Diversity and evenness of indigenous vegetables in Nakhon Si Thammarat province, Thailand

Na Nakorn, W.1*, Chaymeang, C.2 and Chaison, C.2

¹Landscape Technology Department, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat Campus, Thailand 80110; ²Plant Science Department, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat Campus, Thailand 80110.

Na Nakorn, W., Chaymeang, C. and Chaison, C. (2018). Diversity and evenness of indigenous vegetables in Nakhon Si Thammarat province, Thailand. International Journal of Agricultural Technology 14(7): 1483-1494.

Abstract Diversity and evenness of indigenous vegetables in Nakhon Si Thammarat Province, Thailand were investigated. The field study of indigenous vegetables was conducted from January, 2018 to August, 2018. The Line Transect method in the scope of area 50 x 5000 meters for each district was surveyed. The result showed that the total kind of indigenous vegetables in 10 stations were found into 4 groups. The most abundance was the group of ground cover (62.834 %), the second group was shrub (15.843 %), the third group was climbing (12.304 %) the fourth was trees (4.516 % and the last group was aquatic plants (4.501 %). The result showed that the taxonomy of indigenous vegetables was fond 139 species and 50 families. The result showed that the most fami of indigenous vegetables, and ground cover were Apiaceae, Asteraceae and Zingiberaceae (16.55, 6.302 and 6.062 %), respectively. The group of shrub are Musaceae, Leguminosae and Poaceae (3.075, 1.180 and 1.095 %), respectively. The group of climbing are Cucurbitaceae, Piperaceae and Rubiaceae (5.002, 1.086 and 1.032 %), respectively. The group of trees was Leguminosae, Arecaceae and Meliaceae (1.144, 0.481 and 0.288 %), respectively. The group of tree are Leguminosae, Arecaceae and Meliaceae (1.144, 0.481 and 0.288 %), respectively. The group of aquatic plants was Convolvulaceae, Araceae and Fabaceae (1.581, 1.393 and 0.732 %), respectively.

Keyword: diversity, evenness, indigenous vegetables, shrub, ground cover, climbing

Introduction

Thailand is the country located at the tropical climate area, a great biodiversity and long history of culture. Ancient Thai people might select edible plants from nature to fulfill their life. The indigenous vegetables are currently used as vegetables, spices, herbs, condiments, and sometimes as medicine (Japan International Research Center for Agricultural Science, 2018). For example, the indigenous leafy vegetables enterprise holds the greatest potentials for the provision of additional sources of food, nutritional value, and income particularly for the rural resource-constraint women farmers in Nigeria. In many parts of Africa, indigenous vegetables are

^{*} Corresponding Author: Na Nakorn, W.; Email: wattana.nn@hotmail.com

considered to be "women's crops" because they are mostly grown or gathered by women for both domestic consumption and for sale in markets (Price and Ogle, 2008). Local vegetables are used not only to provide nutrition and flavor food, but also to maintain health and promote wellness. For example, the chemopreventive effect of herbal diets on cancer, cardiovascular diseases. Nowadays, only a limited information on local edible plants Thailand have been published based on diversity and evenness. One of the difficulties for those who study edible Thai plants is the confusion in plant identification and classification. A plant name in a regional dialect corresponds to a different plant in other dialects. And, the same plant has different local names by region. Sometimes local people are confused and put the same name to plural plant species (Japan International Research Center for Agricultural Science, 2018). Therefore, it is necessary to study, record, sort out and classify local edible plants in some location of Thailand base on diversity and certain taxonomic systems as soon as possible.

The objectives of the study to evaluate of the taxonomy, diversity and evenness of indigenous vegetables in Nakhon Si Thammarat province, Thailand

Materials and methods

A study area of the diversity and evenness of indigenous vegetables in Nakhon Si Thammarat's province divided into 10 stations: 1= Thong Song District, 2 = Si Chon District, 3=Pra Prom District, 4= Pi Poon District, 5= Chain Yai District, 6= Chang Klang District,7= Hua Sai District, 8= Lanska District 9= Tumbon Nam tok, Thong Song District, 10= Bang Khan District. At each station were used the area for field study.

A field study of the diversity and evenness of indigenous vegetables was used Line Transect method in the scope of 50x5000 meters per station.

Data were analyzed the diversity and evenness of indigenous vegetables using the formula $H = -\sum^s (pi) (log_2pi)$ and $E = H / H_{max}$ for evaluating the diversity and evenness of indigenous vegetables.

