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Abstract:  In this paper we introduce and study a new subclass ܴ of -valent functions that are 
analytic in the open unit disk {1 >∣ ݖ ∣ :ݖ} = ܧ. Some interesting results by using convolution 
technique for this subclass ܴ are obtained. Also, we point out some known consequences of our 
main results. 
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INTRODUCTION 
    

Let ()ܣ denote the class of functions 
 

                                                                                     
which are analytic and -valent in the open unit disk {1 >∣ ݖ ∣ :ݖ} = ܧ.  A function ݂(ݖ) ∈ ()ܣ is 
said to be -valently starlike of order ( > ߙ ≥ 0)ߙ in ܧ if and only if   

 

                                    
We denote the class of all -valent starlike functions of order ߙ by ܵ*(ߙ). Further, a function ݂(ݖ) ∈ 
 if and only if ܧ in ( > ߙ ≥ 0)ߙ valently convex of order- is said to be ()ܣ

                                  
We denote by (ߙ)ܥ the subclass of ()ܣ, consisting of all -valently convex functions of order ߙ in 
 valently- is (ݖ)′݂ݖ valently convex function, then- is (ݖ)݂ It follows from the definition that if .ܧ
starlike in ܧ. The classes ܵ*(ߙ) and (ߙ) ܥ were first introduced by Owa [1]. 

(1) 

p 

p 
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It is easy to see that ܵ*(0) = ܵ* and ܥ = (0)ܥ are, respectively, the classes of -valently 
starlike and  -valently convex functions in ܧ. We also note that ܵ* = ܵ* and ܥ = 1ܥ are, 
respectively, the well-known classes of starlike and convex functions in ܧ. 

We say that a function 

                                         
belongs to the class ܲ(ߙ) if ℎ(ݖ) satisfies the following condition 

                                        
Let ݂(ݖ), ݃(ݖ) ∈ ()ܣ, where ݂(ݖ) is given by(1) and ݃(ݖ) is defined by 
 

                                       
Then the Hadamard product (or convolution) ݂ ∗ ݃ of the functions ݂(ݖ) and ݃(ݖ) is defined by  

                                
In recent years many interesting subclasses of analytic multivalent functions associated with 

the linear operator and their many special cases were investigated by, for example Liu [2] and Sokol 
et al. [3], and also by Arif et al. [4, 5] and others [e.g. 6-8] using convolution technique. 

We now define the following:  
Definition 1. A function ݂(ݖ) given by (1) is said to belong to the class ܴ if  

 
where ݂()(ݖ) is the th derivative of ݂(ݖ). 

As a special case, the class ܴ1=ܴ was studied by Singh and Singh [9] in 1989. Using 
essentially their technique and that of Lashin [10], we prove the main results for the class ܴ, which 
is the main motivation of this paper. 
 
PRELIMINARY RESULTS  
 

Lemma 1 [11].  Let {݀݊}0 be a convex null sequence. Then the function 

                                                
is analytic in ܧ and ܴ݁(ܧ ∋ ݖ)      0 < (ݖ)ݍ. 
 
Lemma 2 [12].  If ܰ(ݖ) and (ݖ)ܦ are analytic in (ݖ)ܦ ,0 = (0)ܦ = (0)ܰ ,ܧ is starlike in ܧ and 
 

  
Lemma 3 [9].  If ℎ(ݖ) is analytic in ܧ, ℎ(0) = 1 and ܴ݁ℎ(ݖ) >   (ܧ ∋ ݖ), then for any function ܨ 
analytic in ܧ, the function ℎ ∗ ܨ takes values in the convex hull of the image of ܧ under ܨ. 
 
Lemma 4 [13].  Let 1 > ߚ.  If the function ℎ(ݖ) is analytic in ܧ, with ℎ(0) = 1, and 

 
Then 

 
The result is sharp. 
 

p p 

p 

(2) 

∞ 

1 
2 
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Lemma 5 [14].  For 1 ≥ ߙ and 1 ≥ ߚ,  
 

The result is sharp. 
 
