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ABSTRACT 

 This paper presents the integration of fuzzy logic (FL) and neuro-fuzzy (NF) with genetic 
algorithm (GA) to propose FL controller (FLC-GA) and NF controller (NFC-GA) based on Maximum 
Power Point Tracking (MPPT) for the solar photovoltaic (PV) module. Multi-Objective Hierarchical 
GA (MOHGA) is used to extract the fuzzy rules and simultaneously fine-tuned the shape of membership 
functions and the system parameters. In the simulation, the current-voltage characteristic from the PV 
equivalent circuit model is formulated from the neural networks estimation model in order to calculate 
the referenced MPP at various weather conditions. It is shown that the FLC-GA performs the best 
stabilized accuracy at the steady state over the conventional FLC, the NFC-GA, the conventional 
incremental conductance (IC) method and the perturb and observe (P&O) method respectively. 
However, for the case of the time response at the transient state, the NFC-GA performs the fast tracking 
to the MPP over the conventional FLC, the FLC-GA, the P&O method, and the IC method respectively. 
Furthermore, the high complex structure of NFC-GA including many system parameters which may 
lead ineffective controller is optimized through MOHGA. The optimized NFC-GA is considered to 
perform the best result both transient and steady state except for the existing of the severe overshoot 
which is not suitable for the practice. 
Keywords: Fuzzy logic control, Neuro-fuzzy control, Multi-objective hierarchical genetic algorithm, 
Photovoltaic module. 
 
I. INTRODUCTION 

The electrical power generated by PV 
changes continuously with the environmental 
conditions mainly the irradiance (G) and ambient 
temperature (T) which are  disadvantages. To 
obtain the maximum efficiency of the PV, it is 
necessary to operate the PV at its maximum 
power point (MPP) for all environmental 
conditions. To overcome this problem, the 
maximum power point tracking (MPPT) 
technique will be developed and applied in the 
PV power system. The MPPT control algorithm 
is usually applied in the DC-DC boost converter 
which is normally interfaced between PV panel 
and load. The operating point is converged to the 
MPP by varying the duty-cycle of the power 
converter through the control command from the 
pulse width modulation (PWM) signal. The 
typical diagram of power control based MPPT of 
the PV system with the switching interface is 
shown in Fig.1.  

 
Figure 1 Typical  diagram of power control 

based MPPT of PV system. 
 

Extracting the maximum power output from 
the PV panel which is available only at one 
spectific condition, a number of control 
algorithms based on MPPT are developed in 
various ways. AI based methods are increasingly 
popular one, which are adopted in MPPT due to 
the learning property in interpolation and 
extrapolation of the non-linear nature of any data 
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with high accuracy. Neural Networks (NNs) is a 
powerful technique for learning the relationship 
of input-output data but it lacks the heuristic 
sense and works as a black box [1]. Some of 
applications of NNs based MPPT in PV are 
presented in [2]-[4]. On the other hand, FL 
control (FLC) is implemented without requiring 
such the big data and sensor. It has the capability 
of mapping heuristic and linguistic terms of the 
unknown system into numerical values through 
the designed fuzzy rules and membership 
function. It also returns the heuristic output by 
quantifying the actual numerical data into 
heuristic and linguistic term [5]. The FLC based 
MPPT for PV sytem is available in [6]-[7] which 
have high tracking accuacy under steady state of 
weather condition but still exhibits some trade-
offs between tracking speed and tracking 
accuracy at the fast change weather condition. 
The difficult of parameter selection of the 
membership functions and fuzzy rules is the main 
criteria which directly rely on the prior 
knowledge of the system. Recently, it integrates 
the potential benefits of NNs and FL to form a 
hybrid system as ANFIS architecture in order to 
estimate the MPP which is utilized in [8]-[11].   

In this work, an increasing of the efficiency 
on energy conversion of solar PV by static MPPT 
method through the AI approaches including 
adaptive fuzzy and neuro-fuzzy controller is our 
main goal. In order to overcome the parameters 
and rules selection, the optimization technique as 
multi-objective hierarchical genetic algorithm 
(MOHGA) has been introduced to generate the 
optimized FLC-GA and NFC-GA under the 
rapidly change weather (i.e. G and T) conditions. 
To avoid the using of one more controller and 
without more expensive sensor, the duty cycle is 
directly generated as the output by account for the 
derivative of power with respect to voltage or 
current and its variation as the inputs is also 
considered here. The comparison performance of 
both  transient and steady state for all proposed 
controllers with the conventional controllers can 
be used for decision-making to select the 
appropriate controller.  

The rest of the paper is organized as follows. 
The overall system configuration including 
equivalent circuit of PV modeling with its 
parameters, the I-V and P-V characteristic 
formulation and the switching device of the 
interfacing circuit are detailed in section II. Some 
various controllers are conceptualized to describe 

the design in step by step procedure presented in 
section III. Next, the structural design of 
controllers and their controlled results are shown 
in section IV with the discussions. Finally, the 
conclusion  is made at the end of the paper in 
section VI. 
 
II. PV SYSTEM AND INTERFACE  

II (A) PV modeling 
This section exhibits the solar PV 

module I-V characteristic obtained from the 
simulation by Matlab/Simulink. The convenient 
and most common way in most simulation of PV 
model is the single diode lumped equivalent 
circuit model [12] which is composed of 5 
parameters i.e. the photo-current (Iph), diode 
saturation current (Isd), series resistance (Rs), 
parallel or shunt resistance (Rsh), and the ideality 
factor of diode (n). In order to track the MPP of 
the PV system by the various control techniques, 
the accuracy of method depends on the 
knowledge of these PV parameters which are 
usually extracted from the experimental data. An 
equivalent circuit of PV module which is 
referenced in Fig. 2 and composed of Ns cells in 
series connection produces the non-linear IL-VL 
characteristic and can be expressed as 

 /
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L S L S
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where KB is Boltzmann’s constant, q is the 
electronic charge, and T is the PV temperature in 
Kelvin. From eq. (1), the parameters of circuit are 
determined from the I-V characteristic which is 
preliminarily extracted by the proposed GA. 

