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ABSTRACT 

 In this paper, we consider the newsboy problem when two uncertainties are presented, 
including demand and yield. Based on previous research in this arena, the optimal solution can be 
obtained analytically for uniform distribution. However, for other distributions the problem becomes 
much more complex and difficult, in the other words no optimal solution can be found. The reason of 
this dilemma could be non-integrable property of the objective function. Therefore, we extend that of 
Karl in 2004 to present the approximation algorithm for general probability distribution, both demand 
and yield’s randomness are incorporated by different types of probability distribution such as Normal, 
Uniform and Beta distributions. The algorithm framework consists of two measures: one involving the 
approximation of the first derivative of the objective functions based on numerical integration; and 
second involving the problem solving steps based on Newton’s method. From the experiment, it can 
give the good solution for Normal and other distributions yet it is easy to implement by insert function 
in available spreadsheet program. 
Keywords:  Newsboy problem, Stochastic yield, Perishable products, Inventory 
 
1. INTRODUCTION 

 The classical newsboy problem is designed 
for perishable products, which can be carried in 
the inventory for only a period of time before it 
can no longer be sold. Various types of 
perishable products are for example newspaper 
and magazine, flowers, fresh food, fresh 
vegetable, etc.  These products have different 
shelf life and to dispose them need additional 
cost.  Not only cost of disposing but also there 
are two remaining cost components still 
required. The first one is inventory holding cost 
which is incurred when a seller orders more than 
he can sell.  The second one is loss of 
opportunity cost which is incurred when he 
orders less than can be sold.  When all cost 
components are combined, they play an 
important role in business cost that need to be 
minimized for surviving in today’ s high 
competitive environment.  Therefore, it is 
important to find the right order quantity match 
to customer demands and give the maximum 
profit or the minimum cost.  

The newsboy problem has been 
increasingly interested as illustrated by several 
papers published since 1 9 8 8  and covered 
various extensions.  Khouja [ 10]  classified the 
newsboy problem into 11 categories: extensions 

to different objectives and utility functions; 
extensions to different supplier pricing policies; 
extensions to different pricing policies and 
discount structures; extensions to random yield; 
extensions to different states of information 
about demand; extensions to constrained multi-
product; extensions to multi-product with 
substitution; extensions to multi-echelon  
systems; extensions to multi-location models; 
extensions to models with more than one period; 
and other extensions. However, the literature in 
the random yield avenue has rarely found when 
compares with others. 

Random yield is occurred when the order 
quantity contained defective product rather than 
perfect quality as consider in traditional 
newsboy problem. This leads to the reduction of 
quantities of end product. The random yield is a 
very important problem and generally realized 
in the real world applications. The random yield 
can be characterized in many production 
systems such as production of agriculture (i.e. 
production of fruits or vegetable), production of 
computer processors and production of 
chemicals, and etc. For example, in 
semiconductor manufacturing, it is possible to 
face yield losses which can exceed 80%, as 
mentioned by Nahmias [14]. In fast growing 
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extensions to different supplier pricing policies; 
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discount structures; extensions to random yield; 
extensions to different states of information 
about demand; extensions to constrained multi-
product; extensions to multi-product with 
substitution; extensions to multi-echelon  
systems; extensions to multi-location models; 
extensions to models with more than one period; 
and other extensions. However, the literature in 
the random yield avenue has rarely found when 
compares with others. 

Random yield is occurred when the order 
quantity contained defective product rather than 
perfect quality as consider in traditional 
newsboy problem. This leads to the reduction of 
quantities of end product. The random yield is a 
very important problem and generally realized 
in the real world applications. The random yield 
can be characterized in many production 
systems such as production of agriculture (i.e. 
production of fruits or vegetable), production of 
computer processors and production of 
chemicals, and etc. For example, in 
semiconductor manufacturing, it is possible to 
face yield losses which can exceed 80%, as 
mentioned by Nahmias [14]. In fast growing 

remanufacturing industry, the disassembly 
processes face with high yield fluctuation 
stemmed from the limited knowledge of the 
quality of used products. Others than production 
system, in procurement processes, we still can 
face the yield uncertainty derived from 
unreliable delivery quantities of suppliers. As 
one can see, the random yield is a very 
important problem. Despite how important of 
the problem, insufficient attention has been 
given to this problem when considering multi 
items with limited resources, Abdel-Malek et al. 
[2].  

