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Abstract 

Accurate demand forecasting is a crucial component of airline revenue management. 
However, it is cumbersome to find exact forecasting demand since the historical data, the censor 

data, do not reflect the actual demand. In order to obtain estimated demand, the Expectation-
Maximization (EM) method is used to calculate the estimated demand. Furthermore, the previous 

research mainly focuses on the stationary demand, which does not represent an actual situation. 

So, this research engages in finding the optimal overbooking and booking limit of the Two-Class 
overbooking with non-stationary demand that maximizes the expected profit using numerical 

experiments. In addition, the performance of the Two-Class overbooking model with non-
stationary demand is compared with the booking limit of the airline's policy. The optimal number 

of update booking limits with non – stationary demand using real data are concerned.  
 The simulation finds that the optimal booking calculated mostly is the booking limit. 

However, the booking limit is suited to the overbooking limit in some situations. Moreover, the 

expected profit from the optimal overbooking limit is greater than or equal to the airline's booking 
policy in all study situations. The Two-Class overbooking model yielded up to 21% more the 

expected profit margins than airline booking policies. In real data study, the Two-Class 
overbooking model is taken to calculate the optimal number of update booking limits when the 

demand is non – stationary and it is found that the 16-point update booking limit gives the 

maximum profit. 
 

Keywords: Revenue Management, Overbooking, Two-Class overbooking,  
     Non-stationary demand, Expectation-Maximization. 

 
1. Introduction 

Revenue management (RM) is a well-known application of mathematical modeling mostly 

employed in the airline industry to improve profitability with high fixed costs and low marginal 
costs. RM is defined as “selling the correct product to the correct customer at the correct time 

for the proper price” (Cross,1997). The aviation industry is an intensely competitive industry that 

constantly engages in overbooking to reinforce its revenues, taking advantage of the fact that 
customers cancel airfare reservations or do not show up for flights (Suzuki, 2006). The concept 

is straightforward. Airlines sell seats by creating different fare classes carrying different 
restrictions and prices. 
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The Air Transport Information Division of Airport of Thailand Public Company Limited 

(AOT) reported that the total air traffic, aircraft movement, and passenger numbers in Thailand 
increased by 21, 22, and 21 percent from 2015 to 2019. So, Thailand can increase revenue by 

roughly $200 million US. 
 Unfortunately, after the World Health Organization (WHO) declared the COVID-19 

outbreak a pandemic since March 2020, daily life across the world has changed. The aviation 

industry has been one of the hardest-hit industries globally since the beginning of the outbreak. 
Some airlines would evolve during a crisis like no others bringing the industry into survival mode, 

diminished by a loss of traffic and revenues. While positive signs for recovery, COVID-19 remains 
an existential crisis for airports, airlines, and business sectors. The airline companies in Thailand 

are also affected by the pandemic outbreak; however, they could benefit from using RM strategies 

when the pandemic is better. 
 The Two-Class model, which concentrates on the booking control problem, dates back 

to Littlewood (1972). All booking requests show up at the time of service. Littlewood (1972) does 
not allow overbooking, which means there are no cancellations or no-shows. The Two-Class 

overbooking model proposed by Somboon and Amaruchkul (2016) is taken into account in this 
study. The model combines two strategies, overbooking and seat inventory, and proposes a static 

Two-Class overbooking model, in which low fare (Class-2) passengers arrive prior to high fare 

(Class-1) passengers. The airline incurs a penalty cost, any of which rejected booking requests. 
Also, the penalties are different for the two classes. The airline may overbook Class-2 customers. 

The two fare classes may have different show-up rates. We refer an interested reader to 
Somboon and Amaruchkul (2016) and also the literature cited therein for more details on the 

combined Two-Class overbooking model. 

 Accurate demand forecasting is a vital component in RM. The booking data of departure 
flights are used to forecast the demand for future departing flights. However, the previous 

research generates only the stationary demand, which does not represent an actual situation. A 
pattern in which demand is not constant for each time but varies due to seasonality, trend or 

other factors, the non-stationary demand, is considered. For example, a booking demand changes 

according to the number of days close to the travel date. The closer the travel date is, the more 
demand for booking. This research mainly focuses on finding the optimal overbooking and 

booking limit that maximizes the expected profit using numerical experiments. Moreover, the 
performance of the Two-Class overbooking model with  

non-stationary demand is compared with the airline’s policy booking limit. Finally, find the optimal 
number of update booking limits when the demand is non-stationary with real data. 

