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Abstract 

 The process capability ratio is one of many statistical process control widely used in manufacturing and service engineering 

based on normality assumption. If the data do not correspond with the assumption, they can lead to erroneous conclusions.   

So the wrong conclusions would cost manufacturing and service organization big financial losses and lost customers to 

competitors. One approach to dealing with this situation is to transform the data so that in the new, the transformed data have  

a normal distribution appearance. Many authors investigated the standard transformation such as square root, logarithmic, and  

so on including the well known Box-Cox transformation to transform data are not normally distributed to normality. However, 

transformations may behave sufficiently normal for statistical process control but they do not yield accurate process performance 

index.  In this paper, the use of Manly transformation, Yeo-Johnson transformation, and Nelson transformation to transform 

Weibull data are investigated in sense of calculating the process capability ratio and the coefficient of variation. It is found that all 

of three transformations can be used for transforming Weibull data to data that are normally distributed and the average of  

the process capability ratio of transformed data via all of them is not different at significant level 0.05 although the average of 

coefficient of variation of data transformed by Nelson transformation is the lowest. However, Nelson transformation is easy to 

work because it does not need the transformation parameter. 

Keywords: Process capability ratio, Manly transformation, Yeo-Johnson transformation, Nelson transformation 

 

Introduction 

 In statistical quality control, the basic assumptions 

are that the quality characteristic of product has  

a normal distribution and the process mean is 

centered between the lower and upper specification 

limits. In many industrial situations, the process 

outputs are not normally distributed and heavy tail 

such as chemical processes parameters, cutting tool 

wear processes and some concrete production 

processes. In these cases, they can lead to erroneous 

conclusions. Control charts and process capability 

ratio are widely used in quality control. The process 

capability ratio (PCR) is a measure of the ability of 

the process to manufacture product that meets  

the specifications. It is a quantitative method to 

express process capability used extensively in 

industry (Montgomery, 2001). An important 

assumption of PCR is based on a normal distribution 

of process output. If the distribution is non-normal, 

then the expected process fallout attributed to  

a particular value of PCR may be in error. When  

the assumption cannot be warranted, either capability 

index should be computed based on the other 

distributions than normal distribution, or the data 

should be transformed so that it conforms better to 

the normal distribution (Farnum as cited in Aichouni, 

Al-Ghonamy, & Bachioua, 2014). There are 

various graphical and analytical approaches to select  

a transformation such as reciprocal, logarithm, square 

root and so on. The usability of four types of 

transformations (Box-Cox, exponential, power and 

logarithmic) for transformation of data sets with four 

non-normal distributions (logarithmic-normal, 

exponential, gamma and Weibull) toward to normally 

distributed data was investigated. It is also possible to 
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meet with data sets, which are not normally 

distributed, and which cannot be transformed to 

normally distributed data (Mach, Thuring, & Samal, 

2006). The possibility to use exponential, Weibull 

and Lognormal distribution for transforming non-

normal data by using the Box-Cox and Johnson 

transformation would help the quality professional to 

perform correct process analysis in control charts for 

computing the process capability ratio to meet 

customer specifications (Sherrill & Johnson as cited 

in Aichouni et al., 2014).  However, the Box-Cox 

transformation should be used with caution in some 

cases such as failure time and survival data (Doksum 

& Wong, 1983). Moreover, the Box-Cox 

transformation was not satisfactory even when  

the best value of transformation parameter had been 

chosen (John & Draper, 1980). Furthermore, 

transformations may behave sufficiently normal for 

statistical process control but they do not yield 

accurate process performance index, for example, 

Johnson transformation of a gamma distribution 

yields a beautiful normal probability plot, but the 

estimated nonconforming fraction is four times too 

large (Levinson, 2010). 

     The objective of this article is to investigate  

the use of Manly transformation, Yeo-Johnson 

transformation and Nelson transformation to 

transform Weibull data for computing the PCR. 

 

Methods and Materials 

 

     To investigate the use of transformations to 

transform Weibull data for computing the PCR. Some 

transformations, estimation of transformation 

parameter, Weibull distribution, and the process 

capability ratio were reviewed. The methodology is 

next. 