Results

The result showed that the kinds of indigenous vegetables from 10 stations covered 4,236,978 trees. The most abundance was the group of ground cover (62.834 %) as seen in Table 1. The second is the group of shrub (15.843 %) as seen in Table 2. The third is the group of climbing (12.304 %) as seen in Table 3. The least kind of indigenous vegetables were trees and aquatic plants (4.516 and 4.501%) as stated in Table 4-5, respectively. The kinds of indigenous vegetables were found 139 species and 50 families, the kind of ground cover was founded 33 species and 11

families, the kind of shrub was founded 35 species and 20 families, the kind of climbing was founded 19 species and 10 families, the kind of tree was found 46 species and 20 families and the kind of aquatic plant was found 6 species and 5 families.

Table 1. Kind of the indigenous vegetables (ground cover group) in Nakhon Si Thammarat province, Thailand

Scientific Name	me Family		N	%
Oenanthe javanica (Blume) DC.	Apiaceae	/	359,790	8.492
Centella asiatica L. Urban	Apiaceae	/	341,425	8.058
Emilia sonchifolia L.	Asteraceae	/	267,000	6.302
Curcuma longa L.	Zingiberaceae	/	256,856	6.062
Diplazium esculentum (Retz.) Sw.	Athyriaceae	/	236,000	5.570
Cymbopogon citratus Stepf	Poaceae	/	170,000	4.012
Stenochlaena palustris (Burm.f.) Bedd.	PteridaceaE	/	142,000	3.351
Solanum melongena L. Zingiber montanum (J.Koenig) Link ex	Solanaceae	/	128,055	3.022
A.Dietr.	Zingiberaceae	/	96,018	2.266
Kaempferia rotunda L.	Zingiberaceae	/	95,000	2.242
Piper sarmentosum Roxb.	Piperaceae	/	84,226	1.988
Capsicum frutescens Linn.	Solanaceae	/	66,000	1.558
Cleome viscosa L.	Cleomaceae	/	52,000	1.227
Ocimum tenuiflorum	Lamiaceae	/	51,882	1.225
Zingiber zerumbet L.	Zingiberaceae	/	48,500	1.145
Ocimum sanctum	Lamiaceae	/	38,913	0.918
Bidens bipinnata L.	Asteraceae	/	38,863	0.917
Ocimum gratissimum L.	Lamiaceae	/	30,245	0.714
Eryngium foetidum Linn.	Apiaceae	/	27,800	0.656
Tagetes erecta L.	Asteraceae	/	24,124	0.569
Colocasia gigante Hook. F.	Araceae	/	18,000	0.425
Ocimum basilicum L. Colocasia esculenta (L.) Schott	Lamiaceae Araceae	/	14,016 12,372	0.331 0.292
Amorphophallus konjac K.Koch	Araceae	/	11,407	0.269
Etlingera coccinea (Blume) Boesenbergia rotunda L.	Zingiberaceae Zingiberaceae	/	11,000 10,061	0.260 0.237
Leea indica (Burm.f.) Merr.	Vitaceae	/	10,000	0.236
Curcuma zedoaria Berg. Roscoe	Zingiberaceae	/	6,745	0.159
Ocimum gratissimum L.	Lamiaceae	/	4,300	0.101
Kaempferia parviflora Wallich.	Zingiberaceae	/	3,117	0.074
Typhonium trilobatum L.	Araceae	/	2,557	0.060
Homalomena rostrata Griff. Peacock ginger Resurrection lily	Araceae Zingiberaceae	/	2,000 2,000	0.047 0.047
total of ground of Total of indigenous	2662,272 4,236,978	62.834 100		

Table 2. Kind of the indigenous vegetables (shrub group) in Nakhon Si Thammarat province, Thailand

