduction 

 
 In social and behavioural science research, surveys 
and experiments use qualitative or categorical 
measurement methods to determine the results rather 
than quantitative methods; that is, a quality or 
characteristic is measured for each experimental unit. 
We can summarize this type of data by creating a list 
of the categories or characteristics and report a count of 
the number of measurements that fall into each 
category. These are some of the many situations in 
which the data set has characteristics appropriate for 
the multinomial experiment. The statistics test created 
for the multinomial experiment was derived by a 
British statistician named Karl Pearson in 1900 and is 

called the ‘Chi-square statistic test’. (Mendenhall, 
Beaver, & Beaver, 2013) 
 The Chi-square test is only an approximate large-
sample test and it is recommended that it not used 
when one (or more) of the expected frequencies is less 
than five (Freund, 2004). When the sample sizes are 
too small, you should not use chi square test or G–test. 
However, how small is "too small"? The conventional 
rule of thumb is that if all of the expected numbers are 
greater than 5, it's acceptable to use the chi square or      
G–test; if an expected number is less than 5, you 
should use an alternative (McDonald, 2014). At large 
sample sizes, many asymptotic properties of test 
statistics derived for independent sample comparison 
are still applicable in adaptive randomization provided  
 

that the patient allocation ratio converges to an 
appropriate target asymptotically. However, the small 
sample properties of commonly used test statistics in 
response-adaptive randomization are not fully studied 
(Gu & Lee, 2010). The researchers recommended 
that we should not use chi-square test when the 
expected numbers are small because it will lead to 
erroneous results of a research study, meaning the 
conclusion of the research cannot be rightly interpreted. 
Yate’s correction (Yates, 1934) and William’s 
correction methods (McDonald, 2014) are used to test 
independence of events in a cross table.    It is done by 
reducing the difference between each observed value 
and its expected value. These tests are commonly used 
when expected frequencies are less than ten. 
 In this article, we present our own developed 
correction method to maintain a continuity value to be 
used when small expected cell frequencies on chi-
square test for independence exist in the research data. 
The objectives of this study are to compare our 
developed correction method’s efficiency of control of 
a type-I error with Yate’s correction and William’s 
correction methods. The simulation data used the 

Monte Carlo technique with R programming language 
in different situations; significance levels, contingency 
table sizes, sample sizes and the number of small cells. 
Our powerful correction method will control a type-I 
error more than the other correction methods. 
 

Materials and Methods 
 
 Chi-Square Test 
 Many experiments result in measurements that are 
qualitative or categorical rather than quantitative. In 
these instances, a quality or characteristic is identified 
for each experimental unit. Data associated with such 
measurement can be summarized by providing the 
count of the number of measurements that fall into 
each of the distinct categories associated with the 
variable. 
 In 1900 Karl Pearson proposed the following test 
statistic which is a function of the squares of the 
deviations of the observed counts from their expected 
values weighted by the reciprocals of their expected 
values:  
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 Where there are k categories with probabilities pi 
and ni is sample size in each categories. 
 Yate’s Correction 
 For the test of independent creating a 2x2 
contingency table that used chi-square test, the Yate’s 

correction is usually recommended especially if more 
than 20% of the expected cell frequencies are below 5. 
The chi-square formula equation is below (2), Where 
fO is observed frequencies, fe is expected frequencies. 
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 William’s Correction 
 For the independent test in contingency table with 
R (row) and C (column), the William’s correction for 

contingency to compute q to divide the chi-square test 
are as follows (3 and 4). 
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 Where fO is observed frequencies and fe is expected frequencies. 
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 Where q is defined as (4) 
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 Where n is samples size, contingency table with R 
rows and C columns. 
 Developed Correction 
 A major limitation of the test of independent with 
chi-square test is its inability to control a type-I error 
when an expected frequency is small. An accurate test 
of independent was needed when the type-I error and 
significant level had similar values. 