 

 
Figure 2 The equivalent circuit with single 

diode model of the PV module. 
       
 In order to describe the influence of 
weather conditions on these parameters, the 
translation method was applied by using the 
parameter translation formula from eq. (2)-(6). 
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         The I-V characteristic of the PV module 
at various weather conditions was finally off-line 
captured by NNs. While the translation 
parameters and input variable (voltage and 
current) will be used as the input of NNs to form 
the PV module characteristic which is illustrated 
in Fig. 3. The results were demonstrated through 
linear variation of short circuit current with G in 
eq. (7) and variation of open-circuit voltage with 
T in eq. (8) from condition (G1,T1) to (G2,T2). 
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where  and  are the current and voltage 
temperature coefficients of the test specimen in 
the standard irradiance for correction and within 
the temperature range of interest, and  is a curve 
correction factor which acts as the temperature 
coefficient of the internal series resistance. In this 
work it is resulted that  = -0.048C-1,  = 
-0.0194C-1 and   = 0.06  
 
 

 
Figure 3 The block diagram of I-V characteristic 

generation of the PV module at the various 
weather conditions by the NNs model.  

          
From Fig. 3, the NNs are in simply 3 

layers in the structure i.e. input layer with input 
nodes, hidden layer with N hidden node and 
nonlinear function commonly hyperbolic tangent 
function g(.), and an output layer with linearly 
transfer function f(.). The estimated current (Iest) 
as the output of the NNs is the weighted 
summation of each hidden layer neuron’s output 
which can be expressed as 

  7(2) (2) (1) (1)
11 1

N
est j ij i ij iI f b w g w PV b      ,  (9) 

where (1)
ijw  are the weight values between input 

node ith  and hidden node jth, (1)
ib are the bias 

values of input node, (2)
1jw  are the weight values 

of hidden node jth  and the output node, and (2)b is 
the bias of output node. PVi is denoted the input 
variables which are composed of Iph, Isd, Rs, Rsh, 
n, I and V. The P-V characterized by the hybrid 
NNs with parameter translation method initiated 
parameter extraction by GA are shown in Fig. 4 
(a)-(b). The MPPs calculated from the simulated 
I-V characteristeic are used as  references of the 
controlled outcomes from the proposed 
controllers in section IV.   
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(a)                                                                                                             (b) 

Figure 4 The P-V characteristic of the PV module in the case of  
(a) varying of the irradiance conditions, and (b) varying of the temperature conditions. 

 
II (B) DC-DC Boost converter 

      DC-DC boost converter can be used as 
switching-mode regulator to convert an 
unregulated dc from PV to a regulated dc output 
voltage for the load. PWM is normally regulated 
the voltage and MOSFET or IGBT is used as the 
switching device. To step up the dc voltage, the 
DC-DC boost converter is introduced to interface 
the PV module and the resistive load which was 
shown in Fig. 1. Through the averaging concept, 
the input-output voltage relationship for 
continuous conduction model under steady state 
is here by given 

1
1

o

in

V
V D




  ,         (10) 

where D is duty cycle and varies between 0 and 
1, thus the output voltage must be higher than the 
input voltage in magnitude. Similary, the 
relationship between input impedance (Rin) and 
load impedance (RLoad) of a boost converter can 
be expressed as 

2(1 )in LoadR D R     .        (11)  
From eq. (11), it’s quite clear that by 

varying the duty cycle, the input resistance can 
easily be changed. The increasing duty cycle 
resulted the decreasing of input impedance, the 
operation point is moved to the intersection of the 
load line number 2 and I-V curve in Fig. 5. In 
opposite, the operation point moves to the 
intersection of the load line number 3 and I-V 
curve. Until duty cycle converges to the optimal, 
the operation point achieves the MPP at the 
intersection of load line number 1 and I-V curve. 

 

 
Figure 5 The transition of the operating point 

location dues to the variation of load impedance. 
 

After filtering the required data from the 
PV panal (V and I) through A/D module, the 
differently implemented controller based MPPT 
schemes will perform to provide the PWM signal 
for the boost converter in order to generating the 
controlled duty ratio.  

 
III. CONTROLLER BASED STATIC MPPT 
TECHNIQUE 

The detailed concept and stepwise 
procedure including of P&O and IC method,  the 
conventional FLC, FLC-GA, and NFC-GA 
method are described in the sub-section III(A)-
(D) respectively. 

III (A) Perturb & Observe (P&O) and 
Incremental conductance (IC) method based 
MPPT 

In this method, the power P1 corresponds 
with the instantly measured I-V from PV panel is 
firstly computed to observe the power P2 after 
perturbation of a small voltage (V) or duty cycle 
change (d) to the converter in one specific 
direction. In comparison, if P2 is more than P1 
then the perturbation is in right direction. 
Otherwise, the reverse direction is repeatedly 
done until it met the MPP and also corresponding 
MPP voltage. The disadvantages of this method 
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are concurrently seen with the experimental 
results in section IV(A). 