Scientific Name	Family	Shrub	N	%	
Musa acuminata Colla.	Musaceae	/	157,000	3.705	
Acacia pennata (L.) Will.	Leguminosae	/	50,000	1.180	
Bambusa bambos (L.) Voss	Poaceae	/	46,400	1.095	
Dendrocalamus strictus (Roxb.) Nees	Poaceae	/	41,720	0.985	
Sauropus androgynus (L.) Merr.	Phyllanthaceae	/	33,124	0.782	
Bambusa sp.	Poaceae	/	30,000	0.708	
Musa sapientum Linn.	Musaceae	/	28,020	0.661	
Polyscias fruticosa (L.) Harms	Araliaceae	/	26,136	0.617	
Gnetum gnemon var.	Gnetaceae	/	25,167	0.594	
Alpinia galanga (L.) Willd	Zingiberaceae	/	25,000	0.590	
Manihot esculenta Crantz	Euphorbiaceae	/	19,000	0.448	
Solanum torvum Swartz	Solanaceae	/	18,300	0.432	
Salacca wallichiana C.Mart.	Arecaceae	/	18,000	0.425	
Melientha suavis Pierre	Opiliaceae	/	17,606	0.416	
Ananas comosus L.	Bromeliaceae	/	17,140	0.405	
Citrus aurantifolia Swing	Rutaceae	/	15,340	0.362	
Zingiber officinale Roscoe	Zingiberaceae	/	15,270	0.360	
Carica papaya L.	Caricaceae	/	14,231	0.336	
Hibiscus sabdariffa L.	Malvaceae	/	12,639	0.298	
Etlingera elatior (Jack) R.M. Smith	Zingiberales	/	11,186	0.264	
Solanum indicum L.	Solanaceae	/	10,200	0.241	
Solanum stramoniifolium Jacq.	Solanaceae	/	8,529	0.201	
Senna tora (L.) Roxb.	Fabaceae	/	7,400	0.175	
Ficus hispida L.f.	Moraceae	/	5,000	0.118	
Senna alata (L.) Roxb.	Fabaceae	/	4,603	0.109	
Senna siamea	Fabaceae	/	4,000	0.094	
Olax psittacorum (Lam.) Zingiber montanum (J.Koenig) Link ex	Olacaceae	1	2,000	0.047	
A.Dietr.	Zingiberaceae	/	2,000	0.047	
Ardisia lenticellata Fletch.	Myrsinaceae	/	2,000	0.047	
Acacia concinna (Willd.) DC.	Fabaceae	/	1,615	0.038	
Cassia siamea Britt.	Leguminosae	/	1,000	0.024	
Claoxylon longifolium (blume)	Euphorbiaceae	/	1,000	0.024	
Citrus medica L.	Rutaceae /		356	0.008	
Polyscias paniculata Baker	Araliaceae /		300	0.007	
Plumbago zeylanica (L.)	Plumbaginaceae	/	50	0.001	
Total of shrub			671,282 4,236,97	15.843	
Total of indigenous	8	100			

The result showed that the most abundance of family in each group of indigenous vegetables, the group of ground cover are Apiaceae, Asteraceae and Zingiberaceae (16.55, 6.302 and 6.062respectively. The group of shrub are Musaceae, Leguminosae and Poaceae (3.075, 1.180 and 1.095 %), respectively. The group of climbing are Cucurbitaceae, Piperaceae and Rubiaceae (5.002, 1.086 and 1.032 %) respectively. The group of tree are Leguminosae, Arecaceae and Meliaceae (1.144, 0.481 and 0.288 %) respectively. The group of tree are Leguminosae, Arecaceae and Meliaceae (1.144, 0.481 and 0.288 %) Table 4, respectively. The group of aquatic plant are Convolvulaceae, Araceae and Fabaceae (1.581, 1.393 and 0.732 %) Table 4, respectively.

Table 3. Kind of the indigenous vegetables (climbing group) in Nakhon Si Thammarat province, Thailand

Scientific Name	Family	N	%	
Kind of indigenous vegetables		Climbi ng		
Coccinia grandis (L.) Voigt	Cucurbitaceae	/	136000	3.210
Momordica subangulata Blume	Cucurbitaceae	/	75922	1.792
Piper nigrum L.	Piperaceae	/	46000	1.086
Paederia foetida L.	Rubiaceae	/	43742	1.032
Momordica charantia L.	Cucurbitaceae	/	38000	0.897
Limacia triandra Miers Psophocarpus tetragonolobus (L.)	Menispermaceae	/	35400	0.836
DC.	Fabaceae	/	31700	0.748
Benincasa hispida (Thunb.) Cogn.	Cucurbitaceae	/	23125	0.546
Passiflora foetida L.	Passifloraceae	/	23000	0.543
Clitoria ternatea L.	Fabaceae	/	19945	0.471
Cucurbita moschata	Cucurbitaceae	/	9122	0.215
Ipomoea batatas (L.) Lam	Convolvulaceae	/	8873	0.209
Luffa acutangula (L.) Roxb.	Cucurbitaceae	/	8533	0.201
Cayratia trifolia (L.) Domin	Vitaceae	/	7000	0.165
Pachyrhizus erosus L. Lagenaria siceraria (Molina)	Fabaceae	/	6500	0.153
Standl.	Cucurbitaceae	/	4020	0.095
Piper retrofractum Vahl.	Piperaceae	/	2382	0.056
Asparagus racemosus Willd	Asparagaceae	/	1956	0.046
Solanum trilobatum L.	Solonaceae	/	100	0.002
Total of climbing			521,320 4,236,97	12.304
Total of indigeno	us vegetables		8	100

