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Abstract 

This research aims to measure a method for estimating the average run length (ARL) of 

an exponentially weighted moving average control chart using numerical integration when the 
data is a moving average model with exogenous variables. We compare the average run 

lengths achieved using three distinct methodologies. The midpoint, trapezoid, and Gaussian 

rules are all used. Additionally, we compare the CPU time used by the ARL assessment.                 
The simulations show that the ARL values obtained from using the midpoint and Gaussian rules 

are similar. The result obtained from using the trapezoid approach, on the other hand, is less 
different at roughly 1%. Additionally, the midpoint and trapezoid approaches were the fastest 

when CPU time was considered, requiring between 4-6 seconds. On the other hand, Gaussian's 

rule requires around 37-43 seconds. 
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Introduction 

Quality control is an essential tool for reducing the many deficiencies throughout the 

manufacturing process. Statistical Process Control (SPC) is used to design and enhance 
processes. Control charts are a robust process of monitoring or regulating manufacturing 

processes in real-time. In 1924, Walter A. Shewhart invented the control chart to help 
manufacturers minimize waste and enhance quality. Control charts have since been extensively 

utilized for identifying and monitoring effects on the quality of processes in various applications, 
including industrial production, public health, computer networking and telecommunications, 

finance and economics, environmental research, and others. Nowadays, Shewhart control 

charts, cumulative sum charts (CUSUM) and exponentially weighted moving average control 
charts (EWMA) are popularly used in industrial processes. Robert (1959) developed the EWMA 

control chart to detect a slight change in the mean, suitable for normal distribution. It is now 
well accepted that a strong control chart is essential for identifying small and moderate 

changes in the process. Control chart performance is often measured by the average run length 

(ARL). In most cases, the ARL0 indicates that the process is under control, whereas the ARL1 
suggests that the process is out of control and should be small. The ARL of EWMA control  
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chart may be estimated using the Monte Carlo Simulations (MC) technique, which is the 

conventional way to test the validity and compare it to the other methods. However, processing 
takes a long time, the Martingale (Sukparangsri & Navikov, 2008), Markov chain (Brook and 

Evan, 1972; Lucus & Saccicci, 1990) and integral equation (See Srivastava & Wu, 1997; 
Areepong, 2009; Mittitelu et al.,2010; Petcharat et al., 2013; Paichit, 2017; Preerajit et al. 

,2018). 

The serially correlated data may occur in the real world of the data set when the data 
are AR(1) and ARMA(1,1) processes. Lu & Reynolds (1999) employed the integral equation 

technique to derive the ARL. Some literlature try to evaluate ARL when data set are time series 
model. Petcharat et al. (2013) proposed the analytical expression for the ARL of the EWMA 

control chart for the moving average of order q (MA(q))process. For the seasonal AR(P)L 

process. Later, Petcharat (2016) derived the explicit formula of ARL for the EWMA chart and 
compared it to the CUSUM control chart and found that the EWMA chart was more sensitive to 

detecting small shifts. Paichit (2017) proved the explicit formula of ARL for the EWMA control 
chart base on autoregressive with an explanatory variable model. Sunthornwa et al. (2018) 

proved exact solution and approximate the numerical of ARL for EWMA control charts using the 
seasonal ARFIMA with exponential white noise. Moreover, Suriyakart (2020) studied the 

sensitivity of the EWMA control chart for detecting the mean change in processes when 

processes are AR(1), ARMA(1,1) and IMA(1) with exponential white noise and found that the 
EWMA control chart is good performance for detecting the small change of the process mean.  

Sunthornwat & Areepong (2020) derived analytical ARL and approximately the numerical ARL 
for the CUSUM control chart for seasonal and non-seasonal moving averages processes. 

Recently, Petcharat (2021) presented the exact formula of ARL for the MAX(1,r) process with 

exponential white noise, with its existence and uniqueness being proved by Banach’s fixed-
point theory. 

According to this literature review, the ARL for measuring the efficiency of the EWMA 
control chart is very important for comparing control chart performance. In this research, we 

extend Petcharat (2021) to evaluate the ARL of the EWMA control chart by using numerical 

integration methods for data is the model moving average model with exogenous variables 
(MAX(q,r)). 

 
Methods 
Exponentially weighted moving average (EWMA) control chart 

Robert (1959) initially suggested the EWMA control chart. The recursive equation below 
would be used to express the EWMA control chart. 