The classical newsboy problem was 
originally developed by Hadley and Whitin. 
There are several related articles and among 
these the most comprehensive articles can be 
found in Lau and Lau [11], [12]. They 
developed a simple algorithm for solving multi-
product constrained newsboy model. They also 
mentioned that the obtained solution might be 
negative order quantity when budget constrain is 
tight. Ben-Daya and Raouf [4] and Erlebacher 
[5] introduced optimal and heuristic solution 
method for the newsboy problem with one 
constraint. Niederhoff [15] introduced a linear 
programming formulation for the multi-
constraint newsvendor problem where the 
objective function is approximated and 
optimized by linear segments. Abdel-Malek and 
Areeratchakul [1] developed a quadratic 
programming approach for solving the multi-
constraint problem and utilizes familiar software 
packages such as Excel to solve the problem.  

 For the random yield case, several articles 
focus on the stochastically proportional yield 
which assumes that the fraction of good units is 
a random variable independent of the batch size. 
This type of yield is suitable for the production 
environment where batch sizes are relatively 
large. For more details, interested readers can 
refer to Gerchak et al. [7] and Henig and 
Gerchak [8] where they proved that the optimal 
order quantity will not be a linear function of the 
inventory level. Ehrhardt and Taube [6] derived 
the closed-form solutions for the problem when 
demand and yield distributions are uniform 
distribution. Lee and Yano [13] provided a 
comprehensive review of the lot sizing problem 
with random yields.  Noori and Keller [16] 
derived the optimal solution order quantity for 
the unconstrained newsboy problem with 
random yield for both random demand and 

yield. Inderfurth [9] derived the optimal solution 
for single item newsboy problem for uniformly 
distributed demand and yield. Abdel-Malek et 
al. [3] extended their works from that of Abdel-
Malek and Montanari [2] to cover the random 
yield case. They assumed that the decision 
variable (the amount to be planted) is the upper 
bound of yield and the starting inventory is zero. 
They developed an algorithm based on iterative 
process to solve the multi-item constrained 
problem for general distributed demand and 
yield. 

From the literature reviews, one can see 
that the previous works mainly focuses on single 
item uncapacitated random yield case and 
insufficient attention on multi-item with 
capacitated case. In this paper, we focus on this 
limitation by developing a methodology for 
solving the problem for general demand and 
yield distributions cases. Our methodology are 
based on two main steps, which are the 
approximation of the objective function by using 
composite trapezoid numerical integration 
method, and iterative solution finding steps 
using Lagrange multiplier and Newton’s 
method. Additionally, we also provide a 
numerical example to illustrate the application 
of the model. This paper is organized as follows. 
The paper begins with an introduction and 
literature review in section 1. Section 2 and 3 
present the model and its necessary 
preliminaries. Section 4 illustrates the numerical 
example for different demand distribution as 
well as yield distribution. Finally, we present the 
conclusions in Section 5. 

 
2. MODEL FORMULATION  

In this section we describe the newsboy 
problem with stochastic demand and 
stochastically proportional yield. The model is 
well established and mentioned in Ehrhardt and 
Taube [6], and Inderfurth [9]. The model 
assumes that lead time is zero and cost 
components are strictly proportional related to 
production and inventory. In this paper we 
extend their works to cover more than one 
product type and limited available resources. 