Table 4. Kind of the indigenous vegetables (tree group) in Nakhon Si Thammarat province, Thailand

Scientific Name	Family	Tree	N	% 1.377	
Leucaena leucocephala (Lam.)	Leguminosae	/	58,377		
Cocos nucifera L.	Arecaceae	/	20,418	0.481	
Azadirachta excelsa (Jack) Jacobs	Meliaceae	/	12,228	0.288	
Parkia speciosa Hassk.	Leguminosae	/	10,945	0.258	
Oroxylum indicum (L.) Kurz	Bignoniaceae	/	9,554	0.225	
Ficus hispida L.f. Glochidion wallichianum Muell.	Moraceae	/	8,790	0.207	
Arg.	Euphorbiaceae	/	8,322	0.196	
Anacardium occidentale L. Barringtonia acutangula (L.)	Anacardiaceae	/	8,237	0.194	
Gaertn.	Lecythidaceae	/	7,658	0.180	
Ficus botryocarpa Miq.	Moraceae	/	5,094	0.120	
Citrus hystrix DC.	Rutaceae	/	4,988	0.117	
Senna siamea	Fabaceae	/	4,322	0.102	
Mangifera indica L.	Anacardiaceae	/	4,316	0.101	
Averrhoa bilimbi L.	Oxalidaceae	/	3,128	0.073	
Garcinia cowa Roxb. ex Choisy	Clusiaceae	/	2,724	0.064	
Artocarpus heterophyllus	Moraceae	/	2,689	0.0634	
Bouea microphylla Merr.	Anaceardiaceae	/	2,385	0.056	
Phyllanthus acidus Linn.	Euphorbiaceae	/	1,980	0.0467	
Tamarindus indica Linn	Fabaceae	/	1,887	0.044	
Morinda cityfolia L.	Rubiaceae	/	1,879	0.0443	
Artocarpus integer (Thunb.)	Moraceae	/	1,806	0.042	
Moringa oleifera Lam	Moringceae	/	1,772	0.0418	
Mangifera foetida Lour	Anacardiaceae	/	1,214	0.0286	
Archidendron jiringa (Jack) I.C. Nielsen	Fabaceae	/	1 157	0.027	
	Arecaceae		1,157	0.027	
Borassus flabellifer L.		/	1,024		
Sesbania grandiflora L. Sandoricum koetjape (Burm.f.)	Fabaceae	/	666	0.0157	
Merr.	Meliaceae	/	575	0.0135	
Schinus terebinthifolius Raddi	AnacardiaceAE	/	514	0.0133	
semms tereoumigotus Raudi	MiacardiaceAE	/	J1 4	0.0121	
Citrus lucida (Scheff)	Rutaceae	/	400	4	
Spondias pinnata L.	Anacardiaceae	/	355	0.0083	
Z _F zand printed 2.	- 11110 111 01110 0110	,	222	0.0080	
Duabanga grandiflora (DC.) Walp.	Lythraceae	/	343	9	

Table 4. (**Cont.**) Kind of the indigenous vegetables (tree group) in Nakhon Si Thammarat province, Thailand

