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Abstract:  A new Banach sequence space established by using Lucas sequences and non-

zero real numbers � and � is presented. At the same time, some inclusion relations are given 

and also some geometrical properties such as Banach-Saks type � , weak fixed-point 

property and the modulus of convexity for this space are analysed. 
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INTRODUCTION 
 

Let � be the space of all real and complex valued sequences. A linear subspace of � is 

called a sequence space. If � is a complete linear metric space, then a K-space X is called an FK-

space. An FK-space whose topology is normable is called BK-space. The symbols ℓ�, �, �� and ℓ� 

for 1 ≤ � < ∞  represent the sequence spaces of all bounded, convergent, null sequences and p-

absolutely convergent series respectively, normed by ‖�‖� = ����|��| and ‖�‖� = (∑ |��|
�

� )�/�.  

Difference sequence spaces were introduced for the first time by Kizmaz [1] in the form of 

�(∆) = {� ∈ �:�� − ���� ∈ �} for � = ℓ�, �, ��. Later, Et and Colak [2] generalised these spaces 

such as �(∆�) = {� ∈ �:∆�� ∈ �},� = ℓ�, �, ��.   

An infinite matrix is a double sequence � = (���) of real or complex numbers defined by a 

function � from the set ℕ × ℕ  into the complex field ℂ(�� ℝ ) where ℕ = {0,1,2, … }. The treatment 

of infinite matrices is absolutely different from that of finite matrices. There are various reasons for 

this. In some instances the most general linear operator among two sequence spaces is presented by 

an infinite matrix. Let � and � be any two sequence spaces. A  defines a matrix mapping from � 

to � if �� = {(��)�}∈ � for every � = (��) ∈ � where 
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            (��)� = ∑ ������ .                                                        (1) 
 
The class of all matrices � such that �:� → � is symbolised by(�:�). In this way, � ∈ (�:�) if 

and only if the series on the right hand side of (1) converges for each � ∈ ℕ  and every � ∈ �, and 

we get �� = {(��)�}∈ � for all � ∈ �. The notion of matrix domain for an infinite matrix � in the 

sequence space � is given by  

          �� = {� ∈ �:�� ∈ �},                                                      (2) 
 
which is a sequence space [3]. 

During the recent years, some sequence spaces by means of the matrix domain for a triangle 

infinite matrix have been introduced by many mathematicians, e.g. Mursaleen and Noman [4,5], 

Karakas [6], Candan and Kara [7], Kara [8], Mursaleen et al. [9], Basar and Altay [10], Savas et al. 

[11] and Kara and Basarır [12]. 

In the literature, if � is a normed or paranormed sequence space, then the matrix domain ��  

is said to be a difference sequence space. For � = ℓ�, this space is called the space of sequences of 

p-bounded variation, i.e. ���. Also, it is clear that ��� = �ℓ��∆. 

Now let us give the following two triangle summability matrices, named as backward 

difference matrix and forward difference matrix for all �, � ∈ ℕ : 
 

∆��= �
(− 1)���,       � − 1 ≤ � ≤ �
0,   � > � �� 0 ≤ � < � − 1

  and ∆′�� = �
(− 1)���,       � ≤ � ≤ � + 1
0,   � > � + 1 �� 0 ≤ � < �

,  

 
respectively. Kirisci and Basar [13] have lately defined and examined the difference sequence 

spaces �� = {� ∈ �:�(�, �)� ∈ �}, 1 ≤ � < ∞ , � = ℓ�, ℓ�, �, ��  where �(�, �)� = (����� +

���);�, � ≠ 0. At the same time, difference sequence spaces have been analysed in some studies by 

Et [14,15], Mursaleen [16], Colak and Et [17], Et and Basarır [18], Bektas et al. [19], Et and Esi 

[20], Gaur and Mursaleen [21], Altın [22] and Polat et al. [23]. 

Now according to the well-known concept of Schauder basis, a sequence (��) is said to be 

Schauder basis for a normed sequence space � if � involves a sequence (��) such that there is a 

unique sequence of scalars (��) for every � ∈ �  with 
   

lim�→ �‖� − (���� + ���� + ⋯ + ����)‖ = 0. 
 

The aim of this note is to introduce and investigate the new sequence spaces ℓ� ���(�, �)� 

and ℓ� ���(�, �)� by constructing the generalised Lucas difference matrix ��(�, �) by the help of 

Lucas sequence {��} and �, � ∈ ℝ − {0}. Besides, we show that these spaces are BK-spaces and 

linearly isomorphic to space ℓ�  for 1 ≤ � ≤ ∞ . Additionally, we study a number of inclusion 

relations and give the basis for the space ℓ� ���(�, �)� , 1 ≤ � < ∞  and also examine several 

geometric properties of ℓ� ���(�, �)� , 1 < � < ∞ .     