 

  tY  = 1(1 )  ,   t 1,2,...t tY Z −− + = , (1) 

where   is exponential smoothing parameter, 0 1  . tZ  is sequence of process 

observations. The control limit of control charts are upper control limit (UCL) and lower control 

limit (LCL) as follows,  

  LCL/UCL =
2

L


 



−

 , (2) 

where   is average or target value, L  is the width of the control limit and  is standard 

deviation of the process.  
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 In this research, we present EWMA control chart for the process observations is the 

sequence of a moving average process with explanatory variables (MAX(q,r)) with exponential 

white noise defined as  

  tZ = 1 1 2 2
1

... ,
r

t t t q t q i it
i

X        − − −
=

+ − − − − +
 

(3) 

where t is exponential white noise : ( )t Exp  , i  is moving average coefficient, i=1,2,..q, 

1 1i−   , itX  is exogenous variable and i is a coefficient of Xit. 

1

r

t i it

i

X 
=

  

The corresponding stopping time for (1) define as  

    0inf 0;     , ,   .   tt Y b H u b y =   =   (4) 

where b  denote control limit. 

Let (.)Ε  denote the expectation under probability density function ( , )f y  that the 

change-point occurs at point , where .    Thus by definition, the ARL for MAX(q,r) process 

with an initial value 0H u=  is as follow 

  ( ) ( ) .ARL bH u = =  Ε   (5) 

 

Numerical integral equation (NIE) of average run length for MAX(q,r) on EWMA 
control chart  

  Let ( )H u  be the average run length for the EWMA control chart as defined in 

eqauation (5). Assume that 0
C u=  be the initial process under in-control. The integral equation 

( )H u  can be derived by Fredholm integral equation of the second kind denotes as follows: 

 

  ( ) ( )
( )

( )1 1 2 2

10

11
1 ...

b r

t t t q t q i it

i

y u
y f XH u h d y


        

 
− − −

=

− −
= + + + − − − − +

 
  
 

 , 

Such that  

  ( ) ( )

( )
...

0

1 1 2 2
11

1
1 (y)

b

r

qt t q i itt t
i

X
uy

u yH h e e d

        


  


− −

 
 

−− − 
= 

+ − − +
−

+
= +



 , (6) 

 

The integral equation ( )H u  may be approximated using numerical quadrature procedures. 

The Gaussian rule, the midpoint rule, and the trapezoidal rule are all employed in this research. 
 

I. Gaussian Rule  

          The quadrature rule is used to approximate an integral, and the Gauss–Legendre 

quadrature rule is used to approximate the solution. Suppose the { , 1,..., }j j m =  is a point on  
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the interval [0,b] and set { , 1,..., }jk j m=  as = / 0 ; 1, 2,...,jk b m j m = . The quadrature rule 

evaluates an integral's approximation as follows:  

 

  
0

( ) ( ) ( )
1

b

j j

m
K y f y dy f a

j
 

=
, 

 

where 
1

 =  ;   1, 2, ...,
2

j j j m
m

b
 − =

 
 
 

. 

It can be written m mR  be matrix form as 

 

 ( )
1

(1 )1
... 1, 2, ..., .

1 11

m r
mk

j q
i

kR f X ,  j,l mt t q i ittjl j

  
      

  =

− −
= + + − − − + = −−=

 
    

 
 

 

Let ( )
G

H u  be the numerical approximation for an integral equation solution in equation (6) 

which can be found as the linear equations as follows: 

 
1

1
( ) ( ...

1 1
( ) 1 )

1
r

i it

i

G

m

j
j

k H f
k t t q t t

H u X       


=
=
 + − − −

− −
= +  , (7) 

where 
1

 =  ;   1, 2, ...,
2

j j j m
m

b
 − =

 
 
 

. 

 

II. Midpoint Rule 

  By using the midpoint rule, Let m be subinterval on [0,b] and let  

( )1
( ) ... )

1 1 1
q

u rkf A f Xt t qj i itt i

 
      



− −
= + + − − − + −− =

  
     

. 

The approximation for the integral equation solution in equation (6) is given by 

 
1

1
( ) 1 ( ) ( )

m

M j j j
j

LH u k f A
 =

= +  ,  (8) 

 

where 
1

 = 
2

j j
m

b
 −

 
 
 

and  =  ;  = 1, 2, ...,jk j m
m

b
. 

 

III. Trapezoidal rule 

  By using the trapezoidal rule, suppose m be subinterval on [0,b]. let 

( )1
( ) ... )

1 1 1
q

u rkf A f Xt t qj i itt i

 
      



− −
= + + − − − + −− =

  
     

. The approximation 

for the integral equation solution in equation (6) is given by 
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1

1

1
( ) 1 ( ) ( )

m

T j j j

j

H u k L f A


+

=

= +  , (9) 

where  =  j jjk and  =  ;  = 1, 2, ..., 1jk j m
m

b
− , in other case,  =

2
jk

b

m
. 