1. Some Transformations 

 Let X  is a random variable distributed as 

non-normal, Y  the transformed variable of X , x  

the value of X , and    a transformation parameter. 

 1.1 Box-Cox Transformation 

   Box-Cox Transformation is a power 

transformation that it has a simple modified form to 

avoid discontinuity at  0 . It can be defined by 

equation

                            

 


 
 

1
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ln     ,  0
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

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                for  0x                                         (1) 

 

(Box & Cox, 1964).  This transformation is limited 

for positive data only so it is fitted for right skew 

data. 

 1.2 Manly Transformation 

   A family of exponential transformations 

in this form  

                             


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 
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exp( ) 1
,  0

                ,  0.
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Y
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
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                                                                                (2)   

 

 This is a useful alternative to Box-Cox 

transformation because negative x values are also 

allowed. It has been found in particular that this  

transformation is quite effective at turning skew 

unimodal distributions into nearly symmetric normal 

distributions (Manly, 1976). 



Naresuan University Journal: Science and Technology 2017; 25(1) 46 
 

1.3 Yeo-Johnson Transformation 

  A new family of distributions that can be 

used without restrictions on that have many of  

the good properties of the Box-Cox power family. 

These transformations are defined by: 
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   It is modified from the Box-Cox 

transformation (Yeo & Johnson, 2000). Although 

interpretation of the Yeo-Johnson transformation 

parameter is difficult, this family can be useful in 

procedures for selecting a transformation for linearity 

or normality (Weisberg, 2001). 

1.4 Nelson Transformation 

  The transformation is an alternative 

method to solve the problem that the exponential 

distribution (it is a special case of Weibull 

distribution when the shape parameter is zero) is 

highly skewed. For transforming the exponential 

random variable to normal distribution, the 

appropriate transformation is 

                 
1
3.6Y X  

(Nelson as cite in Montgomery, 2001). It is easy to 

work because it does not need the transformation 

parameter. 

2. Estimation of Transformation Parameter 

 For quality control, it is supposed that  

m samples are available, each containing n 

observations on the quality characteristic. So several 

groups of data, the value of   in (2) and (3) need 

to be found so that the transformed variables will be 

independently normal distributions. The probability 

density function of each 
ij

Y  is in the form 

    

              2 2

1 22
2
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2(2 )
ij ij
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 for i=1,…,m and j=1,…,n,            (4)  

 

where   is the mean of the transformed population 

data, 
2  the pooled variance of all transformed 

population data and 
ij

y  the observed value of 
ij

Y . 

For (2), the likelihood function in relation to  

the observations 
ij

x  is given by  
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Substitute ̂ and 2̂ into the likelihood equation (5).  Thus for fixed  , the maximized log likelihood is 
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 except for a constant, the maximum likelihood estimate of  is obtained by solving the likelihood equation 
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Similar procedures yield the same results for 

(3), when   0
ij

x  and  0 , the maximum 

likelihood estimate of  is obtained by solving  

the likelihood equation 
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     Since  appears on the exponent of  

the observations, it is considered to be too 

complicated for solving it. The maximized log 

likelihood function is a unimodal function so  

the value of the transformation parameter is obtained 

when the slope of the curvature of the maximized log 

likelihood function is nearly zero. Hence we can also 

use the numerical method such as bisection for 

finding the suitable value of  . 

3. Weibull Distribution  

 The Weibull distribution is often used to 

model the time until failure of many different 

physical systems. The probability density function of 

a two parameter Weibull random variable X is 



Naresuan University Journal: Science and Technology 2017; 25(1) 48 
 




 

 

  
 
 

  
      



1

, 0; , 0
( )

0                          , <0

x

x
e x

f x

x

 

 

where    is the shape parameter and   is the 

scale parameter. The mean and variance are  
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respectively (Montgomery, Runger, & Hubele, 

2004).  