  The paper is organized, as follows: Section 2 briefly reviews the Two-Class overbooking 

model. Section 3 details the numerical setting and the procedure for simulation. Section 4 
presents numerical results of the numerical study. Real data is applied in Section 5, and Section 

6 presents conclude. 
 

2. Two-Class Overbooking Model  

  In 2016, Somboon and Amaruchkul propose the two-class overbooking model by the 
following these information.  

  Let  and  be the set of non-negative integers and the real number set respectively. 

Also, given t is the number of days until departure and suppose that ( ) max(0, )y y+ =  for y . 

Let ( )D t be the distribution function of a random variable at t days before departure. The quantile 

function of ( )D t can be written as  
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1 ( ) inf{ : ( ( ) ) }

D t
F a x P D t x a  

  Class-2 reservations are assumed to begin a booking before Class-1 reservations in this 
model. When a Class-i customer is accepted, the airline earns revenue 

ip , 
1 2 0p p , for each 

1, 2i . If the airline rejects the request, it will incur a penalty cost 
ig where 

1 2 0g g . In this 

model, the penalty cost includes both opportunity cost and loss-of-goodwill. Loss of business 
reputation or the loss-of-goodwill determines the customer satisfaction that can be intangible and 

cumbersome to gauge in practice. 
  The opportunity cost is a measurement of future revenue loss based on what happens 

after the lost sales occur. If a customer is prone to return to make a request, the opportunity 
cost is the expected loss of revenue from this situation. On the other hand, if a customer never 

returns to make another reservation with the airline, the opportunity cost includes all future 

revenues. 
  In practice, an optimal booking limit is determined on a proportion of refund cost over 

time and change in show-up probability. It can be affected by overbooking limits that vary over 
time. Assume that ( )x t  is a Class-2 booking limit at the update booking limit t days prior to 

departure. It implies that the reservations for Class-2 are accepted up to ( )x t . Overbooking is 

permitted if ( )x t  is greater than capacity ( )t  at the update booking limit point t. Let ( )iD t  be 

the demand of Class-i booking at the update booking limit point t for each 1, 2i . The Class-2 

reservations and rejected quantity are 
2min( ( ), ( ))x t D t  and 2( ( ) ( ))D t x t at the update booking 

limit point t, respectively. 

  After all Class-2 reservations have arrived, Class-1 customers begin their booking so that 

the available capacity for Class-1 customers will be 2( ( ) min( ( ), ( )))t x t D t . However, due to 

high penalty costs and high priority, we do not overbook Class-1 passengers, so they are accepted 
up to the remaining capacity. The number of Class-i reservations at the updated booking limit 

point t can be written as: 

1 2 1( ( )) min( ( ) ( ( ))) , ( )),B x t t B x t D t
2 2( ( )) min( ( ), ( ))B x t x t D t . 

  Some customers may not show up for or cancel their reservations before departure. 
Furthermore, we considered that both no-show and cancellation customers are the same in this 
model. Let ( ( ))i iB x t y  be the number of Class-i reservations and ( )i iW y  be the number of 

Class-i show-ups. Assume ( )i iW y  is a Class-i show-up probability with a binomial distribution with 

parameters 
iy  and 

i
, where (0,1]i

(Sawaki, 1989; Ringbom and Shy, 2002; and Somboon 

and Amaruchkul, 2016). Tasman Empire Airways demonstrated that using the binomial 
distribution is a suitable model for the show-up distribution (Thompson, 1961). Assume that 

ir is 

a refund for no-show Class-i reservation for 1,2i , where (0,1);  i i i ir p , which 
i
 is a 

proportion of the revenue cost.  
  Some passengers are denied at the departure if the number of show-up passengers 

exceeds capacity. As mentioned above that we do not overbook Class-1 customers, so all denied 
boarding passengers are Class-2. The compensation that the airline has to pay all passengers 
who were denied boarding is h, where 2h p . However, it could include a higher fare class ticket 

for the next flight, cash vouchers, or hotel accommodations. 