To be more specific, let consider a fruit 
retailers in a market, they must find out how 
much they have to order ( 𝑥𝑥𝜏𝜏) for each type of 
fruit (𝜏𝜏) within available resources (Bg). Each 
fruit has demand (𝐷𝐷𝜏𝜏) and unit cost (𝑐𝑐𝜏𝜏). If they 
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order more than customer demand, the overage 
cost incurs with inventory unit holding cost 
(ℎ𝜏𝜏). In contrast, if they order less than its 
demand, the underage cost incurs with inventory 
shortage cost per unit (𝑣𝑣𝜏𝜏). Moreover, ordered 
fruits can be damaged from several random 
factors such as collision during transportation, 
infection, unsuitable storage conditions, etc. If 
the fruit retailers receive the order in full 
quantity, the yield is 100%, but if their orders 
are fulfilled partially the yield is less than 100%. 
However, yield can never be negative. The 
demand and yield realizations are assumed to 
have upper bound   𝐷𝐷𝜏𝜏+ and  𝑌𝑌𝜏𝜏+ and lower bound 
at zero, shown as  0 ≤ 𝐷𝐷𝜏𝜏  ≤   𝐷𝐷𝜏𝜏+ and 0 ≤
𝑌𝑌𝜏𝜏  ≤   𝑌𝑌𝜏𝜏+. The expected total cost function can 
be formulated as   
  𝑇𝑇𝑇𝑇 = ∑ {𝑃𝑃𝑃𝑃𝜏𝜏 + 𝑈𝑈𝑈𝑈𝜏𝜏 + 𝑂𝑂𝑂𝑂𝜏𝜏}𝑁𝑁

𝜏𝜏=1  ,                    (2.1)                                                                        
where 𝑃𝑃𝑃𝑃𝜏𝜏, 𝑈𝑈𝑈𝑈𝜏𝜏, and 𝑂𝑂𝑂𝑂𝜏𝜏 are purchasing cost, 
expected underage cost, and expected overage 
cost, respectively denoted as follows. 

 𝑃𝑃𝑃𝑃𝜏𝜏(𝑥𝑥𝜏𝜏) = 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏                                (2.2)                                              
             𝑈𝑈𝑈𝑈𝜏𝜏(𝑥𝑥𝜏𝜏) =  ∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 −

∞
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

∞
0

𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏) 𝑓𝑓(𝐷𝐷𝜏𝜏) 𝑓𝑓(𝑌𝑌𝜏𝜏) 𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏                           (2.3)                                          
             𝑂𝑂𝑂𝑂𝜏𝜏(𝑥𝑥𝜏𝜏) =  ∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 −

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

∞
0

𝐷𝐷𝜏𝜏) 𝑓𝑓(𝐷𝐷𝜏𝜏) 𝑓𝑓(𝑌𝑌𝜏𝜏) 𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏                               (2.4)     
Since resources such as available budgets 

or shelf spaces should not be freely available 
and order quantity should never be negative. 
Therefore, we incorporate their limited 
resources and non-negative constraint as below. 
 ∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏𝑁𝑁

𝜏𝜏=1 ≤ 𝐵𝐵𝐵𝐵                             (2.5)                   
                𝑥𝑥𝜏𝜏 ≥ 0, for 𝜏𝜏 = 1 …𝑁𝑁                                                 

Before we go further in formulation detail, 
let summarize all notations used in this paper 
defined in Table 1: 
         
Table 1  Notations Table 

Notations Definition 
𝑇𝑇𝑇𝑇 Expected total cost 
𝑃𝑃𝑃𝑃𝜏𝜏 Expected purchasing cost 
𝑈𝑈𝑈𝑈𝜏𝜏 Expected underage cost 
𝑂𝑂𝑂𝑂𝜏𝜏 Expected overage cost 
𝜏𝜏 Product type 
𝑁𝑁 Total number of product type 
𝑐𝑐𝜏𝜏 Unit cost for purchasing 
𝑥𝑥𝜏𝜏 Order quantity  
𝐼𝐼𝜏𝜏 Starting inventory 
𝑌𝑌𝜏𝜏 Stochastic yield fraction  
ℎ𝜏𝜏 Unit holding cost 
𝑣𝑣𝜏𝜏 Unit shortage cost 
𝐷𝐷𝜏𝜏 Stochastic demand 

