

อิทธิพลของความหนาแน่นที่มีต่อ สมบัติทางวิศวกรรมเทคนิคธรณีของโฟมโพลียูรีเทนขยายตัวสูง Effects of Density on Geotechnical Engineering Properties of High-Expansive Polyurethane Foam

ธมนวรรรณ สืบพงศ์¹ วรัช ก้องกิจกุล^{2,*} และ พรเทพ ม่วงสุขำ³ Tamonwan Seubpong¹, Warat Kongkitkul^{2,*} and Pornthep Muangsukhum³ ^{1.2}ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

126 ถนนประชาอุทิศ แขวงบางมด เขตทุ่งกรุ กรุงเทพมหานกร 10140

³บริษัท เคมิคอนสตรักชั่น จำกัด 157 ถนนเพชรเกษม แขวงหนองก้างพลู เขตหนองแขม กรุงเทพมหานคร 10160 ^{1,2}Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bangmod, Thung Khru, Bangkok 10140, Thailand ³ChemiConstruction Co., Ltd., 157 Phet Kasem Rd., Nong Khang Phlu, Nong Khaem, Bangkok 10160, Thailand *E-mail: warat.kon@kmutt.ac.th, Tel: 0-2470-9304, Fax: 0-2427-9063

บทคัดย่อ

งานวิจัยนี้สึกษาสมบัติทางวิสวกรรมเทคนิคธรณีของ โฟมโพลียูรีเทนขยายตัวสูงชนิดสองส่วนประกอบ ตัวอย่าง ที่ ใช้ถูกเตรียมให้มีความหนาแน่นแตกต่างกัน สมบัติทางวิสวกรรมเทคนิคธรณีที่ได้สึกษามีดังนี้ 1. กำลังรับแรงอัดทิสทาง เดียว (σ_u) 2. อัตราส่วนปีวซองซีแคนท์ (v_{sec}) 3. โมดูลัสซีแคนท์ (E₅₀) 4. ความเครียดคงค้างเมื่อรับน้ำหนักกระทำแบบ วัฏจักร (ε_{cyN}) 5. ความเก้นกรากแนวดิ่งเมื่ออัดตัวในหนึ่งมิติ (σ_y) และ 6. สัมประสิทธิ์การซึมผ่านของน้ำ (k) จาก ผลการศึกษาพบว่า เมื่อความหนาแน่นของ โฟมโพลียูรีเทนเพิ่มขึ้น ค่า σ_u, ค่า E₅₀, ค่า ε_{cyN} และ ค่า σ_y จะเพิ่มขึ้น ในทาง ตรงกันข้าม ค่า v_{sec} และค่า k จะลดลง นอกจากนี้ เมื่อพิจารณาที่ค่าความหนาแน่นของ โฟมโพลียูรีเทนเท่ากัน ค่า v_{sec} จะ ลดลงกับระดับความเก้นแนวดิ่งที่สูงขึ้น ในขณะที่ก่า ε_{cyN} จะเพิ่มขึ้นกับทั้งก่าอัตราส่วนความเก้นวัฏจักรและจำนวนรอบ วัฏจักร สมบัติทางวิสวกรรมเทคนิคธรณีดังกล่าวสามารถทำนายได้จากค่าความหนาแน่นของ โฟมโพลียูรีเทนจากสมการ เชิงประจักษ์ที่พัฒนาขึ้นจากงานวิจัยนี้

้ <mark>คำสำคัญ:</mark> โฟมโพลียูรีเทน ความหนาแน่น กำลังรับแรงอัด การซึมผ่านของน้ำ การเสียรูปคงเหลือ

ABSTRACT

This research studies various geotechnical engineering properties of a high-expansive polyurethane (PU) foam. This PU foam was of a two-component type. Test samples were prepared at various densities. The following properties were studied: i) uniaxial unconfined compressive strength (σ_u); ii) secant Poisson's ratio (v_{sec}); iii) secant modulus (E_{50}); iv) cyclic residual strain (ε_{cyN}); v) yield vertical stress in one-dimensional compression (σ_y); and vi) coefficient of permeability (k). It is found that, with increasing of the density of PU foam, the values of σ_u , E_{50} , ε_{cyN} , and σ_y increase, while the values of v_{sec} and k decrease. In addition, when considering at the same PU foam's density, the value of v_{sec} decreases with an increase in the vertical stress level, while the value of ε_{cyN} increases with cyclic

stress ratio (CSR) and number of cycle (N_c). Regression analyses were performed to develop empirical formulae to predict these properties from a given PU foam's density. **Keywords:** Polyurethane foam, Density, Compressive strength, Permeability, Residual deformation

1. บทนำ

ชั้นดินบริเวณพื้นที่ภาคกลางของประเทศไทย โดยเฉพาะกรุงเทพมหานคร ประกอบด้วยชั้นดินเหนียว อ่อนที่มีความหนามาก [1] เมื่อก่อสร้างโครงสร้างทาง ้วิศวกรรมโยธาที่ต้องถ่ายน้ำหนักลงส่พื้นดินโดยตรง อาทิ ถนน พื้นโรงงาน ถานจอดรถ จะเกิดการทรุดตัวเนื่องจาก การอัดตัวคายน้ำในชั้นดินเหนียว การทรุดตัวบางครั้ง ้อาจจะไม่เท่ากัน หรือไม่สม่ำเสมอ ในปัจจุบัน มีการแก้ไข ้โดยการฉีดโฟมโพลียูรีเทนซึ่งมีอัตราการขยายตัวสูงมาก [2, 3] ถงไปใต้โครงสร้างดังกล่าวเพื่อแทนที่ช่องว่าง และ/ หรือยกโครงสร้างให้มีระดับสูงขึ้น วิธีการฉีดโฟมโพลียูรี เทนนี้ทำโคย ผสมโพลีออลและ ไอโซไซยาเนตที่อยู่ใน สถานะของเหลว ณ ขณะที่ออกมาจากหัวฉีดซึ่งจะกระจาย สารผสมลงไปบริเวณใต้โครงสร้างที่วางอย่บนผิวดิน โดย ้ไม่จำเป็นต้องรื้อโครงสร้างเดิมออก เมื่อโฟมโพลียูรีเทน ขยายตัวก็จะสร้างแรงยกเพื่อปรับระดับโครงสร้างที่วางอยู่ บนผิวดินให้มีค่าระดับตามที่ต้องการ [2] วิธีการดังกล่าว ้สามารถคำเนินการได้ง่ายและประหยัด [4-6] นอกจากนี้ ยังสามารถเพิ่มความแข็งแรงและลดอัตราส่วนช่องว่าง ในดินได้อีกด้วย [4, 7]