Scientific Name	Family	Tree	N	%	
Elateriospermum tapos Blume	Euphorbiaceae /		341	0.00804	
Parkia timoriana (DC.) Merr.	Fabaceae	/	234	0.00552	
Clausena harmandiana	Rutaceae	/	200	0.00472	
Garcinia atroviridis	Guttiferae	/	200	0.004720	
Dillenia obovata (Blume)					
Hoogland	Dilleniaceae	/	176	0.00415	
Litsea petiolata Hook.f.	Lauraceae	/	165	0.00389	
Cratoxylum formosum (Jacq.)	Hypericaceae	/	100	0.00236	
Garcinia atroviridis Griff. ex					
T.Anderson	Guttiferae /		51	0.00120	
Baccaurea parviflora	Phyllanthaceae /		37	0.000873	
Averrhoa carambola L.	Oxalidaceae /		35	0.000826	
Azadirachta indica A.Juss	Meliaceae /		30	0.000708	
Bauhinia malabarica roxb	Leguminosae /		15	0.000354	
Phyllanthus emblica L.	Euphorbiaceae /		12	0.000283	
Ficus racemosa L.	Moraceae /		8	0.000188	
Garcinia schomburgkiana					
Pierre	Clusiaceae	/	3	0.0000708	
Total of tree			191,354	4.516	
Total of indige	nous vegetable		4,236,97 8	100	

The result of the diversity indices of indigenous vegetables on 10 stations of Nakhon Si Thammarat province, Thailand were found the diversity indices of indigenous vegetables on stations of 7,4,10,2,5,9,8,3,1 and 6 which were 5.515, 5.403,5.373,5.360,5.286,5.239,5.199,5.119,4.938 and 3.986, respectively. The most of the diversity indices were shown on station 7 (Hua Sai District) as 5.516. The least diversity indices were shown on station 6 (Chang Klang District) as 3.985 (Table 6). The result of the evenness indices of indigenous vegetables on 10 stations were found the evenness indices of indigenous vegetables on stations of 7,4,2,10,5,9,8,3,1 and 6 are 0.828, 0.809, 0.808, 0.803, 0.729, 0.785, 0.779, 0.777, 0.722 and 0.609, respectively. The most of the evenness indices were shown on station 7 (Hua Sai District) and station 4 (Pi Poon District), the lowest of evenness indices were shown on station 6 (Chang District) as seen in Table 6.

Table 5. Kind of the indigenous vegetables (aquatic plant group) in Nakhon Si Thammarat province, Thailand

Scientific Name	Family	N	%	
Kind of indigenous vegetables		Aquatic plant		
Ipomoea aquatica Forsk.	Convolvulaceae	/	67000	1.581
Lasia spinosa L.	Araceae	/	59000	1.393
Neptunia oleracea Lour.	Fabaceae /		31000	0.732
Monochoria hastata Solms	Pontederiaceae	/	20000	0.472
Monochoria vaginalis	Nymphaeaceae	/	10000	0.236
Colocasia esculenta (L.) Schott	Araceae	/	3700	0.087
Total of aquatic plant			190700	4.501
total of indigenous vegetables			4,236,978	100

Table 6. The diversity and evenness of indigenous vegetables in Nakhon Si Thammarat province, Thailand

Station	1	2	3	4	5	N
Total of indigenous	686,950	395,385	378,235	346,644	322,077	2,129,291
Station	6	7	8	9	10	
Total of indigenous	502,915	303,840	539,386	324,560	436,986	2,107,687
N						4,236,978
%						100
Station	1	2	3	4	5	_
Diversity Indices	4.938	5.360	5.120	5.404	5.244	-
Station	6	7	8	9	10	-
Diversity Indices	3.986	5.517	5.200	5.239	5.373	-
Station	1	2	3	4	5	-
Evenness Indices	0.723	0.809	0.778	0.810	0.786	-
Station	6	7	8	9	10	-
Evenness Indices	0.610	0.829	0.779	0.785	0.804	-

Remark: 1= Thong Song District, 2 = Si Chon District, 3=Pra Prom District, 4= Pi Poon District,

⁵⁼ Chain Yai District, 6= Chang Klang District,7= Hua Sai District, 8=Lanska District.