 

Results and discussion 

 In this part, we compare ARL values for EWMA control chart on MAX(q,r) process with 

exponential white noise obtain from NIE methods which are Gaussian Rule, midpoint rule and 

Trapezoidal rule according to equation (7) to (9) with m=800 subintervals. We set ( )GH u  is ARL 

from NIE method using the Gaussian rule from explicit formula, ( )MH u is ARL  from NIE 

method using the midpoint rule and ( )TH u is ARL  from NIE method using the trapezoidal rule. 

Additionally, we compare the computing times of three approaches. The computational time for 

the three methods is estimated in seconds by the central processing unit (CPU) time (Windows 

8 OEM, Intel(R) core(TM)i5-8265U CPU@1.60GHz 1.80GHz RAM 8.00 GB (7.89 GB usable)). 

 In Table 1, the parameters value b for EWMA control chart was selected by setting  = 

(0.05, 0.10, 0.20), 
0

ARL = 370 and 0 = 1 in the case of MAX(1,1) with parameter  = 1.0 

,
1 =(0.15, 0.25, 0.30) and  

2 =(0.10, 0.25, 0.50), respectively. 

 
Table 1 Comparison of ARL0 between using numerical integration for MAX(2,2)  process with 

parameter 0 = 1 for ARL0 = 370 

  1


 2
  b 

( )MH u  

(Time:  

seconds) 

( )GH u  

(Time: 

seconds) 

( )TH u  

(Time: 

seconds) 

%Diff  

 

0.05 

 

0.15 

0.10 0.019481940 
370.577 
(4.765) 

370.577 
(39.703) 

370.286 
(5.344) 

0.0785 

0.25 0.022672201 
370.514 
(4.781) 

370.514 
(38.516) 

370.349 
(5.344) 

0.0445 

0.50 0.029210100 
370.435 
(4.875) 

370.435 
(41.36) 

370.208 
(5.218) 

0.0613 

0.10 0.25 

0.10 0.043581900 
370.382 

(5.25) 

370.382 

(41.047) 

370.156 

(5.328) 
0.0610 

0.25 0.050820500 
370.627 
(4.875) 

370.627 
(41.75) 

370.402 
(5.219) 

0.0607 

0.50 0.065747070 
370.268 
(4.953) 

370.268 
(41.203) 

370.045 
(5.266) 

0.0602 

0.20 0.3 

0.10 0.093940200 
370.287 
(4.875) 

370.287 
(41.734) 

370.067 
(5.500) 

0.0594 

0.25 0.110015960 
370.527 
(4.813) 

370.527 
(41.265) 

370.309 
(5.297) 

0.0588 

0.50 0.143624000 
370.392 
(4.796) 

370.392 
(41.188) 

370.177 
(5.430) 

0.0580 
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As shown in Table 1,  from NIE methods using Gaussian and midpoint rules are similar values, 

but using trapezoidal rules yield slightly different results on m=800 subintervals. If we take into 

account the absolute percentage error computed by
( ) ( )

% 100
( )

M T

M

H u H u
Diff

H u

−
=  . It can  

note that 0ARL  values using the trapezoid rule %Diff are less than 0.08% compared to other 

methods. However, the CPU time using midpoint and trapezoidal rules are less than the CPU 
time using the Gaussian rule.  

 The ARL  values indicate the performance of EWMA control chart for detection change in 
the process mean using Gaussian, midpoint, and trapezoidal rules for m=800 subintervals 

shown in Table 2 to Table 4. We set the parameter 
0

 =1 when process is in-control and the 

parameter 1 0 (1 )  = +  when process is out of control where shift size ( ) =0.005, 0.02, 0.04, 

0.06, 0.08, 0.1, 0.5, and 1.0.  In Table 2, the initial 
0

ARL = 370 for MAX(2,1) with parameters
1  = 

0.35, 
2  = 0.6 with= 

0
ARL , the initial In Table 3 =0.01761086. b= 0.05 and  = 2.0,   370 for 

MAX(2,2) with parameters 
1  = 0.15, 

2  = 0.25, with , = 0.7
2

 5, = 0.
1

  =0.05 and b =  

0.022672201 . In Table 4, the initial 
0

ARL = 370 for MAX(3,2) with parameters 
1  = 0.15, 

2  = 

0.25, 
3  = 0.45 with=0.03579842.b=0.05 and  = 0.7, 

2
 = 0.5, 

1
   

 
Table 2 ARL values for MAX(2,2) with parameters 

1  = 0.15, 
2  = 0.25, with= 0.7, 

2
 = 0.5, 

1
  

= 
0

ARL for =0.022672201 band =0.05 and  370 

shift 

( )  
( )MH u (Time: seconds) ( )GH u (Time: seconds) ( )TH u (Time: seconds) 