  An optimal booking limit at the update booking limit point * ( )x t that maximizes its 

expected profit is preferred: 

  



The Journal of Applied Science                                                                              Vol. 21 No. 1 [2022]: 247376 
วารสารวทิยาศาสตรป์ระยกุต ์          doi: 10.14416/j.appsci.2022.01.006 

 - 4 - 

( ( ))x t  
2

1

[ ( ( )) ( ( ( )) ( ( ( ))))]i i i i i i

i

E p B x t r B x t W B x t 2 2( ( ( ( ))) ( ))E h W B x t t  

          2 2 1 1 2( ( ) ( )) ( ( ) ( ( ) ( ( ))) )E g D t x t g D t t B x t . 

 From the equation above, it can be seen that there are two uncertainty parts which are 

demand and the number of show-up customers. However, we are capable find a closed form of 
the optimal booking limit. Finding a closed form of the optimal booking limit can use the theorem 

below (Somboon and Amaruchkul, 2016). 
 
Theorem 1. For 0,1,..., 2x = −  and , 1,...x  = + , the expected profit function ( )x  is piecewise 

is unimodal in each piece. The expected profit ( )x  has a local maximum point x   on 

0,1,..., 2x = −  as 

 
1

1

1

1 1

1

0 ;0 ( 1)

(1 ) ; ( 1) ( 0)

2 ; ( 0) 1

D

P D

x F P D P D

P D

 

   

 

−

   −


 = − −  −   


−   

. (1) 

On the other hand, if 2 2 20 / ( ) ( 1; , )h F      − , then the expected profit ( )x  has a local 

maximum point x  for , 1,...x  = + . It can be written as 

 
2

2

2

arg min{ { , 1,...}: ( 1; , ) }x x F x
h


   


 =  + −  .  (2) 

Otherwise, the expected profit function is increasing. 
 

3. Numerical Illustration  

As mentioned in the introduction, accurate demand forecasting is a key to gauging 
optimal booking and overbooking. It is cumbersome to find exact forecasting demand since the 

historical data, which is the censor data, do not reflect the actual demand. That is, the booking 
limit determines how many seats can be sold on a flight. A booking in a fare class is accepted by 

an airline until the booking limit is reached. The airline then stops selling seats in that fare class. 
It also ceases to collect valuable data. Demand for travel in that fare class may exceed the 

booking limit, but the data does not reflect this, as the booking limit is censored or “constrained”.  

From this cause, true demand cannot obtain directly, which can only obtain estimated demand. 
In order to obtain estimated demand, the unconstraining method is used to calculate the 

estimated demand. In quantity-based RM, the Expectation – Maximization (EM) method is the 
most commonly used for correcting for constrained data with four basic steps: (i) replace missing 

values with estimated values, (ii) estimate parameters, (iii) re-estimate the missing values 

assuming the new parameter estimates are correct, (iv) re-estimate the parameters, and iterating 
until convergence (Talluri et al, 2004: 474-475).  

  Like Somboon and Amaruchkul (2016), we assume that the demand of seats for each 
class in a year follows Poisson distribution. The Poisson variable is assumed in numerical 

experiments; however, the proof in Theorem 1 does not need to assume Poisson distribution but 

holds for any non-negative random variable.   
  In this experiment, we generate non-stationary booking demand by dividing the booking 
demand into four quarters. Let 1  and 2  be initial parameters referring the seat demand of 

customers class-i; i =1,2 increasing 5 percent each quarter. We assume that 1  = 40, 50, 60, 

70, and 2  = 90, 100, 110, 120, respectively. The plane’s capacity is given by  = 162 and the 

fare for class-i; i =1,2 is denoted by 1 3,043p =  and 2 945p = , respectively. ir  is  the refund  for  
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passenger in each class where 0.5i ir p=  and 0.8i ir p= . The show-up probability 

i  for customer 

class-i; i =1,2 are 0.7 and 0.9, respectively. Also, assume that the compensation cost h = 2,000 

Baht must be paid to all passenger when the number of passengers exceeds capacity. 

 The EM method is used to estimate the censored demand data then uncensored it using 
the unconstraining method. In this setting, we partition the demand into two classes by 

employing the demand function proposed by Komsan Suriya (2009) for airline industry in 

Thailand. Given that is the demand function. 
Class-1 demand function 

 1 13,588 188.605 .p q= −  (3) 

Class-2 demand function 
 

2 21,763 188.605 .p q= −  (4) 

where 
iq  is the demand for class-i, for i =1,2. 