To improve the lack of controlled 
response efficiency from P&O based MPPT 
under fast varying weather conditions, the 
incremental conductance or IC method [13] is 
introduced. This method always adjusts the 
output voltage according to the MPP voltage 
based on the incremental and instantaneous 
conductance (G) of PV module. It exploits the 
assumption of the ratio of change in output 
conductor is equal to the negative output 
conductor at the MPP (P/V = 0 while P/V < 
0 and P/V > 0 means the operating point is to 
the right and left of MPP respectively) or 

I IG
V V


   


  .         (12) 

      
If this condition is not met that means 

I/V > -I/V (operating point at the left of MPP) 
or otherwise, the direction at this operating point 
must be perturbed until the relationship in eq. 
(12) succeed. Thus, MPP can be tracked by 
comparing the instantaneous conductance (I/V) to 
the incremental conductance (G). It can be 
determined that the MPPT has reached the MPP 
and stop perturbing the operating point while 
P&O method allows the operating point oscillates 
around the MPP. Although, the IC method is 
more complicated compared to the P&O method, 
it can be easily implemented by the advancement 
of microcontrollers. However, this method 
requires the accuracy improvement at the steady 
state [14].  

III (B) The conventional fuzzy logic 
control (FLC) based MPPT 

In this work, the slope of PV module’s P-
V curve, S(k) (P/V) and the change of slope, 
S(k) are used as the fuzzy input variable for E 
and CE respectively which are defined by eq. (13) 
and (14) respectively where P(k) and P(k-1) is the 
generated power from PV at time k and k-1 
respectively. S(k) can easily be determined the 
position of the operation point from the MPP 
which facilitates the increase or decrease of the 
duty cycle ratio while S(k) can be used to 
determine the movement direction of the 
operating point or the magnitude of the change of 
duty cycle ratio to prevent fluctuations. The 
output of the FL is the difference of duty cycle 
(D) or the duty cycle (D) which are defined by 

eq. (15) and (16) respectively where FGA is 
denoted FLC designed parameter by GA, 
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P k P k V k I k V k I kE k
V k V k V k V k

    
 

   
  (13) 

( ) ( ) ( 1)CE k E k E k             (14)  
( 1) ({ ( ), ( )})D k FGA E k CE k           (15) 

( 1) ( ) ( 1)D k D k D k            (16) 
 

Typically, there are 3 steps of FLC with 
includes fuzzification, inference, and 
defuzzification. Fuzzification step represents the 
different crisp variable by the predefined fuzzy 
subsets. In this work, slope of the P-V curve and 
the change of these slopes are selected as crisp 
variables. By our consideration, the crisp 
universe should be partitioned into five different 
subsets according to 5 regions of P-V curve i.e. 
left-far from MPP, left-near to MPP, neighbor of 
MPP, right-near to MPP, and right-far from MPP 
that generate the total 25 subsets in fuzzy output 
universe. For partition of crisp universe, the 
popular Gaussian membership function has been 
chosen without any selection and representation 
in eq. (17), 

 
2

( ) exp i
i

i

x cx


  
   
   

 .         (17) 

Where x is the crisp variable, c and  are the mean 
and standard deviation of Gaussian function. The 
degree of membership function () ranging from 
0 to 1 of each fuzzy input variable (E and CE) are 
evaluated for the given crisp input. Then, the 
rules that contain IF-THEN statements which 
dictate the statement output are evaluated 
according to the compositional rule of 
interference. For example,  
 
 Rule 1:   if E is NB and CE is PB then D is PB 
 Rule 2:   if E is NB and CE is NB then D is Z 
 
Where NB, PB, and Z is denoted by the negative 
big, positive big and zero respectively. 

In this paper, we used Mamdani’s 
interference typed Max-Min operation which is 
formulated as, 
 

( ) max{min{ ( ), ( )}}C A BD E CE           (18) 
 

where A(E), B(CE), and C(D) are the 
membership value of the membership function of 
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E, CE and D respectively. After that, defuzzified 
this fuzzy output into a crisp output using the 
centre of gravity (COG) method, 

1 1
( ) / ( )

n n

COG j C j C j
j j

D D D D 
 

             (19) 

 
where n is the number of fuzzy rules. In this 
work, the parameters of the membership function 
of the inputs and output are trial and error tuned 
and the interference rules have been experienced.  

The design experiment results for MF 
selection between triangular and Gaussian MF 
with five MFs for input and output variable at the 
STC are shown in the section IV(B). To build up 
the FLC based MPPT, a familiar experience of 
the user on traditional simplified the unknown 
system through the easily and understandable 
fuzzy rules. However, the number of fuzzy rules 
is usually excessive and the topology of the fuzzy 
sets are inappropriate by this human learning 
method. Since GA is the powerful searching 
method for optimal solutions in irregular and 
high-dimensional solution spaces. Another 
technique from using GA is adopted to generate 
the optimized fuzzy model are presented in the 
next sub-section. 

 
III (C) FLC-GA based MPPT 

In this work, GA is also used to optimize 
the parameters and control rules in FLC based 
MPPT for rapidly change of weather conditions 
both irradiance and temperature. However, due to 
the local minimum trap and slowly convergence 
to the global solution, GA may be accelerated by 
the initial solution from the solution of the 
previously FLC including membership function 
parameter and user experienced rules. The 
concept of the FLC based MPPT optimized by 
GA are shown by the block diagram in Fig. 6. 
       

 
Figure 6 The block diagram of FLC with the 

parameter tuning by GA (FLC-GA) for MPPT. 
 

The detailed stepwise procedures are 
described as follow; 

Step1: The membership function for 2 
inputs (E, E or CE) and one output (D or D) 
are constructed where each has 5 Gaussian 
membership functions as Negative Big (NB), 
Negative Small (NS), Zero (Z), Positive Small 
(PS), and Positive Big (PB). Each Gaussian 
function of each membership function has 2 
adjusted parameters i.e. mean (C) and standard 
deviation ( or W). Then, the total of 352= 30 
parameters and 25 rules are adjusted and selected 
by GA in the evolution loop. 