 After test of independent by classical chi-square 
(without correction for continuity) we consider type-I 
error (number rejection of null hypothesis divided by 
10,000) and significant level. 
 Where the type-I error is greater than the 
significant level, the chi-square test equation to be 
used is as follows (5) 
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 Where the type-I error is less than the significant  level, the chi-square test is (6)
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 Where the chi-square tests in both situations are 
defined in (5) and (6), we can define the developed 
correction of chi-square test by the following (5) 
 Where C is developed correction value. It was 
computed in two case as follows; if the type-I error is 
greater than the significant level we try to replace the 
value C into the equation (5) start from 0.01, 0.02, 
0.03,…. . 
 
 

 If the type-I error is less than the significant level 
we try to replace the value C into the equation (5)  
 
start from -0.01, -0.02, -0.03,…. . After we replace 
value C and computed type-I error then to compared 
with significant level. Developed correction value (C) 
is the value which get type-I error and significant level 
are very similar values. 
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 Where fO is observed frequencies and fe is expected frequencies. 
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 Where the chi-square tests in both situations are 
defined in (5) and (6), we can define the developed 
correction of chi-square test by the following (5) 
 Where C is developed correction value. It was 
computed in two case as follows; if the type-I error is 
greater than the significant level we try to replace the 
value C into the equation (5) start from 0.01, 0.02, 
0.03,…. . 
 
 

 If the type-I error is less than the significant level 
we try to replace the value C into the equation (5)  
 
start from -0.01, -0.02, -0.03,…. . After we replace 
value C and computed type-I error then to compared 
with significant level. Developed correction value (C) 
is the value which get type-I error and significant level 
are very similar values. 

 
 
 

Simulation Study 
 

 The performances of the three corrections for 
continuity (Yate’s Correction, William’s Correction  
 
and our Developed Correction) were evaluated using a 
simulation study with a pattern of data set at a 
significant level of 0.05 and 0.01. Contingency Tables 
were generated between 2x2 to 4x4 cells. The 
numbers of small expected cell frequencies up to 30% 
of total cell were used. Sample sizes were generated at 
5 to 10 times the total cell size. The data was 
simulated using R programming language on the Monte 
Carlo technique. The data was simulated 10,000 times 
for each pattern. For comparison, the accuracy of the 
three correction methods was evaluated. For each 
pattern, the simulation was used to find the correction 
values that best controlled the type-I error. The results 
were tabulated to display the relationships between the 
contingency table’s pattern, the significant levels and 
the correction values. 

 

Results 
 

The corrections for continuity include Yate’s  
correction (Y), William’s correction (W), our 
Developed correction (D) and the chi-square without 
corrections for continuity (N). Their accuracy was 
compared using a simulation study classified by 
contingency table size, the number of small expected 
cell frequencies (No. Sc.), the sample sizes (Ss.) and 
the significant level. Table 1-12 indicates the type-I 
error and developed correction value (C) in each 
situation. 
 From table 1-12 found that when we used our 
developed correction value (C), type-I error was 
nearer the significant level than the other correction 
methods reviewed in every situation and its was control 
type I error better when sample sizes was increased at 
both levels of significance. The result showed that 
developed correction can control type-I error better 
than other methods. 
 

Table 1 Type-I error of 2x2 contingency table in 0.01 significant level. 

No.Sc. Ss. 
Type I Error 

N Y W D C 
1 20 0.0011 0.0304 0.0052 0.0101 -0.76 

30 0.0028 0.0226 0.0016 0.0101 -2.29 
40 0.0038 0.0302 0.0027 0.0100 -1.28 

 
Table 2 Type-I error of 2x2 contingency table in 0.05 significant level. 