Table 2 (continue) Notations Table 
Notations Definition 

𝑇𝑇𝑇𝑇 Expected total cost 
𝑃𝑃𝑃𝑃𝜏𝜏 Expected purchasing cost 
𝑈𝑈𝑈𝑈𝜏𝜏 Expected underage cost 
𝑂𝑂𝑂𝑂𝜏𝜏 Expected overage cost 
𝜏𝜏 Product type 
𝑁𝑁 Total number of product type 
𝑐𝑐𝜏𝜏 Unit cost for purchasing 
𝑥𝑥𝜏𝜏 Order quantity  
𝐼𝐼𝜏𝜏 Starting inventory 
𝑌𝑌𝜏𝜏 Stochastic yield fraction  
ℎ𝜏𝜏 Unit holding cost 
𝑣𝑣𝜏𝜏 Unit shortage cost 
𝐷𝐷𝜏𝜏 Stochastic demand 
𝐵𝐵𝐵𝐵 Available resources 
𝑓𝑓(𝐷𝐷𝜏𝜏) Probability density function of demand 
𝑓𝑓(𝑌𝑌𝜏𝜏) Probability density function of yield 

𝐹𝐹(𝐷𝐷𝜏𝜏) Cumulative distribution function of 
demand 

𝐹𝐹(𝑌𝑌𝜏𝜏) Cumulative distribution function of 
yield 

𝐷𝐷𝜏𝜏+ Upper bound of demand 
𝑌𝑌𝜏𝜏+ Upper bound of yield 

 
Related to the specified upper bounds and 

lower bounds, two scenarios have to be 
distinguished for formulating overage and 
underage cost properly: 1) when  𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 ≤ 𝐷𝐷𝜏𝜏+; 
and 2) when 𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 > 𝐷𝐷𝜏𝜏+ 
The 1st scenario: 

The first scenario, the underage and 
overage inventories are incurred due to demand 
randomness. We can formulate the expected 
total cost as  
𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏) =

∑
{
 

 
𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 +

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏+
0

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝑌𝑌𝜏𝜏+
0 }

 

 
𝑁𝑁
𝜏𝜏=1            

         (2.6) 
To consider the available budget into the 

objective function, we add Lagrange multiplier  
(λ) in with the Lagrange function. It is defined 
as:  

𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏, 𝜆𝜆) = ∑

{
 

 
𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 +

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏+
0

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝑌𝑌𝜏𝜏+
0 }

 

 
+𝑁𝑁

𝜏𝜏=1

                                   𝜆𝜆(∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1 )                 

       (2.7) 
Taking the first derivative of expected total 

cost, we obtain: 
𝜕𝜕𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏

= 𝑔𝑔1(𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 −
𝑌𝑌𝜏𝜏+
0

𝑣𝑣𝜏𝜏𝜇𝜇𝑌𝑌𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏                                                              (2.8)
  

The second derivative of expected total cost 
can be defined as: 
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factors such as collision during transportation, 
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demand and yield realizations are assumed to 
have upper bound   𝐷𝐷𝜏𝜏+ and  𝑌𝑌𝜏𝜏+ and lower bound 
at zero, shown as  0 ≤ 𝐷𝐷𝜏𝜏  ≤   𝐷𝐷𝜏𝜏+ and 0 ≤
𝑌𝑌𝜏𝜏  ≤   𝑌𝑌𝜏𝜏+. The expected total cost function can 
be formulated as   
  𝑇𝑇𝑇𝑇 = ∑ {𝑃𝑃𝑃𝑃𝜏𝜏 + 𝑈𝑈𝑈𝑈𝜏𝜏 + 𝑂𝑂𝑂𝑂𝜏𝜏}𝑁𝑁

𝜏𝜏=1  ,                    (2.1)                                                                        
where 𝑃𝑃𝑃𝑃𝜏𝜏, 𝑈𝑈𝑈𝑈𝜏𝜏, and 𝑂𝑂𝑂𝑂𝜏𝜏 are purchasing cost, 
expected underage cost, and expected overage 
cost, respectively denoted as follows. 