Step2: Initial population is generated by 
MPOP chromosome. Each chromosome possesses 
vector entries with certain length of gene which 
is coded by binary code with the length of Nbit. 
The initial generation index (Gen) is then set to 
zero. In addition, the speed of GA procedure is 
accelerated by adding the extra chromosome 
which is tuned the parameter and designed the 
rule through human knowledge from the previous 
result. 

Step3: The binary string of each gene is 
normalized within the range [Qmin, Qmax] by the 
linear mapping function as 

, ,
,

( )
( ) ( )

2 1Bit

max i min i
min iN

Q Q
gene i y i Q


 


  .       (20) 

Here, y(i) is real value converted from 
binary string of each gene. In this paper, the 
parameter c and  of input E, and E, and output 
D are normalized within the range [-20, 20], 
[0.1, 10], [-10, 10], [0.1, 5], [-0.9, 0.9], and [0.01, 
0.5] respectively. 

Step4: The output, D of each 
chromosome is computed by the FLC based on 
MPPT. The PWM is then generated to switch the 
MOSFET switch of converter. The output 
voltage at the current operating point moves to 
the new location according to the I-V 
characteristic of PV at the given weather 
condition. The difference between the power at 
time k (Pk,i) and reference power (Pref) is 
cumulatively sum up until the power difference 
does not change. The totally error, Errork,i is 
evaluated and scored for ranking chromosome as 
to  their fitness function as, 

( , ) 1
POP

i
i

MF
Err C W




,             (21) 

 



166 167

742

E, CE and D respectively. After that, defuzzified 
this fuzzy output into a crisp output using the 
centre of gravity (COG) method, 

1 1
( ) / ( )

n n

COG j C j C j
j j

D D D D 
 

             (19) 

 
where n is the number of fuzzy rules. In this 
work, the parameters of the membership function 
of the inputs and output are trial and error tuned 
and the interference rules have been experienced.  

The design experiment results for MF 
selection between triangular and Gaussian MF 
with five MFs for input and output variable at the 
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(PS), and Positive Big (PB). Each Gaussian 
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vector entries with certain length of gene which 
is coded by binary code with the length of Nbit. 
The initial generation index (Gen) is then set to 
zero. In addition, the speed of GA procedure is 
accelerated by adding the extra chromosome 
which is tuned the parameter and designed the 
rule through human knowledge from the previous 
result. 

Step3: The binary string of each gene is 
normalized within the range [Qmin, Qmax] by the 
linear mapping function as 
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Here, y(i) is real value converted from 
binary string of each gene. In this paper, the 
parameter c and  of input E, and E, and output 
D are normalized within the range [-20, 20], 
[0.1, 10], [-10, 10], [0.1, 5], [-0.9, 0.9], and [0.01, 
0.5] respectively. 

Step4: The output, D of each 
chromosome is computed by the FLC based on 
MPPT. The PWM is then generated to switch the 
MOSFET switch of converter. The output 
voltage at the current operating point moves to 
the new location according to the I-V 
characteristic of PV at the given weather 
condition. The difference between the power at 
time k (Pk,i) and reference power (Pref) is 
cumulatively sum up until the power difference 
does not change. The totally error, Errork,i is 
evaluated and scored for ranking chromosome as 
to  their fitness function as, 

( , ) 1
POP

i
i

MF
Err C W




,             (21) 

 

where 

,( , ) | |i ref k ik
Err C W P P     .        (22) 

Thus, the higher scoring chromosome has the 
lower fitness values.  

Step5: The parents based on their fitness 
values are chosen by two methods. First, the 
elitism method is used to retain the best 
chromosome that passes through the 
reproduction step at 10% . Second, the roulette 
wheel method is used to employ the remaining by 
assigning a higher probability of selection to 
individuals with higher fitness values.  

Step6: Reproduction by crossover and 
mutation process with the probability PC and PM 
respectively options to determine how the GAs 
creates children for the next generation.  

Step7: The new generation from step 6 is 
brought to replace the current population. Steps 
2-6 are then repeated in the new generation until 
convergence is achieved. The algorithm stops if 
it meets the stopping criterions which are the 
setting error and maximum iteration. 

By the off-line simulation at STC with the 
setting reference power (Pref) of 130 Watt, 
MOHGA randomly generates 25 chromosomes 
(MPOP) which are composed of the genes of 
parameter E, E, and D for shaping the Gaussian 
function and 25 fuzzy rules corresponding each 5 
membership functions of input parameter E and 
E for simultaneous selecting the fuzzy rules as 
following; 
Chromosome |     E     |     E      |     D       | Rule   | 
Parameter      |(CE,E) |(CE, E)|(CD, D) |    -     | 
Gene             |1|      |10|11|      |20|21|        |30|31|  |55|. 
 Each gene contains 8 bits of binary (Nbit) 
which are converted to real number for the 
evaluation. During the GA process, the initial 
operating point of PV current and voltage are set 
to 0 A and 0 V which corresponds to 0 W for the 
initial power. The initial different power (E), 
different of E (E) and duty cycle ratio are also 
set to be zero. The individual chromosome takes 
these initial input variables into the fuzzification 
step through the MFs which are the Gaussian 
function with center CE and CE and standard 
variation E and E. In the rule operation, 
typically Mamdani inference uses the rules which 
are in the tail of the chromosome. In the finally 
FLC step, the defuzzification process defuzzifies 
the fuzzy output into a crisp output using the 
centre of gravity (COG) method in eq. (19) 

through the MFs of parameter D which has 
center CD and standard variation D.  The new 
operating point (V, I) is generated with 
simultaneously the calculated power. In this 
work, accounting for the speed of the 
convergence to the reference power, the resulted 
power at each sampling time, kT of individual 
chromosome Pk,i are recorded and compared with 
the Pref to produce the residual following by eq. 
(22). The ranking of chromosomes are followed 
the fitness function in eq. (21). The best 
chromosomes are saved by 10% of the total 
chromosome through the elitism strategy and the 
remaining chromosomes are passed through the 
mutation, crossover and selecting step. Until the 
stopping criterions are achieved, the best 
chromosome is chosen and tested on various 
weather conditions. 
 