No.Sc. Ss. 
Type I Error 

N Y W D C 
1 20 0.0176 0.0638 0.0127 0.0500 -0.22 

30 0.0216 0.0578 0.0084 0.0500 -1.71 
40 0.0324 0.0681 0.0126 0.0500 -0.71 

 
Table 3 Type-I error of 2x3 contingency table in 0.01 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 30 0.0034 0.0013 0.0100 -0.86 

40 0.0039 0.0013 0.0097 -1.00 
50 0.0018 0.0013 0.0103 -2.75 

2 30 0.0015 0.0013 0.0103 -0.94 
40 0.0014 0.0010 0.0101 -1.12 
50 0.0014 0.0008 0.0100 -1.80 
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Table 4 Type-I error of 2x3 contingency table in 0.05 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 30 0.0115 0.0046 0.0500 -0.45 

40 0.0200 0.0015 0.0528 -0.37 
50 0.0034 0.0012 0.0502 -2.21 

2 30 0.0018 0.0021 0.0505 -0.58 
40 0.0017 0.0018 0.0503 -0.53 
50 0.0013 0.0016 0.0501 -1.30 

 
Table 5 Type-I error of 2x4 contingency table in 0.01 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 40 0.0009 0.0004 0.0101 -1.42 

60 0.0020 0.0007 0.0103 -1.71 
80 0.0015 0.0006 0.0100 -2.12 

2 40 0.0050 0.0017 0.0103 -1.73 
60 0.0090 0.0013 0.0101 -1.32 
80 0.0143 0.0008 0.0100 0.13 

 

 
Table 6 Type-I error of 2x4 contingency table in 0.05 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 40 0.0011 0.0022 0.0501 -1.02 

60 0.0013 0.0015 0.0501 -1.15 
80 0.0009 0.0010 0.0500 -1.51 

2 40 0.0468 0.0024 0.0507 -1.32 
60 0.0489 0.0034 0.0503 -0.84 
80 0.0539 0.0055 0.0500 1.09 

 
Table 7 Type-I error of 3x3 contingency table in 0.01 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 50 0.0023 0.0007 0.0103 -1.36 

70 0.0028 0.0008 0.0101 -1.34 
90 0.0035 0.0014 0.0100 -2.33 

2 50 0.0076 0.0019 0.0103 -1.81 
70 0.0120 0.0029 0.0102 0.18 
90 0.0076 0.0021 0.0100 -1.23 

3 50 0.0056 0.0015 0.0101 -1.87 
70 0.0086 0.0023 0.0101 -0.44 
90 0.0127 0.0036 0.0100 0.09 
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Table 6 Type-I error of 2x4 contingency table in 0.05 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 40 0.0011 0.0022 0.0501 -1.02 

60 0.0013 0.0015 0.0501 -1.15 
80 0.0009 0.0010 0.0500 -1.51 

2 40 0.0468 0.0024 0.0507 -1.32 
60 0.0489 0.0034 0.0503 -0.84 
80 0.0539 0.0055 0.0500 1.09 

 
Table 7 Type-I error of 3x3 contingency table in 0.01 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 50 0.0023 0.0007 0.0103 -1.36 

70 0.0028 0.0008 0.0101 -1.34 
90 0.0035 0.0014 0.0100 -2.33 

2 50 0.0076 0.0019 0.0103 -1.81 
70 0.0120 0.0029 0.0102 0.18 
90 0.0076 0.0021 0.0100 -1.23 

3 50 0.0056 0.0015 0.0101 -1.87 
70 0.0086 0.0023 0.0101 -0.44 
90 0.0127 0.0036 0.0100 0.09 

 
 
 

Table 8 Type-I error of 3x3 contingency table in 0.05 significant level. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 50 0.0018 0.0011 0.0502 -0.87 

70 0.0020 0.0015 0.0502 -0.75 
90 0.0027 0.0021 0.0500 -1.78 

2 50 0.0371 0.0007 0.0501 -1.28 
70 0.0560 0.0040 0.0501 0.07 
90 0.0440 0.0032 0.0500 -0.63 

3 50 0.0380 0.0021 0.0501 -1.36 
70 0.0471 0.0037 0.0501 -0.15 
90 0.0576 0.0047 0.0500 0.52 

 
Table 9 Type-I error of 3x4 contingency table in 0.01 significant level. 