MAIN RESULTS 
 
Theorem 1.  Let ݂(ݖ) ∈ ܴ;  then 

 
The constant −1 + 2log2 cannot be replaced by any larger one. 
 
Proof.  Let ݂(ݖ) ∈ ܴ;  then we have 

 
which can be written as 

 
or equivalently, 

 
Consider the function 

 
Clearly, ℎ(ݖ) is analytic in ܧ, ℎ(0) = 1 and 

 
From (4) and (5) we obtain 
 

 
from which it follows, in view of (4), (6) and Lemma 3, that 

  
The constant −1 + 2log2 cannot be replaced by any larger one, which follows from the fact that the  

function ݂1 defined by                                           is in the class ܴ. 
 
Corollary 1 [9].  If ݂(ݖ) ∈ ܴ, then 
 

 
The constant −1 + 2log2 cannot be replaced by any larger one. 
 
Theorem 2.  Let ݂(ݖ) ∈ ܴ, then 

 
 
Proof.  Since the sequence {݀݊}0 defined by                                            is a convex null sequence, 
using Lemma 1 we have 

(3) 

(4) 

(5) 

(6) 

 

∞ 
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We can write 

 
From (4), (7) and Lemma 3, we have the required result. 
 
Theorem 3.   Let ݂(ݖ) ∈ ܴ, then for every ݊ ≥ 1, the nth partial sum of ݂(ݖ) satisfies  

  
Proof.   From (3) and (5) we can write 

  
Putting ߨ ≥|ߠ|≥ 0 ,1 ≥ ݎ ≥ 0 ,ߠ݅݁ݎ = ݖ, and using the minimum principle for harmonic functions 
with the result in the literature[16], we have 

  
Using (3), (8), (9) and Lemma 3, we deduce that  ܴ݁                                    From the result given 
[17], we see that ܵ݊(ݖ, ݂) is -valent in ܧ for every ݊ ≥ 1.  If 1 = , then Theorem 2 and Theorem 3 
were proved [9]. 
 
Theorem 4.  If ݂(ݖ) ∈ ()ܣ and 
 

 
then  ݂(ݖ) ∈ S *( 1 − ). 

Proof.  Let ݂(ݖ) ∈ ()ܣ given by(1). It follows from the hypothesis of the theorem that 
 

  
Also, the sequence {݀݊}0 , where ݀0 = 1 and                              , is a convex null sequence such as 
 

  
From (11), (12) and Lemma 1, we obtain  

 

                        
Now we define a function (ݖ)ݓ by 

 
which can be written as 

(7) 

(8) 

(9) 

   

(10) 

 

(11) 

∞ 

(12) 
 

(13) 
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Clearly, 0 = (0)ݓ. Since ݂(ݖ) is -valent in ܧ, we have 1 ≠ (ݖ)ݓ in ܧ.  From (14) we obtain  

 
We claim that|1 >|(ݖ)ݓ in ܧ. If this is not true, then there exists a point ܧ ∋0ݖ such that  

 
Then from the result given [18], we have   

 
Putting 0ݖ = ݖ in (15), we obtain 

  
Since ݇ ≥ 1 and from (13), ܴ݁                                   Inequality (16) contradicts inequality (10); 
thus, |1 >|(ݖ)ݓ in ܧ.  Equation (14) then implies that ݂(ݖ) ∈ S *( 1 − ) [19].   

Using the Alexander type relation, we obtain the following corollary. 
 

Corollary 2.  If ݃(ݖ) ∈ ()ܣ and 

 
then  ݃(ݖ) ∈ (1 − )ܥ. 
 
Corollary 3 [9].  If ݂(ݖ) ∈ ܣ and let 

 
then  ݂(ݖ) ∈ S *. 

Our next result shows that the class ܴ is closed with respect to Hadamard product.  
Theorem 5.  If ݂(ݖ) and ݃(ݖ) belong to the class ܴ and  

 
then  ℎ(ݖ) also belongs to the class ܴ. 
 