โฟมโพลียูรีเทนขยายตัวสูงเกิดจากปฏิกิริยา กลายความร้อนระหว่างโพลีออลและไอโซไซยาเนตที่ผสม กันในสัดส่วนปริมาตรเฉพาะตามข้อกำหนดของผลิตภัณฑ์ โฟมโพลียูรีเทนนั้น มีอัตราการขยายตัวเชิงปริมาตรเท่ากับ หรือมากกว่า 20เท่าของปริมาตรเริ่มต้นเมื่อขยายตัวอย่าง อิสระ ระยะเวลาที่ใช้ในการทำปฏิกิริยาในการสร้างโฟม โพลียูรีเทน โดยทั่วไปคือ 30 วินาที ถึง 2 นาที ซึ่งถือเป็น กระบวนการที่รวดเร็วมาก [4] โดยระยะเวลาการทำ ปฏิกิริยาขึ้นอยู่กับอนุภาคของเรซินซึ่งได้รับผลกระทบมา จากอุณหภูมิขณะทำปฏิกิริยา [5] อนึ่ง โฟมโพลียูรีเทนเป็น วัสดุที่มีความเป็นกรดต่ำถึงปานกลาง และไวรังสี อัลตราไวโอเลตและสารเคมีสังเคราะห์บางประเภท เช่น อะซิโตน ซึ่งมักจะไม่พบในดิน [2, 3]

โฟมสามารถแบ่งประเภทใด้เป็น 2 ชนิด จาก โครงสร้างระดับจุลภาค กล่าวคือ 1. โฟมแบบโครงสร้าง เปิด (Open-cell foam) และ 2. โฟมแบบโครงสร้างปิด (Closed-cell foam) โฟมแบบโครงสร้างเปิดจะมี ลักษณะที่ช่องว่างของโครงสร้างนั้นติดกัน ส่วนโฟมแบบ โครงสร้างปิดจะมีลักษณะที่ช่องว่างไม่เชื่อมต่อกัน [8] ซึ่ง โฟมแบบโครงสร้างปิดนี้จะมีความแข็งแรงและดูดซับ พลังงานได้มากกว่าโฟมแบบโครงสร้างเปิด [8, 9] โฟมที่ ใช้ในงานวิศวกรรมเทคนิคธรณีโดยทั่วไปที่ใช้สาร 2 ชนิด มาผสมกัน เช่น โฟมโพลียูรีเทนขยายตัวสูงนั้น มักเป็น โฟมแบบโครงสร้างปิด [3,10]

ที่ผ่านมา ได้มีการศึกษาเกี่ยวกับสมบัติเชิงกลของ ์ โฟมโพลียูรีเทนกันอย่างแพร่หลาย ซึ่งส่วนมากสนใจศึกษา เกี่ยวกับพฤติกรรมเมื่อรับแรงอัด อาทิ Gibson and Ashby [11] ได้แสดงพฤติกรรมการเสียรูปของโฟมหลาย ชนิด ทั้งโฟมแบบโครงสร้างเปิดและโฟมแบบโครงสร้าง ปิด และอธิบายความสัมพันธ์ระหว่างรูปร่างของโครงสร้าง ระดับจุลภาคกับสมบัติของวัสคุรูปแบบการวิบัติต่างๆ ของ โฟมภายใต้การรับแรงอัด และพัฒนาความสัมพันธ์ระหว่าง สมบัติของโฟมกับโครงสร้างระดับจุลภาคสำหรับแต่ละ รูปแบบการวิบัติ Saha et al. [12] ได้ศึกษาพฤติกรรมของ ้โฟมโพลีเมอร์ที่มีความหนาแน่นต่างกัน 2 ค่า โดยทำการ ทคสอบกำลังอัดอัตราด้วยอัตราความเกรียดที่แตกต่างกัน ซึ่งพบว่า ค่ากำลังอัดสูงสุดและการดูดซับพลังงานมีค่า ขึ้นอยู่กับอัตราความเครียด และความหนาแน่นของโฟม เป็นอย่างมาก การศึกษาโดย Buzzi et al. [2] Yu et al. [4] และ Wei et al. [13] ได้สรุปว่า ความเก้นครากของ ้โฟมโพลียูรีเทนมีค่าขึ้นอยู่กับความหนาแน่น และจะมีค่า เพิ่มขึ้นเมื่อความหนาแน่นมีค่าเพิ่มขึ้น Valentino [10] ได้ศึกษาพฤติกรรมของโฟมโพลียูรีเทน 2 ชนิดที่เป็นที่

ปริมาตรสามารถขยายตัวเพิ่มขึ้นได้ถึง 30 เท่า เมื่อเทียบกับ ปริมาตรเริ่มต้น

2.2 การเตรียมตัวอย่างการทดสอบ

ร**ูปที่ 1** เครื่องมือเตรียมตัวอย่างรูปทรงกระบอกแบบชุด ลูกสูบที่ได้พัฒนาขึ้นมาใหม่ในงานวิจัยนี้

การเตรียมตัวอย่างโฟมโพลียูรีเทนในงานวิจัยนี้ใช้ เครื่องมือ 2 ส่วนประกอบกัน กล่าวคือ 1. เครื่องมือฉีด สารเกมี และ 2. เครื่องมือเตรียมตัวอย่างรูปทรงกระบอก แบบชุคลูกสูบ (รูปที่ 1) เครื่องมือส่วนแรกเป็นเครื่องมือ นำเข้าจากต่างประเทศเพื่อใช้ในงานก่อสร้างจริง ส่วน เครื่องมือส่วนที่ 2 ได้พัฒนาขึ้นมาใหม่ในงานวิจัยนี้ เครื่องมือส่วนที่ 2 นี้สามารถจำลองสถานการณ์เมื่อฉีคโฟม ์ โพลียูรีเทนลงไปในใต้โครงสร้าง โดยที่โฟมโพลียูรีเทนที่ ้มีสถานะเริ่มต้นเป็นของเหลว จะถูกฉีคเข้าไปในท่อพีวีซีที่ มีลูกสูบอยู่ด้านในซึ่งสามารถเคลื่อนที่ได้ตามแนวแกนของ ท่อพีวีซี ภายในของท่อพีวีซีจะเคลือบด้วยสารหล่อลื่น บางๆ เพื่อลดแรงเสียดทานระหว่างลูกสูบกับพื้นผิวภายใน ของท่อทีวีซีในขณะที่ลูกสูบมีการเคลื่อนตัว ลูกสูบ เชื่อมต่อกับ โครงเหล็กภายนอกที่มีเส้นผ่านศูนย์กลางที่ มากกว่าโดยมีแกนกลางร่วมกัน โครงเหล็กภายนอก สามารถยกขึ้นในแนวดิ่งพร้อมกับถูกสูบที่อยู่ด้านใน ท่อพีวีซี ส่วนล่างของโครงเหล็กสามารถรองรับแผ่น ้น้ำหนักที่จะถ่ายเป็นแรงกคไปที่ถูกสูบ เครื่องมือนี้จึง