III (D) NFC-GA based MPPT 

     The neuro-fuzzy system typically 
integrates the powerful learning of NNs and the 
high interpretability and computational 
efficiency by using reasoning rules of FL, thus 
this implies the most potential AI technique. In 
this work, neuro-fuzzy architecture like the 
ANFIS model performs as the controller-based 
MPPT directly generates the change of duty cycle 
based on the input including E and CE as defined 
in eq. (13) and (14). Unlike in researches [15]-
[17], the MPP is previously generated from 
ANFIS model which uses the inputs from the 
weather conditions e.g. G and T then it was 
applied with another controllers to generate the 
duty cycle. More sensors are need twice from 
FLC which are not suitable for the small 
standalone PV system. The structure of the 
ANFIS controller based on MPPT is shown in 
Fig. 7. The first order Sugeno or Takagi-Sugeno-
Kang inference [18] was used for ANFIS which 
is different from Madani inference, while in the 
Sugeno outputs are linearly a combination of 
inputs instead of defuzzification method. 
Sugeno-type FIS has more advantages than the 
Mamdani because it avoids the use of time 
consuming in defuzzification process since it is a 
more compact and computationally efficient 
representation. It also works well with 
optimization and adaptive techniques. Moreover 
it guarantees continuity of the output surface, and 
is well-suited to mathematical analysis. An 
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example rule with the two fuzzy if-then rules can 
be expressed as: 

If E is PB and CE is Z          
        then D = p1E + q1CE + r1, 

where {NB, NS, Z, PS, PB} is fuzzy set in the 
antecedent and D = f(E, CE) is a crisp function 
in the consequent part. 

 

 
Figure 7 The diagram of NFC (ANFIS) based 

MPPT. 
 

Generally, the fuzzy rules which are 
obtained from the clustering or the grid partition 
based method are updated by NNs which uses 
back propagation learning method with gradient 
descent algorithm. Consequently, the premise 
parameters of the membership function (Ci, i) 
are also optimized. While the consequently 
parameters: pi, qi, and ri are designed by least 
mean square (LMS) method. [19]. In this work, 
all of parameters are simultaneously selected by 
GA to avoid a local optimal trapping by the 
derivative method. 

The significant ANFIS based MPPT 
structure is detailed following: 

Layer1: Each input node gives the crisp 
value to overall membership function in the fuzzy 
set. 

Layer2: Each adaptive node generates 
the strength of membership function, 1 [0,1]iO   
for the input vectors. In this paper, the activation 
function is also Gaussian function which is 
represented in eq. (17). 

Layer3: The total number of rules from 
the product of membership function of set E and 
CE are 25 rules. Every node calculates the firing 

strength according to the rules via a 
multiplication, 

2
1 2( ) ( ), 1,...,5i i i iO w E CE i              (20) 

Layer4: The strength of rule of each node 
in this layer has an averaging weight as 

3

1

i
ii n

jj

wO w
w



 


                                      (21) 

Layer5: Adaptive node i in this layer 
computes the contribution of i-th rule towards the 
overall output, with the following node function, 

4
ii iO w D  . Then overall output as the summation 

of contribution from each rule is finally 
computed as, 

25
1i ii i

O w D


                                              (22) 
The individual chromosome composed 

of three genes or variables including error (E), 
change of error (CE), and consequent parameter.  

By the off-line simulation at STC with the 
setting reference power (Pref) of 130 Watt, 
MOHGA randomly generates 25 chromosomes 
(MPOP) which are composed of the genes of 
parameter E and E for shaping the Gaussian 
function, consequence parameters p, q, and r and 
25 fuzzy rule corresponding each 5 membership 
functions of input parameter E and E for 
simultaneous selecting the fuzzy rules. The 
trained parameters from 252 premise 
parameters and 553 consequent parameters are 
selected by GA with the chromosome 
representation as following; 

 
 The procedure of MOHGA for NFC is 
the similar step in section III(C) for FLC except 
for replacing Mamdani inference by Takagi-
Sugeno-Kang inference. 

 
IV. RESULTS AND DISCUSSION 

In this section, the performance of the 
proposed controllers for both transient and steady 
state with the various weather conditions are 
investigated and made the comparison among 
them. The weather conditions are set up in Fig. 8 
by varying of the solar irradiance and temperature 
in the range 600-1000 W/m2 and 25-40C 
respectively. At the initial condition, the weather 
is set up at STC and rapidly change to low 
irradiance and high temperature at kT = 50. The 
rest weather condition is set to test the tracking 
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antecedent and D = f(E, CE) is a crisp function 
in the consequent part. 
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Generally, the fuzzy rules which are 
obtained from the clustering or the grid partition 
based method are updated by NNs which uses 
back propagation learning method with gradient 
descent algorithm. Consequently, the premise 
parameters of the membership function (Ci, i) 
are also optimized. While the consequently 
parameters: pi, qi, and ri are designed by least 
mean square (LMS) method. [19]. In this work, 
all of parameters are simultaneously selected by 
GA to avoid a local optimal trapping by the 
derivative method. 