 
RESULTS AND DISCUSSION 
 

The sequence {��}���
�  of Lucas numbers given by the Fibonacci recurrence relation and 

different initial conditions is defined as 

�� = 2, �� = 1  and  �� = ���� + ����, � ≥ 2. 
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Lucas numbers have several interesting properties and applications [24, 25]. Some of them 

are as follows: 

∑ ��
�
��� = ���� − 3  ; ∑ �����

�
��� = �����  � ≥ 1 
 

∑ ��
��

��� = ������ − 2  ; ∑ ������
��
��� = ���

� − 4 
 

�������� − ��
� = (− 5)(−1)�. 

 

If the term ������  is deducted from both sides of the last equality, the following formula is 

obtained: 

����
� + ������ − ��

� = (− 5)(− 1)�. 
 

In the view of the above information, we establish the generalised Lucas band matrix ��(�, �) =

�����(�, �)� by 

           ��(�, �) = �����(�, �)� =

⎩
⎨

⎧�
��

����
                   (� = � − 1)

�
����

��
                           (� = �)

0 (� > � �� 0 ≤ � < � − 1)

    .                          (3) 

 

Also, we define �� − transform of a sequence � = (��): 
 

       �� = ���(�, �)(�) = �
����

��
�� + �

��

����
����, � ≥ 1.                                (4) 

 

Now let us introduce the following Lucas difference sequence spaces ℓ� ���(�, �)� and ℓ� ���(�, �)�  

by using (3) and (4) in the forms of    
         

ℓ� ���(�, �)� = �� ∈ �:���
����
��

�� + �
��
����

�����
�

< ∞

�

� , 1 ≤ � < ∞  

and 

ℓ� ���(�, �)� = �� ∈ �:���� ��
����

��
�� + �

��

����
����� < ∞ �. 

 

These spaces may be redefined by the help of (2) as 
 

                          ℓ� ���(�, �)� = �ℓ����(�,�)     and  ℓ� ���(�, �)� = (ℓ�)��(�,�).                     (5) 

 

Theorem 1.  The sequence space ℓ� ���(�, �)� is a BK-space for 1 ≤ � ≤ ∞ , normed by 
 

‖�‖ℓ����(�,�)� = �∑ ����(�, �)(�)�
�

� �
�/�

and ‖�‖ℓ����(�,�)� = ��������(�, �)(�)�. 

 
Proof.  Since the matrix ��(�, �) is a triangle, (5) holds and the spaces ℓ�and ℓ� are BK-spaces 

according to their usual norms. By the theorem 4.3.12 of Wilansky [26], the proof of theorem can 

be straight-forwardly obtained. So our spaces are BK-spaces with the above norms. This completes 

the proof. 
 

Remark 1.  ℓ� ���(�, �)� and ℓ� ���(�, �)� are the sequence spaces of non-absolute type. Indeed 

‖�‖ℓ����(�,�)� ≠ ‖|�|‖ℓ����(�,�)�  and ‖�‖ℓ����(�,�)� ≠ ‖|�|‖ℓ����(�,�)� . This leads to the fact that the 
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absolute property does not hold for the spaces ℓ� ���(�, �)�  and ℓ� ���(�, �)�  for at least one 

sequence where |�|= (|��|) and  1 ≤ � < ∞ .    
 

Theorem 2.  The generalised Lucas difference sequence space ℓ� ���(�, �)� of non-absolute type is 

linearly isomorphic to the space ℓ� in the case 1 ≤ � ≤ ∞ . 
 

Proof.  Let us consider the transformation �:ℓ� ���(�, �)� → ℓ� defined by � → � = �� with (4). 

Hence for  � ∈ ℓ� ���(�, �)�, we have �� = � = ��(�, �)� ∈ ℓ�. So it is easy to see that  � is linear 

and we omit it. Additionally, we can simply show that � = 0 whenever �� = 0 and thus �  is 

injective.  Additionally, let us take � = (��) ∈ ℓ�  and define the sequence � = (��)  in the form of 
 

         �� =
�

�
∑ �−

�

�
�
��� ��

�

������
��

�
��� .                                                  (6) 

In that case we get 

‖�‖ℓ����(�,�)� = ����
����
��

�� + �
��
����

�����
�

�

�

�/�

 

= ���
����
��

��−
�

�
�
��� ��

�

������
��

�

���

+
�

�

��
����

��−
�

�
�
����� ��

�

������
��

���

���

�

�

�

�

�/�

 

��|��|
�

�

�

�/�

= ‖�‖ℓ� < ∞  

and 

‖�‖ℓ����(�,�)� = ���� ��
����

��
�� + �

��

����
����� = ����|��|= ‖�‖ℓ� < ∞ . 