นิยมสำหรับงานวิศวกรรมเทคนิคธรณีและพบว่า ความเก้น ที่จุดวิบัติและยังโมดูลัสมีค่าเพิ่มขึ้นเมื่อความหนาแน่นมีค่า เพิ่มขึ้น โดยที่ค่าทั้งสองนั้นขึ้นอยู่กับความหนาแน่นเป็น อย่างมาก โดยมีความสัมพันธ์กับแบบเอกซ์โพเนนเชียล

้งากการศึกษาที่กล่าวมาข้างต้นนั้นจะเห็นได้ว่า สมบัติทางวิศวกรรมเทคนิคธรณีของโฟมโพลียูรีเทน และ ้ความสัมพันธ์ระหว่างสมบัติเหล่านั้นกับความหนาแน่น ้ยังคงอย่ในวงจำกัด ซึ่งส่วนใหญ่จะสนใจเพียงแค่ค่ากำลัง อัคเท่านั้น นอกจากนี้ การฉีค โฟมโพลียูรีเทนขยายตัวสูงใน งานวิศวกรรมเทคนิคธรณีมักจะคำเนินการ โดยที่ไม่ได้มี การออกแบบเบื้องต้น โดยมากมักทำโดยอาศัยพื้นฐานจาก ประสบการณ์เท่านั้น เสมือนเป็นการลองผิดลองถูก ้งานวิจัยนี้จึงคำเนินการทคสอบ โฟม โพลียรีเทนชนิคสอง ้ส่วนผสม เตรียมที่ความหนาแน่นที่แตกต่างกันระหว่าง 100 – 200 kg/m³ เพื่อศึกษาอิทธิพลของความหนาแน่น ของโฟมโพลียูรีเทนต่อสมบัติทางวิศวกรรมเทคนิคธรณี ซึ่งประกอบไปด้วย 1. ค่ากำลังรับแรงอัดในทิศทางเดียว 2. อัตราส่วนปัวซองซีแคนท์ 3. โมดูลัสซีแคนท์ 4. ความเครียดคงค้างเมื่อรับน้ำหนักกระทำแบบวัฏจักร 5. พฤติกรรมการอัดตัวในหนึ่งมิติ และ 6. สัมประสิทธิ์การ ซึมผ่านของน้ำ นอกจากนี้ งานวิจัยนี้ยังได้ศึกษาหา ความสัมพันธ์ระหว่างสมบัติทางวิศวกรรมเทคนิคธรณี ต่างๆ ดังที่กล่าวไปข้างต้นกับก่าความหนาแน่นของโฟม โพลียูรีเทนโดยได้นำเสนอออกมาในรูปแบบสมการเชิง ประจักษ์เพื่อใช้ทำนายสมบัติทางวิศวกรรมเทคนิคธรณี ต่างๆ เมื่อทราบค่าความหนาแน่นของโฟมโพลียูรีเทน

2. วัสดุ

2.1 โฟมโพลียูรีเทน

โฟมโพลียูรีเทนที่ใช้ในงานวิจัยนี้ เป็นชนิดสอง ส่วนผสม (Two-component) โดยเป็นส่วนผสมระหว่าง โพลิออล (Polyol) และไอโซไซยาเนต (Isocyanate) ที่ อยู่ในสภาพของเหลว เมื่อสารสองชนิดดังกล่าวผสมกันจะ เกิดปฏิกิริยาทางเคมีและเกิดการขยายตัวที่รวดเร็ว โดยที่

วัดการเสียรูปของตัวอย่างตามแนวแกนที่เป็นอิสระจากการ เสียรูปที่ไม่สม่ำเสมอบริเวณหัวตัวอย่าง (Bedding errors) และใช้ทรานส์ดิวเซอร์วัดระยะกระจัดตาม แนวราบเฉพาะจุด (Clip gauge, CG) วัดการเสียรูป ด้านข้างของตัวอย่าง งานวิจัยนี้ได้ใช้ LDT จำนวน 1 คู่ และ CG จำนวน 3 อัน รายละเอียดการติดตั้งเครื่องมือวัดที่ กล่าวมาข้างต้นแสดงในรูปที่ 3 สัญญาณที่ได้จากเครื่องมือ วัดจะถูกขยายด้วยเครื่องขยายสัญญาณความเครียด (Strain amplifier) แล้วจึงถูกอ่านและบันทึกลงใน กอมพิวเตอร์แบบอัตโนมัติ ตัวอย่างโฟมโพลียูรีเทนที่ใช้ สำหรับการทดสอบแรงอัดทิศทางเดียวเตรียมจากตัวอย่างที่ ได้จากเครื่องมือเตรียมตัวอย่างรูปทรงกระบอกแบบชุด ถูกสูบ (รูปที่ 2) โดยนำไปกลึงให้มีขนาดเส้นผ่าน ศูนย์กลางและความสูงเท่ากับ 75 และ 150 มิลลิเมตร ตามลำดับ

ร**ูปที่ 3** การติดตั้งเครื่องมือวัดต่างๆ สำหรับการทดสอบ แรงอัดทิศทางเดียว

3.1.1 การให้น้ำหนักกระทำแบบต่อเนื่อง

ในการกคตัวอย่างแบบให้น้ำหนักกระทำ แบบต่อเนื่องนั้น ได้ควบคุมอัตราการกคให้เท่ากับ 1.3 mm/min ตั้งแต่เริ่มต้นไปจนกระทั่งสิ้นสุดการทคสอบ ซึ่งเป็นไปตามมาตรฐาน ASTM D695-08 [14]

สามารถเตรียมตัวอย่างโฟมโพลียูรีเทนที่มีความหนาแน่น แตกต่างกันโดยผันแปรน้ำหนักกดทับได้ รูปที่ 2 แสดง ตัวอย่างโฟมโพลียูรีเทนที่เตรียมได้จากเครื่องมือดังกล่าว

ร**ูปที่ 2** ตัวอย่างของ โฟม โพลียูรีเทนรูปทรงกระบอกที่ เตรียมจากเครื่องมือเตรียมตัวอย่างรูปทรงกระบอกแบบ ชุคลูกสูบ

3. วิธีการทดสอบ

3.1 การทดสอบแรงอัดทิศทางเดียว

การทดสอบแรงอัดทิสทางเดียวทำเพื่อหากำลังรับ แรงอัดในทิสทางเดียว (Compressive strength, σ_u) โมดูลัสซีแคนท์ (Secant modulus, E₅₀) และ อัตราส่วนปัวซองซีแคนท์ (Secant Poisson's ratio, v_{sec}) จากการให้น้ำหนักกระทำแบบต่อเนื่องกับตัวอย่าง โฟมโพลียูรีเทน นอกจากนี้ ยังได้ทดสอบแรงอัดทิสทาง เดียวโดยให้น้ำหนักกระทำแบบวัฏจักรเพื่อหาค่า ความเครียดคงค้าง (Cyclic residual strain, ε_{cyN}) งานวิจัยนี้ใช้เครื่องกดตัวอย่างที่มีระบบควบคุม วัดค่า เก็บ และบันทึกผลอัตโนมัติ โดยใช้เซลล์วัดแรง (Load cell) สำหรับการวัดแรงกดที่กระทำต่อตัวอย่าง ใช้เซ็นเซอร์วัด ระยะกระจัด (Linear variable differential transformer, LVDT) วัดการเสียรูปในแนวแกนของ ตัวอย่าง ใช้ทรานส์คิวเซอร์วัดระยะกระจัดตามแนวแกน