  After substituting 
1 3,043p =  in (3) and 

2 945p =  in (4), we obtain the demand for Class-

1 and Class-2 as, 
1 4.6q =  and 

2 6.9q =  million customers, respectively. The proportion of Class-1 

(
1 ) and Class-2 (

2 ) passengers is 

 
1 0.4 =  and 

2 0.6 = . (5) 

 We considered the proportions in (5) to divide the number of reservations into two 
classes. 

 Next, the booking and overbooking limit is gauged using the Two-Class overbooking 
model, then calculated the expected profit from the booking and overbooking limit. Repeat 1,000 

iterations for all the steps and average the profit. The average profit between the Two-Class 
overbooking model and the airline’s policy are compared. 

 

4. Numerical Result 
In this experiment, we simulate non-stationary booking demand detailed in the section 

3. Then, we estimate censored booking demand data using EM method, and the Two-Class 
overbooking model is used to find the optimal overbooking for non-stationary demand. The 

expected profit in each situation can be summarized below. 

 
4.1 The optimal overbooking and the expected profit of the Two-Class 

overbooking model for non-stationary booking demand. 
  Table 1 shows that the optimal booking demand when 

1  =40 and 
2  = 90 for all 

ir and 

i  is the booking limit. Said that the airlines should accept Class-2 customers to make bookings 

as booking limit to achieve the highest expected profit. 
  Likewise, the optimal booking limit for 

1  = 50 and
2  = 100 for all 

ir and 
i  is the 

booking limit. The airlines have to open the reservation for Class-2 customers as booking limit to 

exceed the highest expected profit. The result as shown in Table 2. 
 
Table 1 The optimal overbooking and the expected profit when 1 =40 and 2  =90 

1
r  

2
r  

1
  

2
  Optimal booking limit Expected profit 

1521.5 472.5 0.7 0.7 103 209,278.85 

1521.5 472.5 0.7 0.9 104 217,153.85 

1521.5 472.5 0.9 0.7 103 226,188.63 

1521.5 472.5 0.9 0.9 103 234,063.63 
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Table 1 The optimal overbooking and the expected profit when 

1 =40 and
2  =90 (Cont.) 

1
r  

2
r  

1
  

2
  Optimal booking limit Expected profit 

1521.5 756 0.7 0.7 103 202,201.59 

1521.5 756 0.7 0.9 104 214,801.59 

1521.5 756 0.9 0.7 102 219,111.37 

1521.5 756 0.9 0.9 103 231,711.37 

2434.4 472.5 0.7 0.7 104 194,299.68 

2434.4 472.5 0.7 0.9 105 202,174.68 

2434.4 472.5 0.9 0.7 103 221,355.33 

2434.4 472.5 0.9 0.9 104 229,230.33 

2434.4 756 0.7 0.7 103 187,222.42 

2434.4 756 0.7 0.9 105 199,822.42 

2434.4 756 0.9 0.7 102 214,278.07 

2434.4 756 0.9 0.9 103 226,878.07 

 

  While the result in both Table 1 and Table 2 are booking limit, the results in Table 3 show 
that the optimal booking limit for 

1 = 60 and 
2 = 110 for all 

ir  and 
i  also booking limit almost 

all the situations. There is one situation when 
1r = 2,434.4, 

2r = 472.5, 
1 = 0.9 and 

2 = 0.7 

that is the overbooking. As a result, to reach the highest expected profit, the airline should open 

booking for Class-2 customers to book as same as optimal overbooking limit. 
 

Table 2 The optimal overbooking and the expected profit when 
1  =50 and

2  =100 

1
r  

2
r  

1
  

2
  Optimal booking limit Expected profit 

1521.5 472.5 0.7 0.7 94 238,360.92 

1521.5 472.5 0.7 0.9 95 247,094.70 

1521.5 472.5 0.9 0.7 93 258,224.33 

1521.5 472.5 0.9 0.9 94 266,985.67 

1521.5 756 0.7 0.7 93 231,836.35 

1521.5 756 0.7 0.9 95 245,376.37 

1521.5 756 0.9 0.7 93 251,370.72 

1521.5 756 0.9 0.9 94 265,418.54 

2434.4 472.5 0.7 0.7 95 221,204.43 

2434.4 472.5 0.7 0.9 96 230,281.05 

2434.4 472.5 0.9 0.7 94 252,450.86 

2434.4 472.5 0.9 0.9 94 261,541.23 

2434.4 756 0.7 0.7 94 214,174.52 

2434.4 756 0.7 0.9 96 228,424.91 

2434.4 756 0.9 0.7 93 245,561.12 

2434.4 756 0.9 0.9 94 259,974.11 
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Table 3 The optimal overbooking and the expected profit when 