Proof.  Since 

 
it follows that 

 
A simple computation gives 

 
From (17), using (1), (13) and Lemma 3, we have the desired result. 
 

(14) 

(15) 

(16) 

 
 

(17) 
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Corollary 4 [9].  If                                and                                      belong to ܴ, then their Hadamard 
product 

 
also belongs to ܴ. 

From the proof of Theorem 5, it is clear that the following more general result holds. 

Theorem 6.  If ݂(ݖ) ∈ ܴ()ܣ ∋ (ݖ)݃ , and ܴ݁                                    , then 

 
also belongs to the class ܴ.       
  
Theorem 7.  Let ݂(ݖ) ∈ ܴ. Then ܴ݁(݂()(ݖ)) > ܧ ∋ ݖ ,0 and hence ݂(ݖ) is -valent in ܧ. 
 
Proof.  Using the result given [17] and applying Lemma 2 with                         and ݖ = (ݖ)ܦ  proves 
Theorem 7.  If 1 = , then Theorem 7 was proved earlier [20]. 
  

Ruscheweyh and Small [21] have proved that the class ܥ is closed with respect to Hadamard 
product. In what follows we prove that the Hadamard product of functions of the class ܴ belongs 
to the class (ߙ)ܥ. 
 
Theorem 8.  If ݂(ݖ) and ݃(ݖ) belong to ܴ  and   

 
then  ℎ(ݖ) ∈ (1 − )ܥ. 
 
Proof.  In view of Corollary 3, it is sufficient to show that 

 
Equivalently, this can be written as 

 
Since ݂(ݖ), ݃(ݖ) ∈ ܴ, we have 

 
and 

 
Using Lemma 3, we obtain 

 
Consider the function 

  
Clearly, ℎ(ݖ) is analytic in ܧ, ℎ(0) = 1 and 

 
From (19) and (20), we can write  

  

 

 

(18) 

(19) 

(20) 

(21) 
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Using (19), (21), (22) and Lemma 3, we see that (18) holds for all ܧ ∋ ݖ.  This completes the proof. 
 
Corollary 5 [9].  If                                         and                                           belong to R, then 
 

  
We now define the integral operator (ݖ)ܨ as follows.  Let ݂(ݖ) ∈ ()ܣ;  then  

  
For 1=, the operator defined in (23) is a generalised form of operator by Bernardi [22]. A 
comprehensive study of operators with applications can be found in the literature [23-30]. 
 
Theorem 9.  Let ݂(ݖ) ∈ ܴ  and  

 
Then ܴ ∋ (ݖ)ܨ. 
 
Proof.  Let  

 
Then ℎ(ݖ) is analytic in ܧ and ℎ(0) = 1. 
From (24), we have 

 
A simple computation gives us: 

 
From the hypothesis of Theorem 9 with the result given [31], we have 

 
This completes the proof. It is easy to see that if 0 ≤ 1 ≥ ߣ, and ݂(ݖ) and ݃(ݖ) are in ܴ, then (ݖ)ܩ 
  .is a convex set ܴ This shows that the class .ܴ is also in (ݖ)݂(ߣ − 1) + (ݖ)݃ߣ =
 
Theorem 10.  Let ݂(ݖ), ݃(ݖ)∈ ()ܣ and 1 > ߚ ,ߙ.  If 

 
and 

 
then  ߶(ݖ)∈ ܵ(1 − ), provided that  

  
Proof.  Using the given hypothesis on ݂(ݖ) and ݃(ݖ) and Lemma 5, we have  

(22) 

  

(23) 

(24) 

* 

(25) 
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By using Lemma 4, from (26) we have  

 
or equivalently, this can be written as  

  
Using Lemma 4, (27) becomes  

 
Suppose 

  
Then ℎ(ݖ) is analytic in ܧ, ℎ(0) = 1  and  

  
A simple computation gives us:  

  
By taking ݑ = ℎ(ݖ) and ݖ = ݒℎ′(ݖ), Ψ(ݖ ;ݒ ,ݑ)= (ݒ +2ݑ)(ݖ)ݍ.  From (25) and (29) we have  

 
Now for real                               , we have  

 
From (28) and (30) we obtain  
                        ܴ݁ (Ψ(݅ݖ ,ݕ ,ݔ)) ≤ (ߚ − 1)(ߙ − 1)2 − 1,    for all  ܧ ∋ ݖ.   
        