3.1.2 การให้น้ำหนักกระทำแบบวัฏจักร

การทดสอบแบบนี้ทำเพื่อหาก่ากวามเกรียดกงก้าง เมื่อตัวอย่างโฟมโพลียูรีเทนรับน้ำหนักกระทำแบบวัฏจักร (ɛ_{cyN}) กวามสัมพันธ์ระหว่าง ɛ_{cyN} กับจำนวนรอบวัฏจักร (Number of cycle, N_c) ที่ได้จากการทดลองสามารถ นำมาใช้ทำนายการทรุดตัวของโฟมโพลียูรีเทนเมื่อต้องรับ น้ำหนักบรรทุกจราจรจากการใช้งานจริงได้

ร**ูปที่ 4** นิยามของความเครียดคงค้างเมื่อให้น้ำหนักกระทำ แบบวัฏจักร

รูปที่ 4 แสดงนิยามของค่า ε_{cyN} จากความสัมพันธ์ ระหว่างความเค้นอัด (Compressive stress, σ_c)และ ความเครียดแนวแกน (Axial strain, ε_a) ที่ได้จากการ ทดสอบแรงอัดทิศทางเดียว จากรูปที่ 4 จะเห็นได้ว่า ค่า ε_{cyN} สามารถคำนวณได้จากสมการที่ (1)

$$\varepsilon_{\text{cyN}} = \varepsilon_{N+1} - \varepsilon_1$$
 (1)

โดยที่ _{EcyN} คือความเครียดแนวแกนคงค้างเมื่อ ครบรอบวัฐจักรที่ N (ไม่รวมรอบที่ 1), E₁ คือความเครียด แนวแกนสูงสุดที่เกิดขึ้นในรอบที่ 1 และ E_{N+1} คือ ความเครียดแนวแกนสูงสุดที่เกิดขึ้นในรอบที่ N+1 เช่น E_{cy1} = E₂ - E₁ เป็นต้น ในการให้น้ำหนักกระทำแบบวัฐ จักรจะทำการผันแปรค่าความเค้นอัคสูงสุดระหว่างชุด วัฐจักรที่แตกต่างกัน โดยอ้างอิงกับค่าอัตราส่วนความเก้น วัฎจักร (Cyclic stress ratio, CSR) ซึ่งแสดงในสมการ ที่ (2)

$$CSR = \frac{\sigma_{ey}}{\sigma_{u}}$$
(2)

โดยที่ σ_{cy} คือ ค่าความเก้นอัดแนวแกนสูงสุดในแต่ ละชุดวัฐจักร และ σ_u คือ ค่ากำลังรับแรงอัดที่ได้จากการ ทดสอบกำลังอัดทิศทางเดียวอย่างต่อเนื่อง ในการทดสอบ จะผันแปรก่า CSR จาก 0.2 ถึง 0.8 ระหว่างชุดวัฐจักรที่ แตกต่างกันดังแสดงในรูปที่ 5 โดยที่ก่าความเก้นแนวแกน ต่ำสุดในแต่ละชุดวัฐจักรมีก่าเท่ากับร้อยละ 10 ของก่า σ_{cy} สำหรับชุดวัฐจักรนั้น [15] ในแต่ชุดวัฐจักรจะให้น้ำหนัก กระทำซ้ำจำนวน 20 รอบ

3.2 การทดสอบการอัดตัวในหนึ่งมิติ

งานวิจัขนี้ได้ทำการทดสอบการอัดตัวในหนึ่งมิติ เพื่อหาก่ากวามเก้นกรากในแนวดิ่ง (Yield vertical stress, σ_y) รูปที่ 6 แสดงราขละเอียดเครื่องมือและอุปกรณ์ ที่ใช้ การทดสอบนี้ทำแบบใช้อัตรากวามเกรียดคงที่ (Constant-Rate-of-Strain, CRS) เท่ากับร้อขละ 0.87 ต่อนาที ตัวอย่างที่ใช้ทดสอบมีขนาดเส้นผ่านสูนย์กลาง และกวามหนาเท่ากับ 60 มิลลิเมตรและ 20 มิลลิเมตร ตามลำดับ

3.3 การทดสอบการซึมผ่านของน้ำ

ในงานวิจัขนี้ ได้ทำการทดสอบการซึมผ่านของน้ำ ด้วยวิธีกำแพงยืดหยุ่น (Flexible-wall) ตามมาตรฐาน ASTM D5084-16a [16] เพื่อหาก่าสัมประสิทธิ์การซึม ผ่านน้ำ (Coefficient of permeability, k) ของ โฟม โพลียูรีเทน รูปที่ 7 แสดงรายละเอียดเครื่องมือและอุปกรณ์ ที่ใช้ ตัวอย่างที่ใช้ในการทดสอบมีขนาดเส้นผ่านสูนย์กลาง และความสูงเท่ากับ 35 มิลลิเมตรและ 70 มิลลิเมตร ตามลำดับ การทดสอบทำโดยให้แรงดันโอบรัดเพื่อให้ผิว เมมเบรนแนบกับตัวอย่าง เมื่อตัวอย่างอยู่ในสถานะสมดุล แล้วจึงให้แรงดันน้ำในโพรงบริเวณหัวและท้ายตัวอย่าง มตกต่างกัน 5 kPa เพื่อทำให้น้ำใหลผ่านเข้าออกตัวอย่าง การทดสอบนี้ใช้บิวเร็ต (Burette) ที่เชื่อมต่อเข้ากับ ทรานส์ดิวเซอร์ วัดแรงดันที่ไม่เท่ากัน (Differential pressure transducer, DPT) เพื่อวัดปริมาตรน้ำที่ใหล เข้าออกตัวอย่างแบบอัตโนมัติ

ร**ูปที่ 6** เครื่องมือและอุปกรณ์ที่ใช้ในการทคสอบการอัคตัว ในหนึ่งมิติ

ร**ูปที่ 7** เกรื่องมือและอุปกรณ์ที่ใช้ในการทคสอบ การซึมผ่านของน้ำแบบกำแพงยืดหยุ่น

