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Abstract 

The re-parameterized inverse Gaussian distribution is a very useful distribution for 

statistics and it is applied to various fields, such as physics, engineering, biology, etc.  It is also 

appropriate to analyze the right-skewed data. In this research, we were interested in studying 
the Fisher-information matrix and we wanted to find the covariance matrix to form asymptotic 

confidence ellipses of parameters for the re-parameterized inverse Gaussian distribution. We 
compared the coverage probability with the confidence coefficient of 0.98 of confidence ellipses 
with sample sizes of n  = 10, 30, 50, 100, 1,000, and 10,000. The parameters of   = 0.5, 1, 5, 

10, 50 and   = 0.5, 1, 5, 10, 50.  The data were simulated by the composition method which 

they were repeated 10,000 rounds in each case with RStudio programming. The simulation 
results indicate that the value of coverage probability had been close to the confidence 

coefficient of 0.98 at the sample size of 10,000. 

 
Keywords: inverse Gaussian distribution, confidence ellipses, Fisher-information matrix, 

covariance matrix 

 
Introduction 

The inverse Gaussian distribution became known in statistics in the twentieth century 
from the research of Schrödinger (1915) and Tweedie (1957). This distribution is an alternative 

distribution suitable for an analysis of the right-skewed data. Therefore, it is popular and is 

applied to various fields such as physics, engineering, biology, finance, etc. As Folks & Chhikara 
(1978) explained in their research, the inverse Gaussian distribution is the continuous probability 

distribution which the probability density functions of inverse Gaussian distribution contain two 

parameters are   and  . 
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where 0   and 0  ,  they represent a symbol of X ~ ( , )IG   . And   is a location 

parameter or an average parameter,   is a shape parameter. Thus, the average of distribution is 

( )E X =  and  the  variance  of  distribution  is  
3( ) /Var X  = .  Furthermore, the  skewness is  
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3 /  . The maximum likelihood estimator of   is x =  and the maximum likelihood 
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Besides, the inverse Gaussian distribution still has a similar property with and bears a 
relation to the Birnbaum-Saunders distribution which was first introduced by Birnbaum & 

Saunders (1969). This Birnbaum-Saunders distribution was the failure distribution and was often 
used for reliability analysis. Afterward, the parameters of the Birnbaum-Saunders distribution 

were again adapted by Ahmed et al. (2008) in order to be suitable for use. Furthermore, they 
solved the relationship equation between the latest parameters and former parameters, including 

various properties of this distribution.  Jangphanish & Budsaba (2013) considered the parameter 

estimation of the inverse Gaussian distribution based upon new parameters as Ahmed et al. 
(2008). 

Therefore, the probability density function of the inverse Gaussian distribution with the 
new parameters can be written in this formula: 
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where 0   and 0  ,  they represent a symbol of X ~ ( , )IG   ,   is the thickness of 

the sample, and   is the nominal treatment loading on the sample. The maximum likelihood 

estimators of    is ˆ n

Tx n
 =

−
 and the maximum likelihood estimators of   is  
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The two types of estimation of population parameters are point estimation and interval 

estimation. The estimation of the population parameters, appealing to a study due to containing a 
single statistical value, is the point estimation. The interval estimation or the confidence interval 

estimation is the estimation of interesting population parameters because it contains an interval 
value which is between two values by containing the point estimation at the center between the 

two values. 

In the past decade, numerous studies have given special attention to the confidence 
interval for one-dimensional space; few researchers are interested in studying the confidence 

interval for two-dimensional space (which is called the elliptical confidence interval). 
From the previous research into the inverse Gaussian distribution, we found that there 

was no research work on the confidence interval of asymptotic ellipses for the re-parameterized 

inverse Gaussian distribution. Consequently, we are interested in doing a study into the 
confidence interval of asymptotic ellipses for the re-parameterized inverse Gaussian distribution 

based on distribution as Jangphanish & Budsaba (2013). 