 
Table 10 Type-I error of 3x4 contingency table in 0.05 significant level. 

 
 

No.Sc. Ss. 
Type I Error 

N W D C 
1 60 0.0020 0.0011 0.0100 -0.70 

90 0.0028 0.0021 0.0099 -1.76 
120 0.0051 0.0034 0.0100 -1.87 

2 60 0.0015 0.0009 0.0100 -0.87 
90 0.0031 0.0019 0.0099 -5.63 
120 0.0048 0.0038 0.0100 -1.79 

3 60 0.0013 0.0021 0.0101 -0.95 
90 0.0113 0.0028 0.0102 4.50 
120 0.0126 0.0052 0.0100 0.51 

4 60 0.0057 0.0014 0.0102 -0.39 
90 0.0078 0.0027 0.0101 -1.55 
120 0.0074 0.0043 0.0100 -0.85 

No.Sc. Ss. 
Type I Error 

N W D C 
1 60 0.0027 0.0021 0.0501 -0.32 

90 0.0019 0.0010 0.0499 -1.35 
120 0.0037 0.0022 0.0500 -1.43 

2 60 0.0022 0.0016 0.0501 -0.53 
90 0.0013 0.0013 0.0501 -5.18 
120 0.0024 0.0021 0.0500 -1.35 

3 60 0.0058 0.0076 0.0500 -0.68 
90 0.0521 0.0117 0.0501 3.92 
120 0.0534 0.0148 0.0500 0.14 

4 60 0.0534 0.0048 0.0501 -0.05 
90 0.0479 0.0062 0.0500 -1.29 
120 0.0479 0.0074 0.0500 -0.43 
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Table 11 Type-I error of 4x4 contingency table in 0.01 significant level. 

 
Table 12 Type-I error of 4x4 contingency table in 0.05 significant level. 

 
Conclusion and Discussion  

 
 We applied three imputation methods to treat the 
problem of small expected cell frequency when using 
the chi-square test. We reviewed and provided 
technical details of the different methods used, 

including Yate’s correction, William’s correction and 
our Developed correction. 
 As depicted in Table 1-12, all methods led to an 
improvement in accuracy, as measured by type-I error 
for each situation. The method which outperformed the 
control of type-I error was the developed correction 
method in all condition. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 80 0.0025 0.0012 0.0101 -0.75 

110 0.0016 0.0016 0.0102 -0.50 
140 0.0029 0.0025 0.0102 -0.98 

2 80 0.0020 0.0014 0.0100 -0.32 
110 0.0090 0.0029 0.0098 -0.54 
140 0.0070 0.0034 0.0100 -1.20 

3 80 0.0070 0.0022 0.0101 -1.02 
110 0.0070 0.0015 0.0102 -0.50 
140 0.0082 0.0027 0.0100 -0.35 

4 80 0.0012 0.0021 0.0102 -1.42 
110 0.0032 0.0029 0.0101 -1.21 
140 0.0080 0.0043 0.0100 -1.61 

5 80 0.0155 0.0012 0.0102 0.08 
110 0.0061 0.0018 0.0100 -0.56 
140 0.0030 0.0036 0.0100 -1.42 

No.Sc. Ss. 
Type I Error 

N W D C 
1 80 0.0081 0.0041 0.0500 -0.45 

110 0.0140 0.0075 0.0502 -0.87 
140 0.0147 0.0116 0.0500 -1.30 

2 80 0.0043 0.0045 0.0500 -0.04 
110 0.0415 0.0031 0.0502 -0.48 
140 0.0134 0.0059 0.0500 -0.82 