4. ผลการทดสอบและวิจารณ์ผลการทดสอบ 4.1 ผลการทดสอบแรงอัดทิศทางเดียวแบบต่อเนื่อง

รปที่ 8แสดงความสัมพันธ์ระหว่างความเค้น (Compressive stress, σ_c) กับความเครียดแนวแกน (Axial strain, ɛa) ของตัวอย่างโฟมโพลียูรีเทนที่มีความ หนาแน่นแตกต่างกัน ซึ่งจะเห็นได้ว่าโฟมโพลียูรีเทนที่มี ้ความหนาแน่นมากกว่าจะมีกำลังรับแรงอัดที่มากกว่า จาก รปที่ 8 จะสามารถนิยามหาค่ากำลังรับแรงอัค (Compressive strength, σu) ใด้จากจุดบน ความสัมพันธ์ σ_c - ε_a เมื่อแสคงบนแกนล็อกการิทึม (log σ_{c} - $\log \epsilon_{a}$) ที่มีความโค้งมากที่สุดหรือมีรัศมีความโค้ง (Radius of curvature, ρ) น้อยที่สุด ค่า σ_u ที่หาได้ด้วย วิธีดังกล่าวระบด้วยลกศรในรปที่ 8 นอกจากนี้ จะสังเกต ได้ว่าค่า σ_u สอดคล้องกับค่า σ_c ที่ค่า ε_a เท่ากับร้อยละ 2.5 โคยประมาณ นอกจากนี้ โฟมโพลียุรีเทนยังได้แสคง พฤติกรรมแบบแข็งตัวด้วยความเครียด (Strain hardening) อย่างต่อเนื่อง กล่าวคือ ค่า σ_c มีค่าเพิ่มขึ้น เรื่อยๆ แม้กระทั่งเมื่อเลยจุดที่ $\sigma_{\rm c}=\sigma_{\rm u}$ ไปแล้ว อย่างไร ก็ตามอัตราการเพิ่มขึ้นของค่า σ。 กับค่า ε₄ มีค่าลคลงเป็น อย่างมากเมื่อเลยจุดนี้ไปแล้ว

ค่าโมดูลัสซีแคนท์ (Secant modulus, E_{50}) สามารถหาได้จาก $E_{50} = (\sigma_u/2)/\epsilon_{50}$ เมื่อ ϵ_{50} คือค่า ความเครียดแนวแกนบนความสัมพันธ์ $\sigma_c - \epsilon_a$ ที่สอดคล้อง กับค่าของ $\sigma_u/2$

Test name	Density, ρ_{pu} (kg/m ³)	Compressive strength, σ _u (kPa)	Secant modulus, E ₅₀
			(MPa)
UCML-	102.70	512	26
100			
UCML-	119.69	652	28
120			
UCML-	153.86	679	27
150			
UCML-	187.06	788	39
200			

ตารางที่ 1 ค่ากำลังรับแรงอัคทิศทางเดียว และ โมคูลัส ซีแถนท์ จากการทคสอบแรงอัคทิศทางเดียวแบบต่อเนื่อง

ตารางที่ 1 แสดงค่า σ_u และ E_{50} สำหรับโฟมโพลียูรี เทนที่มีความหนาแน่นแตกต่างกันจากการทคสอบแรงอัค ทิศทางเดียวแบบต่อเนื่อง จากตารางนี้จะเห็นได้ว่าค่า σ_u และค่า E_{50} ของโฟมโพลียูรีเทนที่กลุ่มความหนาแน่น เท่ากับ 100 kg/m³ นั้นน้อยที่สุด ในขณะที่เดียวกันของ กลุ่มความหนาแน่นเท่ากับ 200 kg/m³ นั้นมากที่สุด จึง สรุปได้ว่า เมื่อความหนาแน่นของโฟมโพลียูรีเทนเพิ่มขึ้น ค่า σ_u และค่า E_{50} จะเพิ่มขึ้นตาม เมื่อนำค่า σ_u และค่า E_{50} มาสร้างความสัมพันธ์กับอัตราส่วนระหว่างความหนาแน่น ของโฟมโพลียูรีเทนกับความหนาแน่นของน้ำ (ρ_{pu}/ρ_w) จะ ได้ความสัมพันธ์ดังแสดงในรูปที่ 9 และ 10 ตามลำดับ จาก รูปทั้งสองนี้จะเห็นได้ว่า ค่า σ_u และค่า E_{50} เพิ่มขึ้นกับค่า ρ_{pu}/ρ_w แบบไม่เชิงเส้น ซึ่งสามารถวิเคราะห์ถดถอย (Regression) ได้ด้วยสมการที่ 3 และ 4 ตามลำดับ

$$\sigma_{\rm u}({\rm kPa}) = 2,626.1330 \left(\rho_{\rm pu}/\rho_{\rm w}\right)^{0.7198}$$
 (3)

$$E_{50}(MPa) = 125.4485 (\rho_{pu} / \rho_w)^{0.6983}$$
 (4)

เมื่อ ρ_w คือความหนาแน่นของน้ำมีค่าเท่ากับ 1,000 kg/m³ เพื่อเป็นการตรวจสอบความถูกต้องของสมการ ทำนายค่า σ_u ที่ได้ งานวิจัยนี้จึงได้ประยุกต์ใช้สมการที่ 3 เพื่อทำนายค่า σ_u ของโฟมโพลียูรีเทนและเปรียบเทียบกับ ค่าที่วัดได้จริงจากการศึกษาของ Priddy and Newman [7], Valentino et al. [10] และ DRR [17]

ผลการเปรียบเทียบเริ่มต้นแสดงดังรูปที่ 11(ก) ซึ่งจะ เห็นได้ว่า ผลการทำนายมีก่าสูงเกินกว่าก่าจริงที่วัดได้ ก่อนข้างมาก ทั้งนี้กวามแตกต่างเกิดขึ้นจากสาเหตุดังนี้ 1. อัตราส่วนกวามสูงต่อเส้นผ่านศูนย์กลางของตัวอย่างที่ใช้ ไม่เท่ากัน และ 2. อัตรากวามเกรียดที่ใช้ในการกดตัวอย่าง ไม่เท่ากันดังรายละเอียดที่แสดงในตารางที่ 2 โดยที่ค่า แฟกเตอร์ปรับแก้สำหรับอัตราส่วนความสูงต่อเส้นผ่าน ศูนย์กลางของตัวอย่าง (Correction factor) มีค่าตาม ASTM C 39/C 39M-12 [18]

a .	a 1		e 1	e	a 9	י ש ו	J
ຕາຮາງາງ 🤈	รายละเอยดของราโ	ทรงๆเ	บาดตาอยาง	และอตราคว	าาแครยด	ี่บเการกดตาดย	1.9
	3 10 10 2 2 0 0 1 0 0 4 3 1	119.4 0	R INN 300 IN			6 M I I J I J I I F I F I J U U	1.1

Data source	Shape	Specimen's dimensions (mm) ¹⁾	Aspect ratio ²⁾	Correction factor ³⁾	Strain rate (%/min)
This study	Cylindrical	70×150	2	1	0.87
Priddy and Newman (2010)	Cylindrical	102.6 × 102.6	1	0.91	9.75
Valentino et al. (2014)	Cylindrical	60×60	1	0.91	9.84
DRR (2016)	Rectangular	56× 56× 26	0.5	0.8333, 0.55	0.38