 
A brief review of the re-parameterized inverse Gaussian distribution 

The basic parameters of the re-parameterized inverse Gaussian distribution are   and 

 .  This distribution is a group of continuous probability distributions with values of random 

variables from 0 to  . The probability density functions of the random variable with the re-

parameterized inverse Gaussian distribution that proposed by Jangphanish & Budsaba (2013) is 
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where 0   is the thickness of the machine element and 0   is the nominal 

treatment pressure on the machine. 
The re-parameterized inverse Gaussian distributions, which consists of two parameters, 

are   and  . The likelihood functions of the re-parameterized inverse Gaussian distributions 

depend on the two parameters.  They can be written in this formula:    
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Therefore, the logarithm of the probability function can be written in this formula: 
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and the maximum likelihood estimators of parameters   and   can be written in this form  
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and  ( )E X  is the first moment of  the re-parameterized inverse Gaussian distribution, 

therefore it is in this form: ( )E X = ,    

           and    ( )Var X  = ( ) ( )( )
22E X E X+  

                        = ( )2 2 21   + −  

                           = 2 2 2 2 2    + − = 2 .                                                         (6) 

 

Theoretical results 

1. The Fisher information matrix for the re-parameterized inverse Gaussian 

distribution 

Give a random variable X  to be the re-parameterized inverse Gaussian distribution 

with parameters ( ),  .  The Fisher Information Matrix is   when ( ),  =  is a two-

dimensional vector of the parameter standing for ( )I   as shown in below 
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The logarithm of the probability function of the re-parameterized inverse Gaussian 

distribution is 
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From ( )E X =  , thus we can estimate  the expectation of reciprocal ( )1/E X  by 

Taylor expansion around ( )E X  of a variable, so we obtain 
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Therefore, the Fisher Information Matrix for the re-parameterized inverse Gaussian 
distribution is in this form as shown. 

    ( )I   =

( )
( )

( ) ( )

2

2

11
2

1 2 1

2






 

 

+ 
− + − 
 −
 + +
− − 

 

 

          =

( ) ( )

( ) ( )

2

2

2 1

1 2 1

2

 



 

 

+ + 
 
 
 + +
 
 

.                                                                             (13) 

When   is the two-dimensional vector of parameters and ( ),  = ,  so we will 

obtain the Fisher information matrix for sample sizes n  are 
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2. The covariance matrix 

The value of the covariance matrix and the value of the inverse of the Fisher 

information matrix are equal. They stand for ( ) ( )1 1 ,n nI I  − − =  = . Consequently, when n  
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Consider this formula  

 
( )( ) ( )

22 2

2 2 2 2

2 1 2 12

22

n n  

   

+ + +
−  =

( )( ) ( )
22 2

2 2 2 2

2 1 2 2 1

2 2

n n  

   

+ + +
−  



The Journal of Applied Science                                                                                 Vol. 19 No. 1: 36-50 [2020] 
วารสารวทิยาศาสตรป์ระยกุต ์         doi: 10.14416/j.appsci.2020.01.004 

 - 41 - 

 =
( )( ) ( )

22 2

2 2

2 1 2 2 1

2

n n  

 

+ + − +
 

  =

2 2 2 2

2 2 2 2

2 4 2 2 2 1

2 2

n n    

   

   + + + + +   
−  

    =

2 2 2 2

2 2

2 5 2 2 2 1

2

n n   

 

   + + − + +     

    =
2 2 2 2 2 2 2 2

2 2

2 5 2 2 4 2

2

n n n n n n   

 

+ + − − −
 

    =
2 2 2 2 2 2 2 2

2 2

2 2 5 4 2 2

2

n n n n n n   

 

− + − + −
 

    =
2

2 22

n 

 
=

2

22

n


.                                       (16) 

That is 

 = ( )1

nI
−  =

( ) ( )

( ) ( )

2 2

2

2

2 1 1

2 2

1 2

n n

n n n

 

 

 

 

+ + 
− 

 
 + +
− 
 

 

                                     =

( ) ( )

( ) ( )2

2 1 2 1

2 1 2 2

n n

n n

   

   



+ + 
− 

 
 + +
− 
 

.                                   (17) 

3. An asymptotic normal distribution 

Consider the order of random variable from maximum likelihood  ( )ˆ MLE
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From the value of the inverse of the Fisher information matrix is equal to the value of 
the covariance matrix, it will be 
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Therefore,  
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average normal distribution of 0 and the variance of 1, and they are independent. Thus, 
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This distribution is Chi-Square distribution with two degrees of freedom (
2

2 ). 