⁹⁼ Tumbon Nam tok ,Thong Song District, 10= Bang Khan District

Discussion

The diversity and evenness of trees are varied by area and climatic around the world. In China, Fagusis confined to the mountains of the evergreen broad-leaved forest zone in subtropical or warm temperate China (Wu, 1980; Hou, 1983). It is absent from temperate or cool temperate (Kira, 1991; Cao et al., 1995). In Lisbon, Portugal, street tree community was dominated by Celtisaustralis L., Tillia spp., and Jacaranda mimosifolia D. which together counted 40% of tree population (Soares et al., 2011). In Bangalore, India, the four most commonly found species; Albiziasaman, Peltophorum pterocarpum, Spathodea campanulata, and Pongamia pinnata, while Albizia samanis common species that was found less than 10% of the population (Nagendra and Gopal, 2010). The street trees on Nakhon Si Thammarat highway includes aspects of diversity, prevalence and environmental benefit provision. The approximated number of the street trees is 300,000 from 83 species, 69 genera, and 31 families (Choothong et al., 2016). The diversity of trees on the Tapae canal waterside, Thong Song district, Thailand were found 1016 trees, 78 species, 65 genera and 39 families. The most abundance family are in GUTTIFERAE, PALMAE, Euphorbiaceae, respectively. The five most abundant are; 1) Garcinia magostana L. (13.78%); 2) Elaeis guinensis Jacq. (10.83%); 3) Hevea brasiliensis Muell. Agr. (8.86%); 4) Bambusa Sp. (7.19%) and 5) Leuaena leucocephala Lamk. (6.89%), respectively. The most of the diversity indices were founded on station seven 1.25 and the lowest diversity indices were founded on station two in 0.58. The most of the evenness indices was founded in the station six and station seven were 0.89 and 0.85, respectively. The lowest evenness indices were founded on station two 0.56 (Na Nakorn et al., 2016a). The diversity and prevalence of tree in 16 schools had the approximated number of 243 trees and were found 242 species, 45 genera and 22 families, the most dominant family was Leguminosae. The benefit tree uses mainly for shading 78 percent and for landscaping and the aesthetics is 22 percent (Na Nakorn et al., 2016b). Density, frequency and dominance of mangrove species at each station is different. The spread of the species due to several factors, among others: environmental conditions (soil type, pH, salinity, substrate, and current), the availability of propagules, type root sticking propagules, buoyancy propagules, breeding types of mangrove species, and competition among species. Another thing that affects the distribution of this species is a species usefulness to the needs of local communities (Zakaria and Nawaz Rajpar, 2015). The most abundance of the kind of mangrove trees in Thasala, Sichon and Pak Paneang district, Nakhon Si Thammarat's coastline were founded 16 species and 6 families of trees, it is the highest number of total mangrove trees is 3088 (78.28 percent). The second abundance were founded 4 species and 4 families of ground cover, it had the number of total ground cover from this experiment

is 557 (14.12 percent), The third abundance were founded 8 species and 7 families of shrub, it had the number of total shrub in this experiment is 288 (7.30 percent), The lowest abundance was founded 1 species and 1 families of climbing, it had the number of total climbing from this experiment is 12 (0.30 percent). The diversity and evenness of mangrove trees in Thasala, Sichon and Pak Paneang district were found 29 species and 18 families. The most abundance are Avicennia alba BL (31.05%), Bruguiera cylindrical L. (27.12%) and Rhizophora apiculata Blume (9.30%), respectively. The diversity indices were shown in Thasala, Pak Paneang and Sichon district are 0.67, 0.45 and 0.44, respectively. The evenness indices was shown in Thasala, Sichon and Pak Paneang district are 0.14 0.13 and 0.11, respectively (Na Nakorn et al., 2018). Diversity of indigenous vegetables in Ta-Rae market Sakon Nakhon Province, Thailand during May 2005 to January 2006 they were identified 39 species, 39 genera and 30 families and 1 unknown. Indigenous vegetables were found excessively such as Cucurbitaceae, Leguminosae, Guttiferae, Limnocharitaceae, Menispermaceae and Convolvulaceae. Identified indigenous vegetables consumed as stem (2 species), leaves and young shoots (27 species), flower (15 species), fruit (7 species) and whole plant (5 species). Most of utilization methods were used as salad, steamed or boiled vegetables eaten with chili paste, mined meat, or seasoning in food ingredients (Chokthaweepanich et al., 2016). The reported of the study of species diversity and utilization of local vegetables in Khirimat district, Sukhothai Province, were founded 114 specimens classified into 52 families, 86 genera, 106 species. Leaves/shoots are mostly used followed by fruits/seeds, flowers, stems and roots, respectively. For easting, most plants were cooked by boiling, stir frying, steaming and frying for example, Sesbania grandiflora Desv., Ipomoea aquatica Forsk., Leptonychia heteroclita Kurz, Sauropus androgynus Merr., Cinnamomum glaucescens Drury, Coccinia grandis Voigt, Cucurbita moschata Decne., Vigna sinensis Savi ex Hassk., Citrus hystrix DC., Sesbania javanica Miq. and Albizia lebbeck Benth., by boiling, fast boiling and grilling for example, Oroxylum indicum (L.) Kurz. Some plants were eaten freshly for example, Adenia viridiflora Craib, Terminalia chebula Retz. var. chebula and Phyllanthus emblica L. (Ngamsiri and Thananoppakun, 2014). Also the diversity and evenness of indigenous vegetables in Thong Song District, Si Chon District, Pra Prom District, Pi Poon District, Chain Yai District, Chang Klang District, Hua Sai District, Lanska District, Tumbon Nam tok, Thong Song District, Bang Khan District, Nakhon Si Thammart Province, Thailand that differred from the other climate areas in the word.