 $^{1)}$ D x H (cylindrical) and W \times L \times H (rectangular)

²⁾ H/D (cylindrical) and H/W (rectangular)

³⁾ from ASTM C 39/C 39M-12 [18]

ร**ูปที่ 11** (ต่อ) ผลการทำนายก่ากำลังรับแรงอัคทิศทาง เดียว (σ_u) ด้วยสมการที่ 3. (ก) กรณีที่ใช้ก่า σ_u ต้นฉบับ และ (ข) กรณีที่ปรับแก้ก่า σ_u สำหรับ อัตราส่วนกวามสูงต่อเส้นผ่านศูนย์กลางของตัวอย่าง และอัตรากวามเกรียดที่ไม่เท่ากัน

นอกจากนี้ พฤติกรรมของโฟมโพลียูรีเทนนั้นขึ้นอยู่ กับอัตราความเครียดอย่างมีนัยยะสำคัญ Tatsuoka et al. [19] ได้เสนอว่าก่าอัตราส่วนระหว่างกวามเก้นกระโดด (Δσ) ต่อกวามเก้นปัจจุบัน (σ) มีกวามสัมพันธ์กับ อัตราส่วนระหว่างอัตรากวามเกรียดไม่กินกลับภายหลัง การกระโดดของกวามเก้น (ἐ^{ir}_{after}) ต่ออัตรากวามเกรียดไม่ กินกลับก่อนหน้าการกระโดดของกวามเก้น (ἐ^{ir}_{before}) ดังแสดงในสมการที่ 5

$$\frac{\Delta\sigma}{\sigma} = \beta \log_{10} \left(\frac{\dot{\varepsilon}_{after}^{ir}}{\dot{\varepsilon}_{before}^{ir}} \right)$$
(5)

ก่าβ คือสัมประสิทธิ์กวามไวต่ออัตรากวามเกรียด (Ratesensitivity coefficient) ซึ่งมีก่าประมาณ 0.2 สำหรับ วัสดุจำพวกโพลีเมอร์ [20]

รูปที่ 11(ข) แสดงการเปรียบเทียบระหว่างค่า σ_u ที่ ใด้จากการทำนายกับค่า σ_u ที่วัดได้จริงจากการทดสอบเมื่อ ได้ทำการปรับแก้สำหรับอัตราส่วนความสูงต่อเส้นผ่าน สูนย์กลางของตัวอย่างและอัตราความเครียดที่ใช้ในการกด ตัวอย่างที่ไม่เท่ากันแล้ว จากรูปนี้จะเห็นได้ว่า ผลการ ทำนายมีค่าใกล้เคียงกับก่าที่วัดได้จริงมากกว่าเดิมเป็นอัน มาก ถึงแม้ว่าจะมีข้อมูลบางจุดที่ผลการทำนายไม่ สอดคล้องกับค่าที่วัดได้จากการทดลองอยู่บ้าง แต่ทั้งนี้อาจ เกิดขึ้นเนื่องมาจากวิธีการนิยามค่ากำลังรับแรงอัดใน ทิศทางเดียว (σ_u) มีความแตกต่างกับวิธีที่ใช้ในงานวิจัยนี้

้ กับระดับความเค้นสำหรับโฟมโพลียูรีเทนที่มี ความหนาแน่นแตกต่างกัน

รูปที่ 12 แสดงความสัมพันธ์ระหว่างอัตราส่วน ปัวซองซีแคนท์ (Secant Poisson's ratio, vsec) กับ ระดับความเค้น (Stress level, σ/σ_u) โดยที่ก่า v_{sec} หาได้ โดย $v_{sec} = -\varepsilon_{h,CG}/\varepsilon_{a,LDT}$ หรือเท่ากับค่าบวกของค่าความ ชันของเส้นตรงที่ลากผ่านจุดเริ่มต้นกับจุดตาม ความสัมพันธ์ระหว่างความเครียดในแนวราบ (Horizontal strain, ε_h) และ ε_a จากรูปที่ 12 จะเห็นได้ ้ว่า 1. เมื่อพิจารณาที่ความหนาแน่นเท่ากัน ค่า v_{sec} จะลดลง เมื่อค่า σ/σ_น เพิ่มขึ้น และ2. เมื่อพิจารณาที่ค่า σ/σ_น เท่ากัน ค่า v_{sec} จะลดลงเมื่อความหนาแน่นของโฟมโพลียูรีเทน เพิ่มขึ้น ดังนั้นจึงกล่าวได้ว่าค่า vscc นั้นขึ้นอยู่กับค่า σ/σ_u และความหนาแน่นของโฟมโพลียูรีเทน พฤติกรรม ดังกล่าวของโฟมโพลียูรีเทนมีความสอดคล้องกับผล การศึกษาของ Wei et al. [13] งานวิจัยนี้ได้ใช้สมการ เชิงประจักษ์ที่มีรูปแบบดังสมการที่ 6 ในการวิเคราะห์ ถดถอยหาความสัมพันธ์สำหรับพฤติกรรมดังกล่าว

$$v_{scc} = \left[A - B(\sigma/\sigma_{u})\right] + Cexp\left[-\left(\rho_{pu}/\rho_{w}\right)/D\right] (6)$$

โดยที่ A, B, C, และ D มีค่าเท่ากับ 0.2544, 0.1416, 65.1932 และ 0.0190 ตามลำดับ

ร**ูปที่ 13** ความสัมพันธ์ระหว่างความเกรียดคงก้างเมื่อรับ น้ำหนักกระทำแบบวัฏจักรกับจำนวนรอบวัฏจักรที่ก่า CSR ต่างๆ ตั้งแต่ 0.2 ถึง 0.8 สำหรับโฟมโพลียูรีเทน กลุ่มความหนาแน่นเท่ากับ 200 kg/m³

ร**ูปที่ 14** ความสัมพันธ์ระหว่างความเกรียดคงก้างเมื่อรับ น้ำหนักกระทำแบบวัฏจักรกับจำนวนรอบวัฏจักรที่ค่า CSR เท่ากับ 0.8 สำหรับโฟมโพลียูรีเทนทุกกลุ่ม ความหนาแน่น