The significant ANFIS based MPPT 
structure is detailed following: 

Layer1: Each input node gives the crisp 
value to overall membership function in the fuzzy 
set. 

Layer2: Each adaptive node generates 
the strength of membership function, 1 [0,1]iO   
for the input vectors. In this paper, the activation 
function is also Gaussian function which is 
represented in eq. (17). 

Layer3: The total number of rules from 
the product of membership function of set E and 
CE are 25 rules. Every node calculates the firing 

strength according to the rules via a 
multiplication, 
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Layer5: Adaptive node i in this layer 
computes the contribution of i-th rule towards the 
overall output, with the following node function, 

4
ii iO w D  . Then overall output as the summation 

of contribution from each rule is finally 
computed as, 

25
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
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The individual chromosome composed 

of three genes or variables including error (E), 
change of error (CE), and consequent parameter.  

By the off-line simulation at STC with the 
setting reference power (Pref) of 130 Watt, 
MOHGA randomly generates 25 chromosomes 
(MPOP) which are composed of the genes of 
parameter E and E for shaping the Gaussian 
function, consequence parameters p, q, and r and 
25 fuzzy rule corresponding each 5 membership 
functions of input parameter E and E for 
simultaneous selecting the fuzzy rules. The 
trained parameters from 252 premise 
parameters and 553 consequent parameters are 
selected by GA with the chromosome 
representation as following; 

 
 The procedure of MOHGA for NFC is 
the similar step in section III(C) for FLC except 
for replacing Mamdani inference by Takagi-
Sugeno-Kang inference. 

 
IV. RESULTS AND DISCUSSION 

In this section, the performance of the 
proposed controllers for both transient and steady 
state with the various weather conditions are 
investigated and made the comparison among 
them. The weather conditions are set up in Fig. 8 
by varying of the solar irradiance and temperature 
in the range 600-1000 W/m2 and 25-40C 
respectively. At the initial condition, the weather 
is set up at STC and rapidly change to low 
irradiance and high temperature at kT = 50. The 
rest weather condition is set to test the tracking 

performance of the controllers. The controlled 
results for individual scheme are described and 
discussed in next sub-section accordingly. 

IV (A) Power control effect from P&O 
and IC method 

The controlled results of the 
conventional P&O method are represented in  
Fig. 9. The convergence at the steady state is 
achieved for the properly step size selection of 
D with value of 0.02. However, the wide range 
of the rise time and oscillation still need more and 
more improvement.  

The simulation results under the same 
weather condition as represented in Fig. 8 by IC 
method is shown in Fig. 10 for the high 

perturbation step size equal to 0.05 in order to the 
fast response. The rise time and oscillation are 
less in comparison with P&O method. However, 
the fluctuation and accuracy of MPP at the steady 
state need more improvement. Further, requiring 
the complex and costly controlled circuits of this 
method has disadvantages with respect to P&O 
method. The tracking time performance for both 
P&O and IC methods at the faster change weather 
conditions are quite well since they take a low 
rise time but the accuracy and fluctuation 
becomes clearly worse at the steady state. To 
overcome such the problems, our proposed FLC 
and NFC are implemented to assist the 
conventional controllers to obtain the MPP faster 
and more stable PV output power. 

 

 
Figure 8 The various of solar irradiance and temperature conditions for the testing of controller based 

on MPPT. 
 

Figure 9 The controlled results from P&O controller with fixed duty cycle method based on MPPT. 
 

Figure 10 The control result of the IC controller based MPPT. 
 

IV (B) Power control effect of the 
conventional FLC and FLC-GA 

The results of the MFs of the inputs and 
outputs in both triangle and the Gaussian MF 
from the design of previous section III(B) for 
conventional FLC are shown in Fig. 11 (a) and 

(b) respectively. It was noticed that the 
membership functions of the duty cycle was not 
distributed evenly along the universe of discourse 
(UOD). They were designed for more dense in 
the range [-0.2, 0.2] which was a sensitively 
worked zone to achieve near the MPP. 
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                                          (a)                                                                                                                         (b)  

Figure 11 The designed MFs of the input E and CE and the output D (a) Triangular functions and 
(b) Gaussian functions, for the conventional FLC. 

 
The fuzzy rules are designed to 

incorporate the following and to keep in view of 
the overall control performance 

- For the case of the slope of P-V curve 
or S(k) is NB and S(k) is Z means the operation 
point of the PV module is located at the right side 
and near the MPP, then the duty cycle ratio needs 
to increase following eq. (10) for decreasing the 
input impedance in order to shift the operating 
point to the MPP at the left side. The controlled 
output is then set to PS to suppress the change of 
magnitude of the duty ratio in the opposite 
direction. However, when S(k) is NB or NS 
which means the direction towards to the right 
side then the output control would be set to Z in 
order to prevent the operating point shift to the 
left side of the MPP and oscillation. For the case 
of S(k) is PS or PB, the output control would be 
set as NS or NB for increasing the duty cycle ratio 
in order to shift the operating point to the left 
according to the movement direction. When S(k) 
is NS and S(k) is either negative or zero or 
positive, the duty cycle ratio under this condition 
was set in the similar way. 

- For the case of S(k) is PB and S(k) is 
Z, this means that the operating point of the PV 
module is located at the left side and near of the 
MPP, then the duty cycle ratio needs to be 
decrease following eq. (10) for increasing the 
input impedance in order to shift the operating 
point to the MPP at the right side. When S(k) is 
also PB or PS, the controller may generate the 
wrong outputs owing the reason similar to the 
above mentioned then the controlled output 
would be set as Z. When S(k) is NB or NS, the 
operating point would be set to increase the duty 
cycle ratio. Then the output control would use PB 
or PS respectively. When S(k) is PS and S(k) is 

either negative or zero or positive, the duty cycle 
ratio under this condition was set in the similar 
way. 