1  =60 and
2  =110 

1
r  

2
r  

1
  

2
  Optimal booking limit Expected profit 

1521.5 472.5 0.7 0.7 88 257,480.99 

1521.5 472.5 0.7 0.9 89 267,740.80 

1521.5 472.5 0.9 0.7 87 278,028.95 

1521.5 472.5 0.9 0.9 88 288,288.76 

1521.5 756 0.7 0.7 87 253,252.38 

1521.5 756 0.7 0.9 89 269,292.18 

1521.5 756 0.9 0.7 86 274,082.26 

1521.5 756 0.9 0.9 88 290,122.06 

2434.4 472.5 0.7 0.7 89 239,066.52 

2434.4 472.5 0.7 0.9 90 249,321.08 

2434.4 472.5 0.9 0.7 233 271,935.23 

2434.4 472.5 0.9 0.9 88 282,015.11 

2434.4 756 0.7 0.7 88 234,555.98 

2434.4 756 0.7 0.9 90 250,593.68 

2434.4 756 0.9 0.7 87 267,996.56 

2434.4 756 0.9 0.9 88 283,848.41 
 

Table 4 The optimal overbooking and the expected profit when 
1  =70 and 

2  =120 

1
r  

2
r  

1
  

2
  Optimal booking limit Expected profit 

1521.5 472.5 0.7 0.7 88 257,397.69 

1521.5 472.5 0.7 0.9 89 267,316.26 

1521.5 472.5 0.9 0.7 87 278,209.29 

1521.5 472.5 0.9 0.9 88 288,127.85 

1521.5 756 0.7 0.7 87 253,217.64 

1521.5 756 0.7 0.9 89 268,709.34 

1521.5 756 0.9 0.7 86 274,312.74 

1521.5 756 0.9 0.9 88 289,804.44 

2434.4 472.5 0.7 0.7 89 238,719.58 

2434.4 472.5 0.7 0.9 90 248,638.14 

2434.4 472.5 0.9 0.7 233 272,462.99 

2434.4 472.5 0.9 0.9 180 281,909.05 

2434.4 756 0.7 0.7 88 234,256.03 
 

2434.4 756 0.7 0.9 90 249,747.73 

2434.4 756 0.9 0.7 87 268,121.58 

2434.4 756 0.9 0.9 88 283,424.28 
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  However, Table 4 shows that the optimal booking limit for 
1 = 70 and 

2 = 120 have 

both booking limit and overbooking limit. In this case, if the airline wants to succeed the maximum 
expected profit, the airline have to adjust the optimal booking for all 

ir  and 
i  ; especially, in the 

situation that the booking limit is greater than the capacity. It means that the airline can only 

open booking for Class-2 customers. 

  The numerical study investigates that booking limit and overbooking limit provide the 
same expected profit in some situations. In this case, we recommend that the airline use a 

booking limit to sell both classes' flight tickets since the show-up probability of each class is 
uncertain in real situations. Generally, the show-up probability of Class-2 passengers is less than 

Class-1 passengers because of a cheaper flight fare, i.e., booking during promotion time. Class-

2 passengers are most likely to terminate the fare without notice. Because of this reason, the 
airline should allow both Class-1 and Class-2 passengers to book flight tickets. 

4.2 The comparison between the Two-class overbooking for both classes 
passengers to the airline’s policy when the booking demand is non-stationary 

  For performance comparison, we assume that the expected profit of the airline's policy 

has a fixed booking limit for all periods, which are 9, 17, 41, 81, 122, and 171, which are 5%, 
10%, 25%, 50%, 75%, and 105% of capacity, respectively. Otherwise, we investigate that the 

expected profit of the Two-Class overbooking model is greater than or equal to the airline's 
booking policy for all situations. The airline will get less advantage when the airline booking limit 

(ABL) is 9, followed by 17, 41, 81, 122, and 171, respectively. 
Table 5 Loss Profit per Flight when 