4.2 ผลการทดสอบแรงอัดทิศทางเดียวแบบวัฏจักร

รูปที่ 13 แสดงความสัมพันธ์ระหว่างความเครียด ้ดงค้างเมื่อรับน้ำหนักกระทำแบบวัฏจักร (Cyclic residual strain, ɛ_{cvN}) กับจำนวนรอบวัฏจักร (N_c) ที่ค่า CSR เท่ากับ 0.2 ถึง 0.8 ของโฟมโพลียูรีเทนกลุ่มความ หนาแน่นเท่ากับ 200 kg/m³ จะเห็นได้ว่าค่า ε_{cvN} ที่ CSR เท่ากับ 0.2 ถึง 0.5 ไม่ได้เพิ่มขึ้นกับ N_c อย่างมีนัยยะ สำคัญ หรืออาจกล่าวได้ว่าค่า ɛ_{cvN} จะเริ่มพัฒนาอย่างมีนัย ียะสำคัญก็ต่อเมื่อค่า CSR มากกว่า 0.5 หรือเมื่อค่าน้ำหนัก กระทำแบบวัฏจักรมีค่ามากกว่าครึ่งหนึ่งของก่า σ_{u} ดังนั้น งานวิจัยนี้จึงสนใจศึกษาการพัฒนาค่า ɛ_{cvN} เมื่อค่า CSR เท่ากับ 0.6, 0.7 และ 0.8 เท่านั้น เมื่อพิจารณาที่ค่า CSR ดังกล่าวจะสังเกตได้ว่า ค่า ɛ_{cvN} ขึ้นอยู่กับทั้งค่า N_c และค่า CSR กล่าวคือ ค่า ϵ_{cvN} จะเพิ่มขึ้นเมื่อค่า N_c และค่า CSR เพิ่มขึ้น รูปที่ 14 แสดงความสัมพันธ์ระหว่างค่า _{EcvN} กับ ้ค่า N。ที่ค่า CSR เท่ากับ 0.8 สำหรับโฟมโพลียูรีเทนทุก กลุ่มความหนาแน่น ซึ่งจะเห็นได้ว่าค่า ε_{cvN} ยังขึ้นอยู่กับ ้ความหนาแน่นของโฟมโพลียูรีเทนด้วย ดังนั้นจึงอาจกล่าว ใด้ว่าค่า ɛ_{cyN} ขึ้นอยู่กับค่า N_c, ค่า CSR และค่าความ หนาแน่นของโฟมโพลียูรีเทน (ρ_{pu}) งานวิจัยนี้ได้ใช้ สมการเชิงประจักษ์ที่มีรูปแบบคังสมการที่ 7 ในการ วิเคราะห์ถดถอยหาความสัมพันธ์สำหรับพฤติกรรม ดังกล่าว

$$\epsilon_{cyN}$$
 (%) = A(CSR)^{3.9234} (N_c)^{0.5892} (7n)

$$A=47.285(\%)(\rho_{\rm pu}/\rho_{\rm w}) \tag{70}$$

รูปที่ 15 ความสัมพันธ์ระหว่างความเครียดแนวแกนกับ ความเล้นแนวดิ่งจากการทคสอบการอัดตัวในหนึ่งมิติ สำหรับโฟมโพลียูรีเทนกลุ่มความหนาแน่นเท่ากับ 200 kg/m³

4.3 ผลการทดสอบการอัดตัวในหนึ่งมิติ

รูปที่ 15 แสดงความสัมพันธ์ระหว่างค่า ε_a กับความ เก้นในแนวดิ่ง (Vertical stress, σ_v) จากการทดสอบการ อัดตัวในหนึ่งมิติสำหรับ โฟมโพลียูรีเทนกลุ่มความ หนาแน่นเท่ากับ 200 kg/m³ ซึ่งจะสังเกตได้ว่าก่า ε_a จะ เพิ่มขึ้นอย่างรวดเร็วเมื่อค่า σ_v เกินค่าความเค้นครากใน แนวดิ่ง (Yield vertical stress, σ_y) ซึ่งในงานวิจัยนี้ได้ นิยามก่า σ_y จากจุดบนความสัมพันธ์ระหว่าง log(ε_a) กับ log(σ_v) ที่มีความโค้งมากที่สุดหรือจุดที่รัศมีความโค้ง (Radius of curvature, ρ) น้อยที่สุด เมื่อนำค่า σ_y ที่ นิยาม ได้สำหรับทุกกลุ่มความหนาแน่นของโฟม โพลียูรีเทนมาแสดงกับค่า ρ_{pu}/ρ_w จะได้ความสัมพันธ์ ดังแสดงในรูปที่ 16 ซึ่งจะเห็นได้ว่าก่า σ_y เพิ่มขึ้นเมื่อ ความหนาแน่นของโฟมโพลียูรีเทนมีค่าเพิ่มขึ้นโดย ลักษณะความสัมพันธ์เป็นแบบไม่เชิงเส้นดังสมการที่ 8

$$\sigma_{\rm v}({\rm kPa}) = 3,606.7078({\rm kPa})(\rho_{\rm pu}/\rho_{\rm w})^{0.8567}$$
 (8)

4.4 ผลการทดสอบการซึมผ่านของน้ำ

ค่าสัมประสิทธิ์การซึมผ่านของน้ำ (Coefficient of permeability, k) ของโฟมโพลียูรีเทนที่ได้จากการ ทคสอบการซึมผ่านของน้ำในงานวิจัยนี้มีค่าอยู่ในช่วง 10⁻³ ถึง 10⁻⁴ cm/s (10⁻⁵ ถึง 10⁻⁶ m/s) ซึ่งสามารถบ่งบอก ได้ว่าโฟมโพลียูรีเทนเป็นวัสดุที่มีการซึมผ่านน้ำต่ำถึงปาน กลาง [21] เมื่อสร้างความสัมพันธ์ระหว่างค่า k กับค่า ρ_{pu}/ρ_w ดังแสดงในรูปที่ 17 จะเห็นได้ว่าก่า k ลดลงเมื่อ ความหนาแน่นของโฟมโพลียูรีเทนเพิ่มขึ้นโดยมีลักษณะ ความสัมพันธ์เป็นแบบไม่เชิงเส้นดังสมการที่ 9

$$k(cm/s)=2.8262\times10^{-5}(cm/s)(\rho_{pu}/\rho_{w})^{-1.6460}$$
 (9)

5. สรุปผลการศึกษา

งานวิจัยนี้นำเสนออิทธิพลของความหนาแน่นต่อ สมบัติทางวิศวกรรมเทคนิคธรณีของโฟมโพลียูรีเทนขยาย ตัวสูง การทดสอบประกอบด้วย การทดสอบแรงอัดใน ทิศทางเดียว การทดสอบการอัดตัวในหนึ่งมิติ และการ ทดสอบการซึมผ่านของน้ำ จากผลการทดสอบและการ วิเคราะห์ สามารถสรุปผลการศึกษาได้ดังนี้