 

This gives us � ∈ ℓ� ���(�, �)� , 1 ≤ � ≤ ∞ . Hence we see that � is surjective and norm preserving. 

In conclusion � is a linear bijection and so the spaces ℓ� ���(�, �)� and ℓ� are linearly isomorphic.  
 

Theorem 3.  If 1 ≤ � ≤ ∞ ,  then the inclusion ℓ� ⊂ ℓ� ���(�, �)� strictly holds. 
 
Proof.  Let us assume that � ∈ ℓ�, 1 < � ≤ ∞  . Due to the inequalities 

����

��
≤ 2 and 

��

����
≤ 3, we 

have from (4):  
 

�����(�, �)(�)�
�
≤ �6���(|2���|

� + |3�����|
�)

��

 

                                                

                                              ≤ 6�������{|�|, |�|}(∑ |��|
�

� + ∑ |����|
�

� ) 

and 

��������(�, �)(�)� ≤ 5���{|�|, |�|}����|��|. 

 

From here, we obtain for 1 < � ≤ ∞ : 
 
    ‖�‖ℓ����(�,�)� ≤ 36���{|�|, |�|}‖�‖�     and ‖�‖ℓ����(�,�)� ≤ 5���{|�|, |�|}‖�‖�.                    (7) 
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Lastly, the inclusion ℓ� ⊂ ℓ� ���(�, �)� is strict for 1 < � ≤ ∞  because the sequence � = (��) =

(1/�(− �/�)���
� ) is in ℓ� ���(�, �)� / ℓ�. It can be easily seen that (7) also holds for � = 1. Thus, 

the proof is complete.      
 

Theorem 4.  ℓ� ���(�, �)� ⊂ ℓ� ���(�, �)� for 1 ≤ � < �. 
 

Proof. Under the conditions 1 ≤ � < �  and � ∈ ℓ� ���(�, �)� , we obtain from Theorem 1 that 

� ∈ ℓ� if we consider the sequence � given by (4). In view of the fact that the inclusion ℓ� ⊂ ℓ� 

holds, we have � ∈ ℓ� . This clearly implies that � ∈ ℓ� ���(�, �)�  and so the inclusion 

ℓ� ���(�, �)� ⊂ ℓ� ���(�, �)� is true. 
 
Theorem 5.  The sequence ��(�)�

���

�
 defined by 

 

                  ��(�)�
�
= �

�

�
�−

�

�
�
��� ��

�

������
,   � ≥ �

0,                                � > �
                                          (8) 

 

is a basis for the space ℓ� ���(�, �)� for 1 ≤ � < ∞ .  Also, every � ∈ ℓ� ���(�, �)� has a unique 

representation of the form 

                   � = ∑ ���(�, �)(�)�
(�)

� .                                                  (9) 

 

Proof. By use of (8), it is trivial that ��(�, �)��(�)� = �(�) ∈ ℓ�  and this gives us �(�) ∈

ℓ� ���(�, �)�. Moreover, let us consider � ∈ ℓ� ���(�, �)� and take �(�) = ∑ ���(�, �)(�)�
(�)�

���  for 

every non-negative integer �. Then it is obtained that 
 

��(�, �)��(�)� = ����(�, �)(�)��(�, �)��
(�)� = ����(�, �)(�)�

(�)

�

���

�

���

 

and also, 

���(�, �)�� − �(�)� = �
���(�, �)(�),   � > �
0,             0 ≤ � ≤ �

. 

 

So there is a non-negative integer ��  such that ∑ ����(�, �)(�)�
�
< �

�

�
�
�

�
������

 for any � > 0 . 

Hence  we have that  

�� − �(�)�
ℓ����(�,�)�

= � � ����(�, �)(�)�
�

�

�����

�

�/�

≤ � � ����(�, �)(�)�
�

�

������

�

�

�

≤
�

2
< � 

for every � ≥ ��,  i.e. 

lim�→ ��� − �(�)�
ℓ����(�,�)�

= 0. 
 

Finally, to show the uniqueness of (9), let us assume that � = ∑ ��(�)�
(�)

�  for � ∈ ℓ� ���(�, �)�. 

From the continuity of the linear transformation predefined in Theorem 2, we get 
 

���(�, �)(�) = ∑ ��(�)���(�, �)��
(�)� = ∑ ��(�)��� = ��(�)�� . 

 

This completes the proof. 
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Now we examine the geometrical properties of ℓ� ���(�, �)�. Let � be a normed linear space 

and ��, �� be the unit sphere and unit ball of � respectively. Clarkson [27] defined the modulus of 

convexity as follows: 
 

��(�) = ��� �1 −
‖���‖

�
:�, � ∈ ��, ‖� − �‖ = �� , � ∈ [0,2]. 