4. The region of the confidence for the re-parameterized inverse Gaussian 

distribution 

From Duangchana & Budsaba (2014), Hansoongnern et al. (2018) and Phaphan & 

Pongsart (2019) we will obtain the confidence region of ( )100 1 %−  for the parameter   of 

Two-Dimensional Normal Distribution. It is an ellipse as shown in this equation. 
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Since covariance matrix of the re-parameterized inverse Gaussian distribution is  

  1 ( )nI
− =  .                                                          (21) 

We will obtain the confidence region of ( )100 1 %−  for the parameter ( ),  =  of 

the re-parameterized inverse Gaussian distribution as it indicates 
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Simulation results 
In this topic, we studied the coverage probability of asymptotic confidence ellipses for the 

re-parameterized inverse Gaussian distribution. We defined parameter of  = 0.5, 1, 5, 10, 50 

and parameters of  =  0.5, 1, 5, 10, 50 by simulating random numbers of the re-parameterized 

inverse Gaussian distribution with the composition method (Ngamkham, 2019) of the sample 
sizes  of =n  10, 30, 50, 100, 1,000, 10,000. We  took  the  random  numbers  which we  obtained to  
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estimate the parameters of   and   with the maximum likelihood method (Jangphanish & 

Budsaba, 2013), and afterward they were redone 10,000 rounds in each case. Lastly, asymptotic 

confidence ellipses were constructed and calculated the value of coverage probability of 
asymptotic confidence ellipses with the confidence coefficient of 0.98 by using RStudio 

programming as indicated in Tables 1-6 and Figures 1-6 (Here it shows some cases).  

 

Table 1. A sample size of n = 10, an average of parameter estimates of  , an average of parameter 

estimates of   and the value of Coverage Probability (CP) 

 

    
The average estimates 

CP 
̂  ̂  

0.5 0.5 0.8675 0.5452 0.5823 

 1 0.8575 1.0897 0.5937 

 5 0.8545 5.4169 0.5906 

 10 0.8719 10.3855 0.5974 

 50 0.8508 54.4864 0.5907 

1 0.5 1.5615 0.5036 0.6373 

 1 1.5807 0.9974 0.6337 

 5 1.5689 4.938 0.6478 

 10 1.5628 9.9506 0.6407 

 50 1.5689 49.7005 0.6502 

5 0.5 7.2783 0.4597 0.6436 

 1 7.3671 0.9119 0.6457 

 5 7.2711 4.5582 0.6517 

 10 7.2696 9.1681 0.6509 

 50 7.2986 45.7389 0.6506 

10 0.5 14.4873 0.4558 0.6105 

 1 14.5794 0.9016 0.6151 

 5 14.4262 4.5457 0.6084 

 10 14.378 9.0936 0.618 

 50 14.423 45.6088 0.6182 

50 0.5 71.0387 0.4527 0.4894 

 1 72.0167 0.9048 0.4791 

 5 70.3464 4.5332 0.4969 

 10 71.1927 9.0702 0.4932 

 50 71.7472 44.921 0.4858 
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Figure 1. Asymptotic confidence ellipses in the case of 10, 5, 5n  = = =  

 

Table 2 . A sample size of 30n = , an average of parameter estimates of  , an average of 

parameter estimates of   and the value of Coverage Probability (CP) 
 

    
The average estimates 

CP 
̂  ̂  

0.5 0.5 0.5905 0.5186 0.7504 

 1 0.5937 1.0262 0.7474 

 5 0.5914 5.1701 0.7484 

 10 0.5956 10.2686 0.743 

 50 0.5909 52.1257 0.7439 

1 0.5 1.1473 0.4996 0.7897 

 1 1.1474 0.9978 0.7949 

 5 1.1508 4.9867 0.7892 

 10 1.1518 9.9833 0.7917 

 50 1.1459 50.0676 0.7916 

5 0.5 0.4874 5.5757 0.8024 

 1 5.5935 0.9745 0.7957 

 5 5.568 4.8754 0.8055 

 10 5.611 9.7014 0.7985 

 50 5.5712 48.8262 0.8056 

10 0.5 11.2136 0.4822 0.7612 

 1 11.1245 0.9716 0.7676 

 5 11.1737 4.8381 0.7652 

 10 11.105 9.7371 0.7672 

 50 11.1026 48.6128 0.7687 

50 0.5 55.5276 0.4852 0.6323 

 1 55.5863 0.9677 0.6355 

 5 55.6313 4.8275 0.635 

 10 55.4025 9.7275 0.6293 

 50 56.0297 47.9986 0.6304 
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Figure 2. Asymptotic confidence ellipses in the case of 30, 5, 50n  = = =  

 

Table 3 . A sample size of 50n = , an average of parameter estimates of  , an average of 

parameter estimates of   and the value of Coverage Probability (CP) 
 