Acknowledgement

The authors are thankful to the people who support and cooperating during the field study from the located at Thong Song District, Si Chon District, Pra Prom District, Pi Poon

District, Chain Yai District, Chang Klang District, Hua Sai District, Lanska District District, Tumbon Nam tok, Thong Song District, Bang Khan District, Nakhon Si ThammartProvice, Thailand, We gratefully acknowledge the financial support from the National Research Council of Thailand.

References

- Cao, K. F., Prter, S. R. and Oldemanr, A. A. (1995). Climatic ranges and distribution of Chinese *Fagus* species. Journal of Vegetation Science. 6:317-324.
- Choothong, S., Qin, H. and Soonsawad, N. (2016). Diversity, Prevalence and Environmental Benefits of Street Tree in Nakhon Si Thammarat, Thailand. Journal of Agricultural Technology. 12:395-507.
- Chokthaweepanich, H., Phuburom, K. and Wongsrisakulkaew, Y. (2016). Diversity of indigenous vegetables in Ta-Rae market Sakon Nakhon Province. Songklanakarin Journal of Plant Science. 3:M10/7-12.
- Japan International Research Center for Agricultural Science (2018). Local Vegetables of Thailand. Retrieved from https://www.jircas.affrc.go.jp/project/value_addition/Local_Vegetables_of_Thailand_home.html.
- Hou, H. Y. (1983). Vegetation of China with reference to its geographical distribution. Annals of the Missouri Botanical Garden. 70:509-548.
- Kira, T. (1991). Forest ecosystems of East and Southeast Asia in a global perspective. Ecological Research. 6:185-200.
- Na Nakorn, W., Chankoed T., Jitpech, C., and Khunchai, H. and Na Nakorn, S. (2016a). Diversity of trees on waterside of Tapae canal, Thong Song district, Nakhon Si Thammarat province, Thailand. Journal of Agricultural Technology. 12:2289-2308.
- Na Nakorn, W., Hatthong, J. and Hatsaponpan, S., (2016b). Diversity, prevalence and benefits use of trees in the primary and high schools in Thong Song district, Nakhon Si Thammarat province, Thailand. Journal of Agricultural Technology. 12:565-577.
- Na Nakorn, W., Chanchaw, W., Penprapai, P. and Chanchaw, S. (2018). Diversity and evenness of mangrove trees in Thasala, Sichon and Pakpaneang District, Nakhon Si Thammarat Province, Thailand. International Journal of Agricultural Technology. 14:333-340.
- Nagendra, H. and Gopal, D. (2010). Street trees in Bangalore: Density, diversity, composition and distribution. Urban Forestry and Urban Greening. 9:129-137.
- Ngamsiri, Y. and Thananoppakun, K. (2014). Species diversity and utilization of local vegetable in Khirimat District, Sukhothai Province. 12th Agricultural Conference of Narasuan University, Thailand.
- Price, L. L. and Ogle, B. M. (2008). Gathered indigenous vegetables in Mainland Southeast Asia: a gender asset. Retrieved from https://www.researchgate.net/publication/40095566_Gathered_Indigenous_Vegetables_in_Mainland_Southeast_Asia_a_gender_asset
- Soares, A. L., Rego, E. G., Mcpherson, J. R., Simpson, P. J., Peper, Q. and Xiao, F. C. (2011). Benefits and costs of street trees in Lisbon, Portugal. Urban Forestry and Urban Greening. 10:69-78.

Wu, Z. Y. (1980). Vegetation of China. Beijing: Science Press.Zakaria, M. and Nawaz Rajpar, M. (2015). Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation. Diversity. 7:137-148.

(Received: 20 September 2018, accepted: 15 November 2018)