 

In the literature there are a few equivalent definitions for modulus of convexity. One of them 

is Gurarii’s modulus of convexity, which was defined by Gurarii [28] and Sanchez and Ullan [29] in 

the form 
 

��(�) = ����1 − ����∈[�,�]‖�� + (1 − �)�‖:, � ∈ ��, ‖� − �‖ = 2�, � ∈ [0,2]. 
 

If  0 < ��(�) < 1, then � is uniformly convex and if ��(�) ≤ 1, then � is strictly convex.  
 

Theorem 6.  The Gurarii’s modulus of convexity for the space  ℓ� ���(�, �)� , 1 ≤ � < ∞   is 

�ℓ����(�,�)�(�) ≤ 1 − �1 − �
�

�
�
�

�

�

�
, � ∈ [0,2]. 

 

Proof.  Let � ∈ ℓ� ���(�, �)�.  Then 
 

  ‖�‖ℓ����(�,�)� = ���(�, �)��
ℓ�
= �∑ ����(�, �)(�)�

�
� �

�/�
 .                                      (10) 

 
Let � ∈ [0,2] and consider the sequences below where ����(�, �) is the inverse of the matrix ��(�, �): 
 

� = (��) = �����(�, �) �1 − �
�

�
�
�

�

�

�
, ����(�, �) �

�

�
� , 0,0, … �, 

      � = (��) = �����(�, �) �1 − �
�

�
�
�

�

�

�
, ����(�, �) �−

�

�
� , 0,0, … �.                      (11) 

Therefore, it is easy to see that the ��(�, �) − transforms of the sequences given by (11) are  
 

��(�, �)� = ��1 − �
�

�
�
�

�

�

�
,
�

�
, 0,0, … � and ��(�, �)� = ��1 − �

�

�
�
�

�

�

�
, −

�

�
, 0,0, … �. 

 
Hence ���(�, �)��

ℓ�
= ‖�‖ℓ����(�,�)� = 1  and ���(�, �)��

ℓ�
= ‖�‖ℓ����(�,�)� = 1 . This means that 

�, � ∈ � �ℓ� ���(�, �)��  and  ���(�, �)� − ��(�, �)��
ℓ�
= ‖� − �‖ℓ����(�,�)� = �. 

Now for � ∈ [0,1], 
 

‖ �� + (1 −  �)�‖
ℓ����(�,�)�

�
= � ���(�, �)� + (1 −  �)��(�, �)��

ℓ�

�
 

                                                                    = 1 − �
�

�
�
�

+ |2� − 1|� �
�

�
�
�

.                                     (12) 

From here, 

����∈[�,�]‖ �� + (1 −  �)�‖ℓ����(�,�)� = �1 − �
�

�
�
�

�

�

�
.                                  (13) 

 

Therefore, for 1 ≤ � < ∞ , 

�ℓ����(�,�)�(�) ≤ 1 − �1 − �
�

2
�
�

�

�

�

. 
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Corollary 1.  i)  If � = 2, then �ℓ����(�,�)�(�) ≤ 1 and thus ℓ� ���(�, �)� is strictly convex. 

ii)  If 0 < � < 2, then 0 < �ℓ����(�,�)�(�) < 1 and thus ℓ� ���(�, �)� is uniformly convex. 
 
A Banach space �  is said to have Banach-Saks property if any bounded sequence in � 

admits a subsequence whose arithmetic mean converges in norm. Similarly, we say that a Banach 

space � has weak Banach-Saks property if any weakly null sequence in � admits a subsequence 

whose arithmetic mean strongly converges in norm. 

Let � be a Banach space. Garcia-Falset [30] defined the coefficient �(�) as follows: 
 

�(�) = ���(lim�→ � ���‖�� + �‖), 
 
where the supremum is taken over all weakly null sequences (��) of the unit ball and all points � of 

the unit ball. He also proved that a Banach space �  with �(�) < 2 has the weak fixed point 

property. 

Some studies on geometrical properties of a sequence space have been done by Karakas et 

al. [31], Et et al. [32], Mursaleen et al. [33] and Karakas et al. [34]. 
 

Theorem 7.  The space ℓ� ���(�, �)� has the Banach-Saks property of type  �. 

Proof.  It can be demonstrated with a standard method. 
 

Remark 2.  � �ℓ� ���(�, �)�� = ��ℓ�� = 2�/�  by reason that the space ℓ� ���(�, �)�  is linearly 

isomorphic to ℓ�.  

Now we point out the following result due to the fact that � �ℓ� ���(�, �)�� < 2. 

Corollary 2. The Lucas difference sequence space ℓ� ���(�, �)� has weak fixed-point property for 

1 < � < ∞ . 

 
CONCLUSIONS 
 
 An approach to constructing a new sequence space using matrix domain of a triangular 

infinite matrix defined by Lucas numbers has been presented.  
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