- For the case of S(k) is Z and S(k) is Z, 
the controlled output would be set Z. When S(k) 
is NB or NS the controlled output would be set to 
PB or PS respectively and when S(k) is PB or 
PS the controlled output would be set to NB or 
NS respectively. 

Taking this reason into consideration, the 
fuzzy rules are derived and the corresponding 
rule based on 25 rules for both triangular and 
Gaussian MFs are given in Table 1. The effect of 
the power control by the conventional FLC using 
triangular MFs for the input and output variables 
with the same weather conditions test used in 
P&O and IC method are shown in Fig. 12 for the 
various change of weather conditions represented 
in Fig. 9. It is seen that at the lower irradiance and 
high temperature (at kT = 50) the tracking 
performance is failed from achieving the MPP 
target. 

Comparing with the conventional FLC 
using the Gaussian MFs in Fig. 13, it can be seen 
that the tracking performance of the latter case is 
better than the former one. At the low irradiance 
and high temperature condition (kT=50), the 
tracking had successfully reaches near to a steady 
MPP at about kT equal to 85. The accuracy on the 
MPP and the fluctuation at the steady state are 
minor improvement compared to the 
conventional methods. This is due to the ability 
of automatically reducing perturbed voltage after 
the MPP is identified unlike to the conventional 
method that is still performing the same size of 
the perturbed voltage. However, the high rise 
time at the transient state and the oscillation and 
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                                          (a)                                                                                                                         (b)  

Figure 11 The designed MFs of the input E and CE and the output D (a) Triangular functions and 
(b) Gaussian functions, for the conventional FLC. 
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accuracy at the steady state need to consequently 
develop as seen obviously in Fig. 13(a). 

 
Table 1 Fuzzy rule base designed by user 
experience of FL based MPPT 

    E   
  NB NS Z PS PB 

 NB Z Z PB PB PB 
 NS Z Z PS PS PS 

CE Z PS Z Z Z NS 
 PS NS NS NS Z Z 
 PB NB NB NB Z Z 

       
 
 
 
To achieve more good controlled result, 

the shape of Gaussian MFs and the rule are 
designed and selected by GA. After all 
computations are performed, the best shape of 
five Gaussian MFs of the inputs and output are 
shown in Fig. 14, the selected fuzzy rules are 
shown in Table 2 and the controlled results of 
FLC-GA are shown in Fig.15.  

The NS and PS of output MF are located 
the same centre like the Z MF. The UOD of the 
output Gaussian MFs are still dense in the range 
of [-0.2, 0.2] but a little shifting to the left hand 
side of the zero in spite of symmetry around the 
zero. It showed that more reduced step size of 
perturbed voltage was desired to achieve the 
MPP. The rule base has differently changed from 
the previously design by the user. The rule action 
near the MPP by using the antecedent part from 

E is Z and E is Z is replaced by E is PS and E 
is NS with the same consequent part of D is also 
zero. 
 
Table 2 The designed fuzzy rule base of FLC-
GA. 

    E   
  NB NS Z PS PB 

 NB Z Z PB PB PB 
 NS Z PS PS PS PB 

CE Z PS NS Z Z Z 
 PS NS NB NS NS Z 
 PB NB NB NS NS Z 

   
It can be seen that the FLC-GA performs 

the better of stabilized accuracy at the steady state 
than the conventional FLC, IC and P&O method 
approximately 23.8%, 61.0%, and 61.8% 
respectively. However, the controlled results 
from the FLC-GA at the rapidly change condition 
(i.e especially kT= 50 and 150) has the worsen 
rise time which is higher than the conventional 
FLC approximately 79.3% and lower than P&O 
and IC approximately 36.9% and 41.7% 
respectively. At first the overshoot has also firstly 
appeared through this control method. To 
improve the accuracy together with the preserve 
the fast transient response, another proposed 
controller by using NFC is investigated in the 
next sub-section in order to challenge the trade-
off between fast transient response and accuracy 
at the steady state. 

 

 
Figure 12 The control results of the conventional FLC for the triangular MF based MPPT. 

 

 
(a) the power tracking for the fast change of weather conditions                   (b) variation of duty cycle ratio  

Figure 13 The control results of the conventional FLC by using the Guassian MFs based MPPT. 
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Figure 14 The shape of Gaussian MFs of the input variable E and CE and  the output variable D 

which are selected by GA for FLC-GA based MPPT. 

 
    (a) the power tracking for the fast change of weather conditions                 (b) variation of duty cycle ratio  

Figure 15 The control results of the proposed FLC-GA controller based MPPT. 
 

 
Figure 16 The best shape of MFs and their parameters which are searched by GA method for the input 

variable E and CE of the NFC-GA based MPPT. 

 
 (a) the power tracking for the fast change of weather conditions                 (b) variation of duty cycle ratio  

Figure 17 The control results of NFC-GA based MPPT. 
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NFC-GA are shown in Fig. 17 where the system 
parameters were designed by GA under the 
weather conditions represented in Fig. 8. In 
comparison, our proposed NFC-GA performed 
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condition less than the conventional FLC, FLC-
GA, P&O, and IC respectively. With regards to 
accuracy of MPP at the steady state by this 
method is less accurate than the FLC-GA and the 
user designed FLC but more accurate than IC and 
P&O.  However, the overshoot has severely 
occurred at the transient state.  