 𝑃𝑃𝑃𝑃𝜏𝜏(𝑥𝑥𝜏𝜏) = 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏                                (2.2)                                              
             𝑈𝑈𝑈𝑈𝜏𝜏(𝑥𝑥𝜏𝜏) =  ∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 −

∞
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

∞
0

𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏) 𝑓𝑓(𝐷𝐷𝜏𝜏) 𝑓𝑓(𝑌𝑌𝜏𝜏) 𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏                           (2.3)                                          
             𝑂𝑂𝑂𝑂𝜏𝜏(𝑥𝑥𝜏𝜏) =  ∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 −

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

∞
0

𝐷𝐷𝜏𝜏) 𝑓𝑓(𝐷𝐷𝜏𝜏) 𝑓𝑓(𝑌𝑌𝜏𝜏) 𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏                               (2.4)     
Since resources such as available budgets 

or shelf spaces should not be freely available 
and order quantity should never be negative. 
Therefore, we incorporate their limited 
resources and non-negative constraint as below. 
 ∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏𝑁𝑁

𝜏𝜏=1 ≤ 𝐵𝐵𝐵𝐵                             (2.5)                   
                𝑥𝑥𝜏𝜏 ≥ 0, for 𝜏𝜏 = 1 …𝑁𝑁                                                 

Before we go further in formulation detail, 
let summarize all notations used in this paper 
defined in Table 1: 
         
Table 1  Notations Table 

Notations Definition 
𝑇𝑇𝑇𝑇 Expected total cost 
𝑃𝑃𝑃𝑃𝜏𝜏 Expected purchasing cost 
𝑈𝑈𝑈𝑈𝜏𝜏 Expected underage cost 
𝑂𝑂𝑂𝑂𝜏𝜏 Expected overage cost 
𝜏𝜏 Product type 
𝑁𝑁 Total number of product type 
𝑐𝑐𝜏𝜏 Unit cost for purchasing 
𝑥𝑥𝜏𝜏 Order quantity  
𝐼𝐼𝜏𝜏 Starting inventory 
𝑌𝑌𝜏𝜏 Stochastic yield fraction  
ℎ𝜏𝜏 Unit holding cost 
𝑣𝑣𝜏𝜏 Unit shortage cost 
𝐷𝐷𝜏𝜏 Stochastic demand 

Table 2 (continue) Notations Table 
Notations Definition 

𝑇𝑇𝑇𝑇 Expected total cost 
𝑃𝑃𝑃𝑃𝜏𝜏 Expected purchasing cost 
𝑈𝑈𝑈𝑈𝜏𝜏 Expected underage cost 
𝑂𝑂𝑂𝑂𝜏𝜏 Expected overage cost 
𝜏𝜏 Product type 
𝑁𝑁 Total number of product type 
𝑐𝑐𝜏𝜏 Unit cost for purchasing 
𝑥𝑥𝜏𝜏 Order quantity  
𝐼𝐼𝜏𝜏 Starting inventory 
𝑌𝑌𝜏𝜏 Stochastic yield fraction  
ℎ𝜏𝜏 Unit holding cost 
𝑣𝑣𝜏𝜏 Unit shortage cost 
𝐷𝐷𝜏𝜏 Stochastic demand 
𝐵𝐵𝐵𝐵 Available resources 
𝑓𝑓(𝐷𝐷𝜏𝜏) Probability density function of demand 
𝑓𝑓(𝑌𝑌𝜏𝜏) Probability density function of yield 

𝐹𝐹(𝐷𝐷𝜏𝜏) Cumulative distribution function of 
demand 

𝐹𝐹(𝑌𝑌𝜏𝜏) Cumulative distribution function of 
yield 

𝐷𝐷𝜏𝜏+ Upper bound of demand 
𝑌𝑌𝜏𝜏+ Upper bound of yield 

 
Related to the specified upper bounds and 

lower bounds, two scenarios have to be 
distinguished for formulating overage and 
underage cost properly: 1) when  𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 ≤ 𝐷𝐷𝜏𝜏+; 
and 2) when 𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 > 𝐷𝐷𝜏𝜏+ 
The 1st scenario: 

The first scenario, the underage and 
overage inventories are incurred due to demand 
randomness. We can formulate the expected 
total cost as  
𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏) =

∑
{
 

 
𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 +

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏+
0

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝑌𝑌𝜏𝜏+
0 }

 

 
𝑁𝑁
𝜏𝜏=1            

         (2.6) 
To consider the available budget into the 

objective function, we add Lagrange multiplier  
(λ) in with the Lagrange function. It is defined 
as:  

𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏, 𝜆𝜆) = ∑

{
 

 
𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 +

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏+
0

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝑌𝑌𝜏𝜏+
0 }

 

 
+𝑁𝑁

𝜏𝜏=1

                                   𝜆𝜆(∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1 )                 