4. Process Capability Ratio 

 The process capability ratio (
p

C ) is 

calculated from 




p

USL LSL
C

6
 

       where USL and LSL are the upper and lower 

specification limits, respectively. In a practical 

application, the  standard deviation  is almost 

always unknown and must be replaced by estimating 

 that we use either the sample standard deviation

  S or  
4 2

S R

c d
 .  

5. Methodology 

 The steps to investigate this work are 

summarized as follows: 

 5.1 Determine the number of sample (m) = 

20, 25 and the sample size (n) =4, 5, 6. 

5.2 Generate Weibull populations of size 


i

N 1,000 where i=1,…,m with the different values 

of scale parameter 
i

 and shape parameter 
i

  

defined as Table 1. 

 

Table 1 Shape parameter, scale parameter, USL, and LSL of life years for some items 

Item  shape parameter scale parameter USL LSL 

Pump 1.2 4 15 2 

Clutch 1.4 11 15 2 

Gear 2 9 15 2 

Source: http://reliabilityanalyticstoolkit.appspot.com/mechanical_reliability_data (Retrieved on 2 February, 2016) 

 

 5.3 From each generated Weibull population, 

1,000 random samples, each of size n that is equal 

are drawn. 

 5.4 Estimate the transformation parameter of 

Manly transformation and Yeo-Johnson 

transformation by maximum likelihood method.  

The value of transformation parameter is obtained by 

bisection method. 

 5.5 Each set of the sample data was 

transformed to normality by Manly transformation, 

 Yeo-Johnson transformation, and Nelson 

transformation and computed the process capability 

ratio and coefficient of variation. 

 5.6 Find the average of process capability 

ratio and the average of coefficient of variation for 

each situation. 

 5.7 Compare the average of process 

capability ratio and the average of coefficient of 

variation of three. Transformations at significant level 

0.05.  
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The best transformation is that the average of 

coefficient of variation should be the lowest. 

 

Results 

 

     The results of this paper are considered from an 

example and a numerical study as follows. 

1. An Example 

 The data shown here are donated by Prof.  

I-Cheng Yeh, Department of Information 

Management, Chung-Hua University, Taiwan  

(UCI Machine Learning Repository, 2007).  

One hundred observations of the concrete 

compressive strengths (in MPa, megapascals) are 

drawn from 1,030 observations and they are 

arranged as twenty five samples of four observations 

in the following Table 2. 

These data are not normally distributed with 

mean= 44.61 and standard deviation = 18.82 by 

Kolmogorov-Smirnov test and test statistic = 0.142 

at significant level 0.05 as Figure1.  

 

 

                    

Figure 1 Result of Kolmogorov-Smirnov test for checking normal distributions 

 

Table 2 Original data of the concrete compressive strengths (in MPa)                                                             

Sample Number  X
1
 X

2
  X

3
 X

4
 

1 45.85 28.02 80.32 37.43 

2 52.91 42.13 39 33.02 

3 71.99 28.8 28.1 46.8 

4 61.09 56.4 71.3 72.3 

5 69.3 77.3 71.7 57.6 

6 65.2 68.1 79.3 76.8 

7 79.3 73.3 29.45 37.34 

8 39.61 30.39 25.69 24.92 

9 26.31 47.74 17.22 27.77 

10 35.57 35.23 33.36 82.6 

11 60.32 38.77 51.33 36.99 

12 33.7 63.14 15.34 51.02 

13 39.38 44.33 41.37 14.94 

14 15.82 76.24 33.01 24.28 

15 51.72 39.64 44.28 53.39 

16 55.45 62.05 23.25 41.68 
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Table 2 (Cont.) 

Sample Number  X
1
 X

2
  X

3
 X

4
 

17 22.49 27.04 27.63 32.92 

18 17.34 75.5 16.11 43.38 

19 81.75 39.7 32.1 39.66 

20 37.91 70.7 42.13 61.92 

21 79.99 33.8 33.42 40.87 

22 52.42 38.46 37.26 31.42 

23 19.01 29.72 79.3 25.1 

24 29.07 33.8 40.93 25.56 

25 37.43 29.87 43.58 33.76 

 

 They have Weibull distributions with scale 

parameter 48 and shape parameter 2.5 by  

Kolmogorov-Smirnov statistic = 0.099 as Figure 2.  