0 370.315 (4.172) 370.315 (37.062) 370.086 (4.703) 

0.005 68.831(4.219) 68.831 (38.047) 68.789 (4.563) 

0.02 20.6369 (4.125) 20.6369 (38.578) 20.6248 (4.781) 

0.04 11.0660 (4.266) 11.0660 (40.781) 11.0598 (4.906) 

0.06 7.75846 (4.328) 7.75846 (41.531) 7.75435 (5.031) 

0.08 6.08201 (4.187) 6.08201 (41.406) 6.07893 (5.156) 

0.10 5.06887 (4.187) 5.06887 (41.719) 5.06641 (5.031) 

0.5 1.7953 (4.250) 1.7953 (37.531) 1.79483 (5.047) 

1.0 1.38795 (4.157) 1.38795 (42.422) 1.38772 (5.125) 
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Table 3 ARL values for max (2,1) using numerical integral equation method given 

1  = 0.35,  

2  = 0.6 with= 
0

ARL for =0.01761086 b = 0.05, = 2.0,   370 

shift 

( )  
( )MH u (Time: seconds) ( )GH u (Time: seconds) ( )TH u (Time: seconds) 

0 370.5144 (4.781) 370.5144 (37.422) 370.286 (4.89) 

0.005 73.8584 (4.735) 73.8584 (37.984) 73.8135 (4.906) 

0.02 22.3826 (4.657) 22.3826 (38.578) 22.3695 (5.219) 

0.04 12.0145 (4.735) 12.0145  (39.515) 12.0078 (4.985) 

0.06 8.4196 (4.984) 8.4196 (39.172) 8.4151 (4.875) 

0.08 6.59482 (4.781) 6.59482 (38.9999) 6.59145 (4.969) 

0.10 5.49099 (4.625) 5.49099  (40.235) 5.48829 (5.234) 

0.5 1.91019 (4.718) 1.91019 (39.391) 1.909669 (5.469) 

1.0 1.45598 (4.828) 1.45598 (40.594) 1.45572 (5.343) 

 
Table 4 ARL values for max (2,2) using numerical integral equation method given 

1  = 0.15, 

 
2  = 0.25, 

3  = 0.45 with= 
0

ARL for =0.03579842. b=0.05 and  = 0.7, 
2

 0.5, = 
1

  370 

Shift 

( )  
( )MH u (Time: seconds) ( )GH u (Time: seconds) ( )TH u (Time: seconds) 

0 370.584 (4.781) 370.584 (37.36) 370.358 (5.094) 

0.005 85.2404 (4.735) 85.2404 (37.984) 85.1888 (5.172) 

0.02 26.4916 (4.657) 26.4916 (38.922) 26.4761 (5.016) 

0.04 14.2629 (4.735) 14.2629  (38.922) 14.2549 (5.312) 

0.06 9.98991 (4.984) 9.98991 (39.860) 9.9845 (5.719) 

0.08 7.8138 (4.781) 7.81380 (37.265) 7.80973 (5.515) 

0.10 6.49476 (4.625) 6.49476  (37.157) 6.49149 (5.407) 

0.5 2.18525 (4.718) 2.18525 (37.578) 2.18458 (5.437) 

1.0 1.62088 (4.828) 1.62088 (37.375) 1.62053 (5.203) 
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Figure 1 The CPU times for evaluating ARL values of EWMA control chart : (a) MAX(2,1)  

(b) MAX(2,2) (c) MAX(3,2) 

 

  Table 2 to Table 4 show that 
0

ARL  from the NIE method using Gaussian, midpoint and 

trapezoid rules on m=800 subintervals were equally effective in detecting process changes. In 

terms of CPU time, we discovered that the midpoint rule takes the least time to calculate, followed 
by the trapezoid rule and the Gaussian rule. Refer to Figures 1. 

 

Conclusion 
This paper proposes the numerical integration method using Gaussian, midpoint and 

trapezoid rules of ARL for moving average process with explanatory variables (MAX(q,r)) on the 
EWMA control chart. The results found that ARL values from the three methods are close 

together. The computational times for using midpoint and trapezoid rules take less than 6 
seconds. Besides, using the Gaussian rule takes more CPU times, around 37 - 43 seconds.  As a 

result, employing midpoint and trapezoid rules may significantly reduce computing time 

compared to the Gaussian rule. 
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