       (2.7) 
Taking the first derivative of expected total 

cost, we obtain: 
𝜕𝜕𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏

= 𝑔𝑔1(𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 −
𝑌𝑌𝜏𝜏+
0

𝑣𝑣𝜏𝜏𝜇𝜇𝑌𝑌𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏                                                              (2.8)
  

The second derivative of expected total cost 
can be defined as: 
 

𝜕𝜕2𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏2

= 𝑔𝑔1′ (𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) ∫ 𝑌𝑌𝜏𝜏2𝑓𝑓(𝑌𝑌𝜏𝜏)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
0   

       (2.9) 
The 2nd scenario: 

The second scenario, the overage inventory 
is incurred certainly due to yield realization. We 
can formulate the expected total cost as: 
𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏) =

∑

{
  
 

  
 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 + ∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐷𝐷𝜏𝜏+
0

𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 }
  
 

  
 

𝑁𝑁
𝜏𝜏=1                                       

   (2.10)
  

With similar fashion as described in the 1st 
scenario by adding Lagrange multiplier(λ), 
taking first and second derivatives, therefore 
summarize of these equations are shown in Eq. 
2.11-2.13, respectively: 

𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏) = ∑

{
  
 

  
 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 + ∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐷𝐷𝜏𝜏+
0

𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 }
  
 

  
 

𝑁𝑁
𝜏𝜏=1 +

𝜆𝜆(∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1 )                                                    (2.11)                                                                                                                                                                             

𝜕𝜕𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏

= 𝑔𝑔2(𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏)

[
 
 
 
 ∫ 𝑌𝑌𝜏𝜏

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐷𝐷𝜏𝜏)(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 +

∫ 𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 ]
 
 
 
 
−

𝑣𝑣𝜏𝜏𝜇𝜇𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏                                                                               
   (2.12)                                                                                                                                   

𝜕𝜕2𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏2

= 𝑔𝑔2′ (𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) [∫ 𝑌𝑌𝜏𝜏2
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏]                                                                     
   (2.13)
  

The next section describes the approximation 
algorithm for solving problem. We implement 
our algorithm with a numerical example when 
demand and yield are varied from Normal, 
Uniform, and Beta distributions.  
 
3. THE APPROXIMATION 

ALGORITHM 
From the aforementioned section, one can 

see that the model is complex and not easy to 
solve. An analytical solution can only be given 
for specific type of demand and yield 
distributions such as Uniform or Exponential 
distributions. However, in practical applications 
the problem covers more than just only these 
two distributions and faces with several 
production constraints. This leads to necessity in 
developing supported algorithm. The algorithm 
is developed based on two main steps: (1) 
approximation of first derivative of the expected 
total cost using numerical integration technique; 

and (2) iterative processes for finding problem 
solutions using Newton’s method. 
3.1 Approximation of the first and second 
derivatives of the expected total cost function 
The approximation is divided into two 
subsections for the first scenario and the second 
scenario, respectively. 

3.1.1 Approximation for the first 
scenario 
Since the analytical solution cannot obtain for 
the case of general distribution, the first order 
derivative function can be approximated using 
composite trapezoid numerical integration 
method:    
∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝛾𝛾𝑗𝑗

2
𝑏𝑏𝑗𝑗
𝑎𝑎𝑗𝑗

[𝑓𝑓(𝑎𝑎𝑗𝑗) + 2𝑓𝑓(𝜃𝜃1,𝑗𝑗) + 2𝑓𝑓(𝜃𝜃2,𝑗𝑗) + 𝑓𝑓(𝑏𝑏𝑗𝑗)]     (3.1)                                                                     
  

 for 𝑖𝑖 = 1, 2 and 𝑗𝑗 = 1, 2, 3 
when  𝛾𝛾𝑗𝑗 = (𝑏𝑏𝑗𝑗−𝑎𝑎𝑗𝑗)

3 , 𝜃𝜃𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑖𝑖   
and  𝑎𝑎𝑗𝑗 represents lower bound of integration,  
𝑏𝑏𝑗𝑗 represents upper bound of integration 
Hence, let (𝑎𝑎1 = 0, 𝑏𝑏1 = 𝑌𝑌𝜏𝜏+), then we calculate 
𝛾𝛾1, 𝜃𝜃1,1, 𝜃𝜃2,1   as  