 

 

                

                  Figure 2 Result of Kolmogorov-Smirnov test for checking Weibull distributions 

 

 To illustrate the calculation of PCR, we suppose 

that the specification on the concrete compressive 

strengths are the upper specification limit (USL) = 

80 MPa and the lower specification limit (LSL) = 

10 MPa (WSDOT FOP for AASHTO T 22, 2013). 

From Figure 2, we estimate

 

  S 18.82 . Thus, 

our estimate of the PCR is 





USL LSL
PCR

6
 


 

80 10
0.62

6(18.82)
. However, the distribution has 

right skewness. Thus, this estimate of capability is 

unlikely to be correct. To compare the efficiency of 

Manly transformation, Yeo-Johnson Transformation, 

and Nelson transformation, the data are transformed 

 by all of them. By Bisection Method, the values of 

Manly transformation parameter and Yeo-Johnson 

transformation are - 0.016163 and 0.187, 

respectively. For Nelson transformation, the value of 

transformation parameter does not need. 

     So Manly transformation is in the form 




exp(-0.016163 ) 1

(-0.016163)

X
y  and Yeo-Johnson 

transformation is in the form

  


0.187
1 1

.
0.187

               

X
y

 

 Weibull data in Table 2 are transformed by 

Manly transformation and the results are in Table 3. 
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Table 3 Transformed data by Manly transformation                  

Sample Number  X
1
 X

2
  X

3
 X

4
 

1 32.38 22.53 44.98 28.08 

2 35.56 30.56 28.93 25.59 

3 42.54 23.03 22.58 32.83 

4 38.82 37.01 42.33 42.64 

5 41.68 44.13 42.45 37.48 

6 40.30 41.29 44.70 43.99 

7 44.70 42.95 23.43 28.03 

8 29.25 24.01 21.02 20.51 

9 21.43 33.27 15.03 22.37 

10 27.05 26.86 25.79 45.59 

11 38.53 28.81 34.88 27.84 

12 25.98 39.57 13.59 34.75 

13 29.13 31.65 30.17 13.27 

14 13.96 43.83 25.58 20.08 

15 35.05 29.27 31.62 35.77 

16 36.62 39.18 19.38 30.33 

17 18.86 21.91 22.28 25.53 

18 15.12 43.61 14.18 31.18 

19 45.36 29.30 25.04 29.28 

20 28.34 42.14 30.56 39.13 

21 44.89 26.04 25.82 29.91 

22 35.35 28.64 27.99 24.64 

23 16.37 23.60 44.70 20.63 

24 23.20 26.04 29.94 20.94 

25 28.08 23.69 31.28 26.02 

 

These transformed data are checked the normality 

assumption by using Kolmogorov-Smirnov statistic =  

0.086 as Figure 3.  

 

 

                

    Figure 3 Result of Kolmogorov-Smirnov test for checking normality assumption  

             of transformed data by Manly transformation                

 

 From Figure3, we estimate   S 8.78 . Thus, 

our estimate of the PCR is    

 
  



* *

M

USL LSL 44.89 9.23
PCR 0.68

6 6(8.78)
.  
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Note that the USL
*
 and LSL

*
 are the USL and LSL 

transformed by Manly Transformation (Montgomery, 

2001). This estimate of process performance is 

clearly much more realistic than the one resulting 

from transformation.  

 Furthermore, Weibull data in Table 2 are 

transformed by Yeo-Johnson transformation and  

the results are in Table 4. 