1 = 40 and 
2 = 90 

1
r  

2
r  

1
  

2
  ABL  

Loss Profit  

per Flight 

Percentage 
of Loss Profit 

per Flight 

2434.4 472.5 0.9 0.7 9 34,810.07 18.66 
    17 31,030.07 16.30 

    41 19,690.07 9.76 
    81 1,903.07 0.87 

    122 0.00 0.00 

    171 0.00 0.00 

1521.5 472.5 0.9 0.9 9 34,810.07 17.90 

    17 31,030.07 15.66 
    41 19,690.07 9.40 

    81 1,903.07 0.84 

    122 0.00 0.00 
    171 0.00 0.00 

2434.4 756 0.9 0.7 9 13,842.88 6.91 

    17 12,330.88 6.11 
    41 7,794.88 3.78 

    81 680.08 0.32 
    122 0.00 0.00 

    171 0.00 0.00 

2434.4 756 0.9 0.9 9 13,842.88 6.50 
    17 12,330.88 5.75 

    41 7,794.88 3.56 
    81 680.08 0.30 

    122 0.00 0.00 

    171 0.00 0.00 
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  Table 5 shows the loss profit per flight when 

1 = 40 and 
2 = 90 for all 

ir  and 
i . It can 

be seen that the airline earns less advantage when the airline booking limit is 9, followed by 17, 
41, 81, 122, and 171, respectively. Likewise, when

1  =  50 and
2  =100 for all 

ir , 
i , and the 

airline booking limit, the airline losses its profit as shown in A.1 in Appendix (see others situation 
result in Appendix) 

  It concludes that if the airline open the observation for Class-2 customers in small 

amounts, the airline will get less profit. However, when the Two-Class overbooking model is 
applied, the model calculates the optimal booking limit suited for the situations. Consider the 

difference between the expected profit from the Two-Class overbooking model and the airline's 
booking policy; it can be seen that the differences in the profit are approximately 0-21%. 

  Practically, most airlines update their booking limit every month before departure for at 
least six months and then update every day in the last week before departure (Phillips, 2005). 

The following section will find the optimal number of update booking limits when real data 

demand is non – stationary. 
 

5. Real Data Study  
  Passengers’ information from two flights was received from the airline. The flights are 

from Bangkok to Phuket on every Sunday in 2014. Flight A is scheduled to depart for Sunday 

morning and Flight B is set for Sunday evening. The data includes both the number of 
reservations and the number of passengers who showed up at the departure time. Table 6 shows 

that the plane has 162 seats and that the airline's revenue is divided into eleven classes. 
 

Table 6 Percentage of passengers from 2014 reclassified by revenue. 

Class Revenue Percent a 

Y 4,675 10.64 

M 4,350 4.97 

K 3,850 13.82 
N 3,500 3.72 

T 3,050 20.47 
L 2,800 5.27 

H 2,550 8.02 

Q 2,100 4.47 
V 1,900 9.23 

G 1,690 12.58 
B 945 6.71 

Note: a. The Percentage of passengers in Table 6 was received from the airline company in Thailand where the name 
has not been disclosed to protect its and interviewees’ privacy. 

 

  In this setting, the eleven classes were reclassified into two classes in order to use the 
Two-Class overbooking model. So, the revenue for Class-1 and Class-2 after rearrange is 

1 3,043p =  and 2 945p = . 

  We established four different cases of updated booking limit points. Firstly, the booking 
limit is updated every day in the final week before departure; in this case, there is seven points 

update booking limit. Similarly, the booking limit is updated every month for the next six months 

and every day in the final week before departure. It can be assumed that there are thirteen 
points for updating the booking limit. The booking limit is then updated every three months 

before departure more than six months in advance, and the updated booking limit is considered 
the second case, giving this case fourteen updating points. Finally, we consider that the booking  
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limit is updated every month and every day in the last week before departure, which can be 
counted as sixteen points to update the booking limit. Let 

ib  be the number of class-i booking at 

the departure time for 1, 2i =  and ( )i iW b  be the number of class-i show-up customers. The profit 

can be written as  
 

  ( )
2

2 2

1

ˆ ( ( )) ( ) .i i i i i

i

p b r b W b h W b 
+

=

= − − − −  
(6) 

  Assume that t  is the number of days before departure and *

tx  be the optimal booking 

limit at the updated booking limit points t  before departure. The updated booking limit points 

are shown in Table 7. 