The controlled performance at the 
transient and steady state covers the overshoot, 
the rise time, the stability and the accuracy. The 
overall results of the performance at the transient 
and steady state from all controller schemes 
obtained from the simulated testing are 
comparatively shown in Table 3 which has its 
own advantages and disadvantages with respect 
of each controller.  

 
Table 3 Comparison performance of the 
controllers based MPPT in the case of fast change 
weather conditions 

Controller 
Transient state Steady state 

Overshoo
t 

Rise 
time 

Oscillatio
n 

Accurac
y 

Conventiona
l P&O None Mediu

m High Low 

Conventiona
l IC None Low High Low 

Conventiona
l FLC None Mediu

m Medium Medium 

FLC-GA Low High None Very 
High 

NFC-GA 
(ANFIS) High Low None High 

        
From the results, it is found that the FLC-

GA performs the best accuracy with closely track 
nearly the MPP over NFC-GA, the conventional 
FLC, IC and P&O by about 4.95%, 5.58%, 
6.10%, and 6.32% respectively while for the case 
of time response, the NFC-GA performs the MPP 
fast tracking over the conventional FLC, FLC-
GA, P&O, and IC by about 8.75%, 42.27%, 
67.05%, and 72.50% respectively. 

However, all the self-generated rules do 
not contribute enough for an accurate 
improvement while increasing the computation 
time. In this work, the redundant rules of ANFIS 
model are further removed by MOHGA while 
maintains the accuracy in acceptable. The ANFIS 
controller in the previous section is taken by rule 
reduction and simultaneously adjusting the 
parameter of the Gaussian function and 
consequence parameter of the significant rule. 
The significances of the proposed ANFIS 
structure including with the inference type are 
similarly with the previous one. GA is also used 
to optimize the system parameters 
simultaneously reduce the redundant rules. The 
25 rules set is randomly generated in binary code 
which is ‘0’ means not consideration the 
accordingly rule while ‘1’ means takes the rule 
into account for calculation. The chromosome 
represents as following: 

 
   After the design of optimized NFC by 
MOHGA procedure, the number of rules is 
reduced by 10 rules. The remaining parameters of 
this ANFIS model are totally 65 parameters 
which are reduced by 30 parameters from the 
original ANFIS model. All parameters are also 
obtained but not shown here. The controlled 
results by applying the optimized NFC-GA are 
shown in Fig. 18. It is found that the rise time 
from the optimized NFC-GA is lower than the 
NFC-GA about 15% by average but more 
oscillation and overshoot occurs in the transient 
state. However, the accuracy at the steady state 
from the optimized NFC-GA is lower than the 
NFC-GA  about 2.14% by average. 

 

 
    
 (a) the power tracking for the fast change of weather conditions                 (b) variation of duty cycle ratio  

Figure 18 The control results of the optimized NFC-GA based MPPT. 
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VI. CONCLUSION 

This paper implements the fuzzy logic 
controller (FLC) and neuro-fuzzy controller 
(NFC) or ANFIS structure based on maximum 
power point tracking (MPPT) for a solar 
photovoltaic module. The proposed FLC and 
NFC are intentionally implemented to improve 
the controlled performance of P&O, IC and 
conventional FLC controller. The design and 
selection of the system parameters including to 
the controlled rules of the FLC and NFC are 
properly selected and tuned by MOHGA and 
denoted FLC-GA and NFC-GA respectively. In 
order to test the performance of the proposed 
controllers, the simulation and testing results 
were performed on Matlab/Simulink program 
before the practical implementation. In our 
experiment, a polycrystalline silicon commercial 
(SHARP type ND-130T1J) with 36 cells in 
connected series was adopted for the study. The 
PV module parameters of the single diode 
equivalent circuit model are extracted by using 
the NNs model together with GA and the 
parameter translation functions in order to 
generate the I-V and P-V characteristic under the 
various weather conditions of both irradiance and 

temperature. This solar PV module is connected 
to a resistive load with interfacing by the DC-DC 
boost converter. The directly measured current 
and voltage from the panel are used to calculate 
the slope of P-V and its change as the input for all 
controllers and the duty cycle is generated for the 
output. The controlled performance at the 
transient and steady state covers the overshoot, 
the rise time, the stability and the accuracy. The 
FLC-GA is dominant on the stabilized accuracy 
at the steady state while the NFC-GA based 
ANFIS structure has successful fast tracks to the 
optimal. 

However, the highly complex and 
computation of the NFC-GA controller may lead 
the over-fitting and result to miss the optimal 
power. It should be optimized to reduce the 
redundant rules and parameters to increase their 
efficiency. The optimized NFC-GA based 
ANFIS structure is considered to perform the best 
result both transient and steady state except for 
the existing of the severe overshoot which is not 
suitable for the practice. 

Alternately in the future, the NFC may be 
utilized the weather condition such as irradiance 
and temperature as the inputs to estimate the MPP 
instead of using the NNs model which used the 
number of data to train the network. Furthermore, 
the other optimizations such as the particle 
swarm optimization (PSO), artificial bee colony 
(ABC), etc. are used to optimize the FLC and 
NFC for alternative searching strategy.
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efficiency. The optimized NFC-GA based 
ANFIS structure is considered to perform the best 
result both transient and steady state except for 
the existing of the severe overshoot which is not 
suitable for the practice. 

Alternately in the future, the NFC may be 
utilized the weather condition such as irradiance 
and temperature as the inputs to estimate the MPP 
instead of using the NNs model which used the 
number of data to train the network. Furthermore, 
the other optimizations such as the particle 
swarm optimization (PSO), artificial bee colony 
(ABC), etc. are used to optimize the FLC and 
NFC for alternative searching strategy.
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