 

Table 4 Transformed data by Yeo-Johnson transformation         

Sample Number  X
1
 X

2
  X

3
 X

4
 

1 5.63 4.69 6.82 5.23 

2 5.92 5.46 5.31 4.99 

3 6.58 4.74 4.70 5.67 

4 6.23 6.06 6.56 6.59 

5 6.50 6.74 6.57 6.10 

6 6.37 6.46 6.80 6.72 

7 6.80 6.62 4.78 5.23 

8 5.34 4.84 4.54 4.48 

9 4.58 5.71 3.85 4.68 

10 5.13 5.12 5.01 6.89 

11 6.20 5.30 5.86 5.21 

12 5.03 6.30 3.67 5.85 

13 5.33 5.56 5.43 3.63 

14 3.72 6.71 4.99 4.44 

15 5.88 5.34 5.56 5.94 

16 6.02 6.26 4.36 5.44 

17 4.30 4.63 4.67 4.99 

18 3.87 6.69 3.75 5.52 

19 6.86 5.35 4.94 5.34 

20 5.26 6.54 5.46 6.25 

21 6.82 5.04 5.02 5.40 

22 5.90 5.29 5.22 4.90 

23 4.02 4.80 6.80 4.49 

24 4.76 5.04 5.41 4.53 

25 5.23 4.81 5.53 5.04 

 

These transformed data are checked the normality 

assumption by Kolmogorov-Smirnov statistic =  

0.078 as Figure 4. 
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                 Figure 4 Result of Kolmogorov-Smirnov test for checking normality assumption 

                              of transformed data by Yeo-Johnson transformation     

 

     From Figure 4, we estimate   S 0.85 . Thus, 

our estimate of the PCR is  

 
  



** **

YJ

USL LSL 6.82 3.03
PCR 0.74

6 6(0.85)
.  

Note that the USL
**
 and LSL

**
 are the USL and LSL 

transformed by Yeo-Johnson Transformation 

(Montgomery, 2001). We see that the PCR 

calculated form data transformed by Yeo-Johnson 

transformation is higher than the PCR calculated form 

data transformed by Manly transformation.                

     Last, Weibull data in Table 2 are transformed by 

Nelson transformation and the results are in Table 5. 

     These transformed data are checked the normality 

assumption by Kolmogorov-Smirnov statistic = 

0.078 as Figure 5. 

 

 

              

                 Figure 5 Result of Kolmogorov-Smirnov test for checking normality assumption 

                              of transformed data by Nelson transformation                

 

Table 5 Transformed data by Nelson transformation                  

Sample Number  X
1
 X

2
  X

3
 X

4
 

1 2.89 3.01 3.28 3.13 

2 3.24 3.19 3.37 2.78 

3 2.48 2.70 3.12 2.66 

4 2.77 2.15 2.99 3.05 

5 2.37 2.21 3.40 2.74 

6 3.38 3.00 2.27 2.55 

7 2.73 2.52 2.83 2.54 

8 3.06 3.34 3.23 3.30 
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Table 5 (Cont.) 

Sample Number  X
1
 X

2
  X

3
 X

4
 

9 2.58 2.93 2.69 2.76 

10 3.16 2.87 3.33 2.78 

11 3.15 2.50 3.32 2.78 

12 3.26 2.66 2.76 2.56 

13 2.66 2.57 3.38 2.77 

14 2.53 3.27 3.28 3.37 

15 2.56 2.46 2.20 2.65 

16 2.99 2.13 2.81 2.64 

17 2.87 2.40 2.51 2.16 

18 2.62 2.83 2.65 2.73 

19 3.37 2.80 2.85 2.73 

20 2.64 2.91 3.28 3.08 

21 3.34 2.73 2.44 2.52 

22 3.41 2.73 2.98 2.12 

23 2.42 3.02 2.82 2.64 

24 2.85 2.78 3.14 2.80 

25 2.60 2.45 2.46 2.66 

 

 From Figure 5, we estimate   S 0.34 . Thus, 

our estimate of the PCR is  

 
  



*** ***

N

USL LSL 3.38 1.90
PCR 0.73

6 6(0.34)
. Note 

that the USL
***

 and LSL
***

 are the USL and LSL 

transformed by Nelson Transformation (Montgomery, 

2001). We see that the PCR calculated form data 

transformed by Nelson transformation is higher than 

the PCR calculated form data transformed by  

 

Manly transformation and it is nearly the PCR 

calculated form data transformed by Yeo-Johnson 

transformation.                