 
Table 7 The Update Booking Limit Points for the Four Cases 

Case t 

7 points 6, 5, 4, 3, 2, 1, 0 

13 points 180, 150, 120, 90, 60, 30, 6, 5, 4, 3, 2, 1, 0 
14 points 270, 180, 150, 120, 90, 60, 30, 6, 5, 4, 3, 2, 1, 0 

16 points 330, 300, 270, 180, 150, 120, 90, 60, 30, 6, 5, 4, 3, 2, 1, 0 

 

  From the previous section, the Two-Classes overbooking can be used with the non – 

stationary demand using simulation technique. In this section, the real data is used to find the 
optimal number of update booking limits follow this steps: 

1) Using real data, forecast demand ˆ( )  for the next flight using an exponential smoothing 

technique with a smoothing constant determined by minimizing the sum of squared 
errors. 

2) Use the proportion of Class-1 and Class-2 passengers in (5) to divide the forecasted 

demand into two classes.  The average demand of Class-1 and Class-2 are 
1,360̂  and 

2,360
ˆ .  

3) Generate the non – stationary demand for both Class-1 and Class-2 over 360 days, which 

is assumed to be a Poisson distribution with means 
1,360̂  and 

2,360̂ , respectively. 

4) Compute the optimal initial booking limit *

360x  using Theorem 1. 

5) Compute the number of every day Class-1 and Class-2 bookings using *

360x . 

6) At update booking limit point t, recomputed the optimal booking limit *

tx  and forecast 

the two classes’ demand 
1, 2,
ˆ ˆ( , )t t  over the remaining days before departure. 

7) Compute a new optimal booking limit *

tx using the forecasted demand 

8) Generate the number of show-up customers following binomial distribution with a mean 
equal to the number of class-i bookings and the show-up probability is i ,          i = 1,2, 

then compute the profit using (6). 

9) Repeat 1,000 iterations for all steps and average the profit. 
 

  In this experiment, the best solution of the optimal update booking limit point is 16, 

which gives the profit approximately 32% – 42% greater than 14 update booking limit points. 
Moreover, 7 and 13 points provide the same profit for all the situations. The optimal update 

booking limit of 13 point gives the highest profit in stationary demand situations, while the update  
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booking limit of 16 point is more suitable in non-stationary demand situations. The result is shown 

in table 8. 
 

Table 8 Profit of the Number of Update Booking Limit Points in different cases 

1
  

2
  7 points 13 points 14 points 16 points 

0.7 0.7 234,015.76 234,015.76 236,970.50 323,450.99 

0.7 0.8 238,740.76 238,740.76 241,448.38 325,017.75 

0.7 0.9 241,859.89 241,859.89 244,772.03 326,587.10 

0.7 0.95 244,222.39 244,222.39 246,992.78 327,351.43 

0.8 0.7 251,067.90 251,067.90 254,572.05 354,704.28 

0.8 0.8 255,822.95 255,822.95 259,015.01 356,275.45 

0.8 0.9 260,547.95 260,547.95 263,492.42 357,835.87 

0.8 0.95 262,437.95 262,437.95 265,458.02 358,598.11 

0.9 0.7 268,274.24 268,274.24 272,197.11 385,984.22 

0.9 0.8 272,526.74 272,526.74 276,399.52 387,536.86 

0.9 0.9 277,251.74 277,251.74 280,876.93 389,096.20 

0.9 0.95 277,874.48 277,874.48 281,841.54 389,847.83 

0.95 0.7 279,104.43 279,104.43 282,587.31 401,629.10 

0.95 0.8 281,928.39 281,928.39 285,674.59 403,193.53 

0.95 0.9 286,653.39 286,653.39 290,152.00 404,747.25 

0.95 0.95 288,543.39 288,543.39 292,117.60 405,500.98 

 

6. Conclusion   

Simulating the non-stationary booking demand data to calculate the optimal booking limit 
using the Two-Class overbooking model finds that the optimal booking calculated mostly is the 

booking limit. It means that seats are open to reserve for Class-2 customers as booking limit, 
while the rest of the seats were reserved for Class-1 customers. Otherwise, the booking limit is 

suited to the overbooking limit in some situations, that is, the open to Class-2 customers 

overbooking (in which case, there will be no seats left for Class-1 customers). 
 For comparison, the expected profit from the optimal overbooking limit is greater than 

or equal to the airline's booking policy in all study situations. The Two-Class overbooking model 
yielded up to 21% more the expected profit margins than airline booking policies. Using real 

data, the Two-Class overbooking model is then taken to gauge the optimal number of update 
booking limits when the demand is non – stationary. It finds that the update booking limit 16 

point gives the maximum profit. 
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Appendix 
 