By using the results given [19, 31], we have ߶(ݖ) ∈ ܵ(ܧ ∋ ݖ)   (1 − ). 
 
Corollary 6.  Let ݂(ݖ), ݃(ݖ) ∈ ()ܣ and 1 > ߚ ,ߙ.  If 

 
and 

 
then  ߰(ݖ)∈ (1 − )ܥ,  provided that   

  
The proof is simple by taking (ݖ)(1−)߶ = (ݖ)()߰ݖ. 
 

(26) 

(27) 

(28) 

(29) 

(30) 

 

* 
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Theorem 11.  Let ݂(ݖ), ݃(ݖ), ℎ(ݖ)∈ 1 > ߛ ,ߚ ,ߙ ,()ܣ.  If    

 
and  

  
then  ∅(ݖ)∈ ܵ(1 − ),  provided that  

  
Proof.   By the hypotheses on f, g and h and Lemma 5, we obtain  

  
where                                                         and                                                                       . 
 
From (31), together with Lemma 4, we have 

 
Using the same technique similar to that of Thereom 10, we obtain the required result. 
 
Corollary 7.  Let ݂(ݖ), ݃(ݖ), ℎ(ݖ)∈ 1 > ߛ ,ߚ ,ߙ ,()ܣ. If  
  

 
and 

  
Then  ߮(ݖ)∈ (1 − )ܥ,  provided that  

  
For proving ߮(ݖ)∈ (1 − )ܥ,  it is sufficient to show that   

  
By the hypotheses on ݂(ݖ), ݃(ݖ) and ℎ(ݖ) and Lemma 5, we obtain  

  
and the proof is completed similarly to that of Theorem 10. If 1 = , then Theorem 10 and 
Corollary 7 were given [10]. 
 
Theorem 12.  Let ݂1(ݖ), ݂ߙ , .  .  . ,1ߙ ,1ߙ    ,()ܣ ∋(ݖ)݂݊ , .  .  . ,(ݖ)2n < 1.  If    

 
and 

  
then  ߬(ݖ)∈ ܵ*(1 − ),  provided that  

* 

(31) 

  

(32) 



 
Maejo Int. J. Sci. Technol.  2015, 9(02), 181-192; doi: 10.14456/mijst.2015.22  
 

 

190

  
Proof.  For proving the above Theorem, we use the principle of mathematical induction. For ݊  = 2, 
we have proved Theorem 10; thus, (32) holds for ݊ = 2.  Suppose that (32) holds true for ݊ = ݇; 
that is,    

 
then  ߬(ݖ) ∈ ܵ*(1 − ), provided that inequality (33) is satisfied.              

We have to prove that (32) holds true for ݊ = ݇ + 1.  For this, consider   

 
Now using the given hypothesis on ݂݆(ݖ), j = 1,2, … , k  and Lemma 5, we have  

 
where    ((1−)݂݇ ∗  .  .  . ∗ (1−)2݂ ∗ (1−)1݂) =(ݖ)(1−)ܯ and  

  
By using Lemma 4, from (34) we have  

 
Applying Lemma 4, (35) can be written as  

  
Now with the same procedure used in Theroem 10, we have ߬(ݖ) ∈ ܵ*(1 − ),  provided that  

  
Therefore, the result is true for ݊ = ݇ + 1 and hence by using mathematical induction, (32) holds 
true for all ݊ ≥ 2. This completes the proof. 
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