2. A Numerical Study 

 From the steps of methodology, for each item 

in Table 1, results of the average process capability 

ratios and the average coefficient of variation with 

1,000 replicated samples of each situation are shown 

in Table 6-8.  

Table 6 The average of coefficient of variation and the average of process capability ratios of Pump 

number 

of 

sample 

sample 

size 

The average of coefficient of variation (%) The average of process capability ratios 

Manly 

transformation 

Yeo-Johnson 

transformation 

Nelson 

transformation 

Manly 

transformation 

Yeo-Johnson 

transformation 

Nelson 

transformation 

20 4 56.1186 54.3242 25.3058 0.4867 0.5606 0.4399 

 5 48.8507 49.5812 22.6809 0.4512 0.5550 0.4885 

 6 54.2055 54.1663 23.9307 0.4715 0.6142 0.4807 

25 4 56.7901 55.9227 26.5075 0.4089 0.4925 0.4422 

 5 52.5374 51.9347 23.4885 0.4843 0.5663 0.4649 

 6 52.6663 53.6741 24.5671 0.4446 0.5397 0.4631 
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Table 7 The average of coefficient of variation and the average of process capability ratios of Clutch 

number 

of 

sample 

sample 

size 

The average of coefficient of variation (%) The average of process capability ratios 

Manly 

transformation 

Yeo-Johnson 

transformation 

Nelson 

transformation 

Manly 

transformation 

Yeo-Johnson 

transformation 

Nelson 

transformation 

20 4 46.8597 42.6949 21.3015 0.4268 0.4077 0.4050 

 5 52.8858 47.2532 22.5115 0.3492 0.3435 0.3633 

 6 55.2542 40.9508 23.4955 0.3560 0.3612 0.3607 

25 4 49.9826 42.1897 20.8472 0.4028 0.4066 0.4078 

 5 48.0286 40.3907 21.3568 0.4003 0.3865 0.3945 

 6 49.5435 41.4978 21.8658 0.3937 0.3803 0.3871 

 

Table 8 The average of coefficient of variation and the average of process capability ratios of Gear 

number 

of 

sample 

sample 

size 

The average of coefficient of variation (%) The average of process capability ratios 

Manly 

transformation 

Yeo-Johnson 

transformation 

Nelson 

transformation 

Manly 

transformation 

Yeo-Johnson 

transformation 

Nelson 

transformation 

20 4 45.5666 42.7075 18.0881 0.4905 0.4883 0.4847 

 5 42.3013 36.4616 16.0328 0.5317 0.5363 0.5452 

 6 38.8246 33.2505 15.4931 0.5606 0.5669 0.5726 

25 4 41.2695 34.8153 16.3418 0.5375 0.5408 0.5433 

 5 39.6444 35.4077 15.6198 0.5385 0.5404 0.5542 

 6 43.5490 39.9437 16.6372 0.5229 0.5230 0.5256 

 

Discussion 

 

     From the results of a numerical method, we see 

that the average of coefficient of variation of the data 

transformed by Nelson transformation in every case is 

the lowest and it differs from the others at significant 

level 0.05. Hence, Nelson transformation is  

the most efficient in sense of dispersion measure.  

The average of coefficient of variation of the data 

transformed by Manly transformation and  

Yeo-Johnson transformation is not different  

at significant level 0.05. For the average of process 

capability ratios computed from the data transformed 

by all of them is not different at significant level 

0.05. Furthermore, the difference of upper 

specification limit (USL) and lower specification 

limit (LSL) has affected the PCR computed from  

the transformed data including USL and LSL that 

they are transformed too. 

 

Conclusion and Suggestion 

 

     All of three transformations can be used for 

transforming the Weibull data to data that are 

normally distributed. When the transformed data are 

applied to calculate the PCR, the results of them are 

not different at significant level 0.05 although  

the average of coefficient of variation of data 

transformed by Nelson transformation is the lowest. 

However, Nelson transformation should be used to 

transform Weibull data to normality because it does 

not need the value of transformation parameter. 
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