    
The average estimates 

CP 
̂  ̂  

0.5 0.5 0.5529 0.513 0.7964 

 1 0.5544 1.0175 0.8063 

 5 0.5544 1.0175 0.8063 

 10 0.5539 10.2085 0.7962 

 50 0.5514 51.2268 0.8001 

1 0.5 1.09 0.4969 0.84 

 1 1.0868 1.001 0.8395 

 5 1.0899 4.9634 0.8409 

 10 1.0901 9.9562 0.8381 

 50 1.0918 49.7151 0.8394 

5 0.5 5.3281 0.4928 0.8463 

 1 5.3495 0.9805 0.8478 

 5 5.3338 4.9295 0.8468 

 10 5.3388 9.8379 0.8522 

 50 5.3318 49.2313 0.8523 

10 0.5 10.6684 0.4902 0.8183 

 1 10.6326 0.9857 0.8159 

 5 10.6656 4.91 0.823 

 10 10.6833 9.8181 0.8114 

 50 10.6307 49.2032 0.8219 

50 0.5 53.2004 0.4907 0.691 

 1 53.2717 0.9796 0.6989 

 5 53.1505 4.9103 0.6975 

 10 53.3072 9.7789 0.7016 

 50 53.3408 48.9673 0.6922 
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Figure 3. Asymptotic confidence ellipses in the case of 50, 5, 50n  = = =  

 

Table 4 . A sample size of 100n = , an average of parameter estimates of  , an average of 

parameter estimates of   and the value of Coverage Probability (CP) 
 

    
The average estimates 

CP 
̂  ̂  

0.5 0.5 0.5254 0.5052 0.8599 

 1 0.528 1.0048 0.8579 

 5 0.5278 5.0348 0.8547 

 10 0.5249 10.1248 0.8659 

 50 0.5248 50.6336 0.8694 

1 0.5 1.0388 0.5013 0.9001 

 1 1.0394 1.001 0.8976 

 5 1.0419 4.9992 0.8939 

 10 1.0423 10.0013 0.8894 

 50 1.0415 49.9095 0.8994 

5 0.5 5.1529 0.4974 0.8987 

 1 5.1646 0.9922 0.8991 

 5 5.1495 4.97 0.9015 

 10 5.1658 9.9094 0.8984 

 50 5.1621 49.6401 0.8967 

10 0.5 10.2967 0.4969 0.8713 

 1 10.3127 0.992 0.8733 

 5 10.3233 4.9551 0.874 

 10 10.3107 9.9127 0.8848 

 50 10.3062 49.5991 0.8824 

50 0.5 51.5636 0.4952 0.7704 

 1 51.4611 0.9921 0.7747 

 5 51.5803 4.9467 0.7748 

 10 51.4586 9.9216 0.7716 

 50 51.6396 49.429 0.7787 
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Figure 4. Asymptotic confidence ellipses in the case of 100, 5, 5n  = = =  

 

Table 5 . A sample size of 1,000n = , an average of parameter estimates of  , an average of 

parameter estimates of   and the value of Coverage Probability (CP) 
 

    
The average estimates 

CP 
̂  ̂  

0.5 0.5 0.5023 0.5008 0.9625 

 1 0.5026 1.0007 0.961 

 5 0.5023 5.0072 0.9602 

 10 0.5026 10.0084 0.9594 

 50 0.5028 50.021 0.9596 

1 0.5 1.0033 0.5003 0.9685 

 1 1.0036 1.0008 0.9684 

 5 1.0041 5.0027 0.9654 

 10 1.0047 9.9927 0.9676 

 50 1.0035 50.0385 0.9668 

5 0.5 5.0171 0.4994 0.9668 

 1 5.0161 0.9991 0.966 

 5 5.0173 4.9944 0.9685 

 10 5.0204 9.9834 0.9655 

 50 5.0188 49.9296 0.9687 

10 0.5 10.0401 0.4992 0.9616 

 1 10.0263 0.9996 0.9654 

 5 10.0251 4.9985 0.9634 

 10 10.0278 9.9965 0.9627 

 50 10.0287 49.9667 0.9651 

50 0.5 50.1816 0.4992 0.9322 

 1 50.1523 0.999 0.9301 

 5 50.1736 4.9928 0.9376 

 10 50.1553 9.9891 0.9328 

 50 50.1492 49.9536 0.9316 
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Figure 5. Asymptotic confidence ellipses in the case of 1,000, 5, 50n  = = =  

 

Table 6 . A sample size of 10,000n = , an average of parameter estimates of  , an average of 

parameter estimates of   and the value of Coverage Probability (CP) 
 