- ค่ากำลังรับแรงอัดทิศทางเดียว (σ_u) และค่าโมดูลัสซี แคนท์ (E₅₀) เพิ่มขึ้นเมื่อความหนาแน่นของโฟม โพลียูรีเทน (ρ_{pu}) เพิ่มขึ้น ในทางกลับกัน ค่า อัตราส่วนปัวซองซีแคนท์ (v_{sec}) มีค่าลดลงเมื่อค่า ρ_{pu} และระดับความเค้น (σ/σ_u) เพิ่มขึ้น
- เมื่ออัตราส่วนความเค้นวัฏจักร (CSR) มีค่าน้อยกว่า
 0.5 การพัฒนาความเครียดคงค้างเมื่อรับน้ำหนัก กระทำแบบวัฏจักรนั้น ไม่มีนัยยะสำคัญ แต่เมื่อค่า
 CSR มากกว่า 0.5 ความเครียดคงค้างเมื่อรับน้ำหนัก กระทำแบบวัฏจักรจะเพิ่มขึ้นเมื่อค่า ρ_{pu} ค่า CSR และจำนวนรอบวัฏจักร (N_c) เพิ่มขึ้น
- เมื่อ โฟม โพลียูรีเทนถูกอัดตัวในหนึ่งมิติ ค่าความเก้น กรากในแนวดิ่ง (σ_y) จะเพิ่มขึ้นเมื่อค่า ρ_{pu} เพิ่มขึ้น
- ค่าสัมประสิทธิ์การซึมผ่านของน้ำ (k) ลดลงเมื่อค่า
 ρ_{pu} เพิ่มขึ้น

งานวิจัขนี้ได้สร้างสมการเชิงประจักษ์เพื่อทำนายค่า สมบัติทางวิศวกรรมเทคนิคธรณีดังที่ได้กล่าวมาข้างต้นเมื่อ ทราบความหนาแน่นของโฟมโพลียูรีเทน ซึ่งจะมี ประโยชน์ต่อไปสำหรับการออกแบบทางวิศวกรรมโดย คำนึงถึงความหนาแน่นของโฟมโพลียูรีเทนที่เพียงพอต่อ สมบัติที่ต้องการ จึงจะสามารถทำให้การใช้งานโฟม โพลียูรีเทนเป็นไปอย่างมีประสิทธิภาพ

6. กิตติกรรมประกาศ

งานวิจัขนี้ ได้รับการสนับสนุนเงินทุนวิจัยและ วิชาการตามแผนกลยุทธ์เพื่อการพัฒนาภาควิชาวิสวกรรม โยธา ภายใต้โครงการการสร้างความเข้มแข็งให้กับหน่วย วิจัยในภาควิชาวิสวกรรมโยธา มจธ. ประจำปีงบประมาณ 2561 (CE-KMUTT 6118)

เอกสารอ้างอิง

- [1] Soralump, S. (2004). Geotechnical engineering problems and tentative solutions in Thailand, paper presented in *the Young Geotechnical Engineering Conference*, Taipei, Taiwan.
- Buzzi, O., Fityus, S. and Sloan, W.S. Structure and Properties of Expanding Polyurethane Foam in the Context of Foundation Remediation in Expansive Soil. *Mechanics of Materials*, 2008; 40: 1012-1021.
- [3] Buzzi, O., Fityus, S. and Sloan, W. S. Use of Expanding Polyurethane Resin to Remediate Expansive Soil Foundations. *Canadian Geotechnical Journal*, 2010; 47: 623-634.
- [4] Yu, L., Wang, R. and Skirrow, R. The Application of Polyurethane Grout in Roadway Settlements Issues. The Canadian Geotechnical Conference 2013, Canada.
- [5] Chelat, D., Jais, I. B. Mohd., Razali, R. and Tawaf, M. K. Performance Comparison Between Polyurethane Injection Pile and Slab System Against Lightweight Concrete as a Ground Improvement Using Finite Element Analysis. *Journal of Applied Sciences Research*, 2015; 11: 11-16.
- [6] Somarathna, H. M. C. C, Raman, S. N., Mohtotti, D., Mutalib, A. A. and Badri, K. H. The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review. *Construction and Building Materials*, 2018; 190: 995-1014.
- [7] Priddy, L. P. and Newman, J. K. (2010). Full-scale Field Testing for Verification of Mechanical Properties of Polyurethane Foams for Use as Backfill in PCC Repairs. *Journal of Materials in Civil Engineering*, 2010; 22: 245-252.
- [8] Efstathiou, K. Synthesis and Characterization of a Polyurethane Prepolymer for the Development of a Novel Acrylate-Based Polymer Foam. Budapest University of Technology and Economics (BME), 2011; 1-57.
- [9] Queheillalt, D. T., Katsumura, Y. and Wadley, H. N. G. Synthesis of Stochastic Open Cell Nibased Foams. *Scipta Mertialia*, 2004; 50: 313-317.
- [10] Valentino, R., Romeo, E. and Stevanoni, D. An Experimental Study on the Mechanical Behaviour of Two Polyurethane Resins Used for Geotechnical Applications. *Mechanics of Materials*, 2014; 71: 201-113.
- [11] Gibson, L. J. and Ashby, M. F. Cellular Solids. Cambridge University Press, Cambridge, UK, 1997.
- [12] Saha, M. C., Mahfuz, H., Chakravarty, U. K., Uddin, M., Kabir, Md. E. and Jeelani, S. Effect of Density, Microstructure, and Strain Rate on Compression Behavior of Polymeric Foams. *Materials Science and Engineering*, 2005; A406: 328-336.
- [13] Wei, Y., Wang, F., Gao, X. and Zhong, Y. Microstructure and Fatigue Performance of Polyurethane Grout Materials Under Compression. *Journal of Materials in Civil Engineering*, 2017; 29: 1-8.
- [14] ASTM D 695-08. Standard Test Method for Compressive Properties of Rigid Plastic. ASTM International, West Conshohocken, PA, USA.
- [15] AASHTO T 307-99. Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. American Association of State Highway and Transportation Officials.

- [16] ASTM D 5084-16a. Standard Test Method for Measurement of Hydraulic conductivity of Saturated Porous Materials. ASTM International, West Conshohocken, PA, USA.
- [17] กรมทางหลวงชนบท. การแก้ไขปัญหาการทรุดตัวของเชิงลาดสะพานด้วยโพลียูริเทนโฟม (PU-Foam). สำนักบำรุง

ทาง, กรมทางหลวงชนบท, 2559.

- [18] ASTM C 39/ C 39M-12. Standard Test Method for Compressive strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, USA.
- [19] Tatsuoka, F., Di Benedetto, H., Enomoto, T., Kawabe S. and Kongkitkul, W. Various Viscosity Types of Geomaterials in Shear and Their Mathematical Expression. *Soils and Foundations*, 2008; 48: 41-60.
- [20] Kongkitkul, W., Tatsuoka, F. and Hirakawa, D. Creep Rupture Curve for Simultaneous Creep Deformation and Degradation of Geosynthetic Reinforcement. *Geosynthetics International*, 2007; 14: 189-200.
- [21] Terzaghi, K., Peck. R. B. and Mesri, G. Soil Mechanics in Engineering Practice. Wiley, J. and Sons, T. (Ed.), Canada, USA, 1996; 73.