Table A.1 Loss Profit per Flight when 1 = 50 and 2 = 100 

1
r  

2
r  

1
  

2
  ABL 

Loss Profit 

per Flight 

Percentage 

of Loss Profit 
per Flight 

2434.4 472.5 0.9 0.7 9 38,647.25 18.08 
    17 34,867.25 16.02 

    41 23,527.25 10.28 

    81 4,681.06 1.89 
    122 361.33 0.14 

    171 361.33 0.14 

1521.5 472.5 0.9 0.9 9 38,647.25 17.34 
    17 34,867.25 15.38 

    41 23,527.25 9.88 
    81 4,681.06 1.82 

    122 361.33 0.14 

    171 361.33 0.14 

2434.4 756 0.9 0.7 9 15,444.45 6.71 

    17 13,932.45 6.01 
    41 9,396.45 3.98 

    81 1,857.97 0.76 

    122 1,590.72 0.65 
    171 1,590.72 0.65 
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Table A.1 Loss Profit per Flight when 

1 = 50 and 
2 = 100 (Cont.) 

1
r  

2
r  

1
  

2
  ABL 

Loss Profit 
per Flight 

Percentage 

of Loss Profit 
per Flight 

2434.4 756 0.9 0.9 9 15,312.84 6.26 

       
    17 13,800.84 5.61 

    41 9,264.83 3.70 

    81 1,726.36 0.67 
    122 1,459.11 0.56 

    171 1,459.11 0.56 

 
 
Table A.2 Loss Profit per Flight when 

1 = 60 and
2 = 110 

1
r  

2
r  

1
  

2
  ABL 

Loss Profit 

per Flight 

Percentage 
of Loss Profit 

per Flight 

2434.4 472.5 0.9 0.7 9 37,029.68 15.76 
    17 33,249.68 13.93 

    41 21,909.68 8.76 

    81 3,009.68 1.12 
    122 0.00 0.00 

    171 0.00 0.00 

1521.5 472.5 0.9 0.9 9 37,319.63 15.25 

    17 33,539.63 13.50 

    41 22,199.63 8.54 
    81 3,299.63 1.18 

    122 289.94 0.10 
    171 289.94 0.10 

2434.4 756 0.9 0.7 9 14,739.90 5.82 

    17 13,227.90 5.19 
    41 8,691.90 3.35 

    81 1,131.90 0.42 

    122 4,991.58 1.90 
    171 4,991.58 1.90 

2434.4 756 0.9 0.9 9 14,927.85 5.55 
    17 13,415.85 4.96 

    41 8,879.85 3.23 

    81 1,319.85 0.47 
    122 5,179.53 1.86 

    171 5,179.53 1.86 
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Table A.3 Loss Profit per Flight when 

1 = 70 and 
2 = 120 

1
r  

2
r  

1
  

2
  ABL 

Loss Profit 
per Flight 

Percentage 

of Loss Profit 
per Flight 

2434.4 472.5 0.9 0.7 9 37,488.86 15.95 

    17 33,708.86 14.12 
    41 22,368.86 8.94 

    81 3,468.86 1.29 

    122 0.00 0.00 
    171 0.00 0.00 

1521.5 472.5 0.9 0.9 9 37,488.86 15.34 

    17 33,708.86 13.58 
    41 22,368.86 8.62 

    81 3,468.86 1.25 
    122 0.00 0.00 

    171 0.00 0.00 

2434.4 756 0.9 0.7 9 14,742.00 5.82 
    17 13,230.00 5.19 

    41 8,694.00 3.35 
    81 1,134.00 0.42 

    122 4,440.79 1.68 

    171 4,440.79 1.68 

2434.4 756 0.9 0.9 9 14,931.00 5.56 

    17 13,419.00 4.97 
    41 8,883.00 3.24 

    81 1,323.00 0.47 

    122 4,629.79 1.66 
    171 4,629.79 1.66 

 

 
 

 
 

 