    
The average estimates 

CP 
̂  ̂  

0.5 0.5 0.5003 0.4999 0.9776 

 1 0.5001 1.0005 0.9759 

 5 0.5002 5.0002 0.9776 

 10 0.5003 9.9975 0.9768 

 50 0.5004 49.985 0.9807 

1 0.5 1.0006 0.4999 0.9772 

 1 1.0005 0.9997 0.9783 

 5 1.0002 5.0013 0.9787 

 10 1.0005 9.9972 0.9787 

 50 1.0005 49.9921 0.9791 

5 0.5 5.0003 0.5001 0.9788 

 1 5.0024 0.9998 0.9799 

 5 5.0033 4.9981 0.9782 

 10 5.0021 9.9982 0.977 

 50 5.002 49.9908 0.9761 

10 0.5 10.0004 0.5001 0.9762 

 1 10.0025 1.0001 0.977 

 5 10.002 5.0002 0.9787 

 10 10.003 9.9994 0.9765 

 50 10.0031 49.9937 0.9788 

50 0.5 50.0165 0.4999 0.9758 

 1 50.0279 0.9996 0.9734 

 5 50.0095 5.0002 0.972 

 10 50.0122 9.9997 0.9712 

 50 50.0095 50.0144 0.9773 
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Figure 6. Asymptotic confidence ellipses in the case of 10,000, 0.5, 50n  = = =  

 
Discussion 

The research results of simulation as shows in Table 1-6 revealed that the parameter 
estimation of   that had been introduced had more values than the actual values 

(overestimate). Also, from Figure 2: 30, 5, 50n  = = =  showed that several parameter 

estimations came out of the ellipse, but when the sample size had increased to 1,000 as shown 

in Figure 5: 1,000, 5, 50n  = = = , the number of parameter estimations coming out of the 

ellipse decreased. Similarly, from Figure 1:  10, 5, 5n  = = =  were found that several  

parameter estimations came out of the ellipse, but when the sample size had increased to 

10,000 as it indicates in Figure 6: 10,000, 5, 5n  = = = , the number of parameter 

estimations coming out of the ellipse reduced significantly. 

The research indicated that the coverage probability of asymptotic confidence ellipses 
would have been increasing value when the sample size of n  rose up. As we calculated, the value 

of coverage probability had been close to the confidence coefficient of 0.98 at the sample size 
of n = 10,000 which gave us the maximum coverage probability.  Consequently, the value of 

coverage probability of asymptotic confidence ellipses for the re-parameterized inverse 
Gaussian distribution would have been increasing when the sample size was large. 

In this research, we use the maximum likelihood estimates that have more errors when 
sample sizes are small. Therefore, the value of coverage probabilities are very low in the cases 

of small sample sizes. 
Besides, for n  less than or equal to 100, the parameter of 5 =  and the various parameter 

of   gave us the maximum coverage probability (as shown in Table 1-4).  Therefore, the various 

parameter of   were able to cause the value of coverage probability of asymptotic confidence 

ellipses for the re-parameterized inverse Gaussian distribution. 

 
Conclusion 

In the theoretical part, we calculate the Fisher information matrix for sample sizes n  in 

closed form for a probability density function under the re-parameterized inverse Gaussian 

distribution and find the covariance matrix which equals an inverse of the Fisher information  
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matrix for the sample size n  to construct a normal approximation that gives elliptical confidence 

regions with center ( ),  =  for all 150 cases. 

For the simulation part, the objective of this part is conducted for an asymptotic 
confidence ellipses construction for parameters of the re-parameterized inverse Gaussian 

distribution and we compare the coverage probabilities of confidence ellipses of parameters for 
a re-parameterized inverse Gaussian distribution with the confidence coefficient 0.98. We 
consider the parameters of   = 0.5, 1, 5, 10, 50,   = 0.5, 1, 5, 10, 50 and the sample sizes 

n  as 10, 30, 50, 100, 1,000, 10,000. The data were generated by a simulation technique using 

RStudio programming and the experimental is repeated 10,000 times to obtain the coverage 
probability. The simulation results indicated that the coverage probability of asymptotic 
confidence ellipses would have been increasing value when the sample size of n  increase and 

the various values of   can cause the coverage probability values of asymptotic confidence 

ellipses to increase or decrease. In connection with this research, we could continue applying to 
contemporary problems for real life data, mostly in Engineering. Also, we would like to suggest other 

distribution such as Weilbull distribution, log-normal distribution, extreme value distribution, Gompertz 
distribution and log-logistic distribution for constructing the confidence ellipses. 
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