3 80 0.0053 0.0050 0.0500 -0.74 
110 0.0174 0.0028 0.0503 -0.87 
140 0.0614 0.0039 0.0500 0.06 

4 80 0.0101 0.0011 0.0501 -1.19 
110 0.0381 0.0031 0.0500 -1.03 
140 0.0388 0.0045 0.0500 -1.31 

5 80 0.0516 0.0045 0.0501 0.38 
110 0.0285 0.0145 0.0500 -0.28 
140 0.0171 0.0295 0.0500 -1.11 
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Table 11 Type-I error of 4x4 contingency table in 0.01 significant level. 
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control of type-I error was the developed correction 
method in all condition. 

No.Sc. Ss. 
Type I Error 

N W D C 
1 80 0.0025 0.0012 0.0101 -0.75 

110 0.0016 0.0016 0.0102 -0.50 
140 0.0029 0.0025 0.0102 -0.98 

2 80 0.0020 0.0014 0.0100 -0.32 
110 0.0090 0.0029 0.0098 -0.54 
140 0.0070 0.0034 0.0100 -1.20 

3 80 0.0070 0.0022 0.0101 -1.02 
110 0.0070 0.0015 0.0102 -0.50 
140 0.0082 0.0027 0.0100 -0.35 

4 80 0.0012 0.0021 0.0102 -1.42 
110 0.0032 0.0029 0.0101 -1.21 
140 0.0080 0.0043 0.0100 -1.61 

5 80 0.0155 0.0012 0.0102 0.08 
110 0.0061 0.0018 0.0100 -0.56 
140 0.0030 0.0036 0.0100 -1.42 

No.Sc. Ss. 
Type I Error 

N W D C 
1 80 0.0081 0.0041 0.0500 -0.45 

110 0.0140 0.0075 0.0502 -0.87 
140 0.0147 0.0116 0.0500 -1.30 

2 80 0.0043 0.0045 0.0500 -0.04 
110 0.0415 0.0031 0.0502 -0.48 
140 0.0134 0.0059 0.0500 -0.82 

3 80 0.0053 0.0050 0.0500 -0.74 
110 0.0174 0.0028 0.0503 -0.87 
140 0.0614 0.0039 0.0500 0.06 

4 80 0.0101 0.0011 0.0501 -1.19 
110 0.0381 0.0031 0.0500 -1.03 
140 0.0388 0.0045 0.0500 -1.31 

5 80 0.0516 0.0045 0.0501 0.38 
110 0.0285 0.0145 0.0500 -0.28 
140 0.0171 0.0295 0.0500 -1.11 

 Association in 2×2 tables traditionally has been 
tested using the chi-square test for larger samples. 
There are Yate’s correction for aiming to improve the 
small expected cell frequency. For William’s correction 
used to continuity chi-square test for independence 
when contingency table lager than 2×2. In this study to 
developed continuity corrections for contingency table 
between 2×2 to 4×4, we found that type I error in    
chi-square test with developed correction and 
significant level is similar values. And it is similarly 
values more than chi-square test without correction, 
Yate’s correction and William’s correction. When 
sample sizes was increased the resulted is better control 
type I error at both levels of significance. 
 For the size of contingency table 2x2 to 4x4, chi-
square test with developed correction can control type I 
error better than chi-square test without correction and 
William’s correction at both 0.01 and 0.05 significant 
levels. It outperformed to control type I error with C 
value better than other correction in all condition. 
Especially 4×4 table, there is similar values of type I 
error and significant level. 
 A correction value for chi-square test depends on 
the pattern of a contingency table. The appropriate 
correction value is not necessarily equal to Yates’ 
correction value of 0.5. When a contingency table with 
small expected frequencies is used as an input, the test 

procedure is to identify the table’s pattern and use the 
appropriate correction value for that pattern. The 
appropriate correction values for the patterns associated 
with 2x2 to 4x4 contingency tables are tabulated in 
this article. 
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