𝛾𝛾1 , 𝜃𝜃1,1 = (𝑏𝑏1−𝑎𝑎1)
3 = (𝑌𝑌𝜏𝜏+)

3  , 𝜃𝜃2,1 = 𝑎𝑎1 + 2𝛾𝛾1 = 2(𝑌𝑌𝜏𝜏+)
3  

From equation 2.8, the term  ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 +𝑌𝑌𝜏𝜏+
0

𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 can be approximated as  
  
𝑌𝑌𝜏𝜏+

6 [
2𝜃𝜃1,1𝑓𝑓𝑌𝑌(𝜃𝜃1,1)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,1𝑥𝑥𝜏𝜏) + 2𝜃𝜃2,1𝑓𝑓𝑌𝑌(𝜃𝜃2,1)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,1𝑥𝑥𝜏𝜏) +

𝑌𝑌𝜏𝜏+𝑓𝑓𝑌𝑌(𝑌𝑌𝜏𝜏+)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏) ]     

                                                                         (3.2) 
Substitute back to equation (2.8), we obtain  

  𝑔𝑔1(𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) 𝑌𝑌𝜏𝜏
+

6 [
2𝜃𝜃1,1𝑓𝑓𝑌𝑌(𝜃𝜃1,1)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,1𝑥𝑥𝜏𝜏) +
2𝜃𝜃2,1𝑓𝑓𝑌𝑌(𝜃𝜃2,1)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,1𝑥𝑥𝜏𝜏) +
𝑌𝑌𝜏𝜏+𝑓𝑓𝑌𝑌(𝑌𝑌𝜏𝜏+)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏)

] −

𝑣𝑣𝜏𝜏𝜇𝜇𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏 = 0                                            (3.3)        
Then in similar fashion, we can approximate the 
second derivative as          

𝑔𝑔1′ (𝑥𝑥𝜏𝜏, 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) 𝑌𝑌𝜏𝜏
+

6
[

2𝜃𝜃1,1
2 𝑓𝑓𝑌𝑌(𝜃𝜃1,1)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,1𝑥𝑥𝜏𝜏) +

2𝜃𝜃2,1
2 𝑓𝑓𝑌𝑌(𝜃𝜃2,1)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,1𝑥𝑥𝜏𝜏) +
𝑌𝑌𝜏𝜏+2𝑓𝑓𝑌𝑌(𝑌𝑌𝜏𝜏+)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏)

]

                                                        (3.4)
                                                         
       3.1.2 Approximation for the second 
scenario 
Let (𝑎𝑎2 = 0, 𝑏𝑏2 = 𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏

𝑥𝑥𝜏𝜏
), then we calculate 

𝛾𝛾2, 𝜃𝜃1,2, 𝜃𝜃2,2   as 
𝛾𝛾2 =

(𝑏𝑏2 − 𝑎𝑎2)
3 =

(𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)
3𝑥𝑥𝜏𝜏

 

𝜃𝜃1,2 = 𝑎𝑎2 + 𝛾𝛾2𝑖𝑖 =
(𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)

3𝑥𝑥𝜏𝜏
= 𝛾𝛾2 

𝜃𝜃2,2 = 2(𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)
3𝑥𝑥𝜏𝜏
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From equation 2.12 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 
can be approximated as  
 
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
6𝑥𝑥𝜏𝜏

[2𝜃𝜃1,2𝑓𝑓𝑌𝑌(𝜃𝜃1,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,2𝑥𝑥𝜏𝜏)+ 2𝜃𝜃2,2𝑓𝑓𝑌𝑌(𝜃𝜃2,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,2𝑥𝑥𝜏𝜏)+
𝑏𝑏2𝑓𝑓𝑌𝑌(𝑏𝑏2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑏𝑏2𝑥𝑥𝜏𝜏) ]   

                                               (3.5) 
Let (𝑎𝑎3 = 𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏

𝑥𝑥𝜏𝜏
, 𝑏𝑏3 = 𝑌𝑌𝜏𝜏+), then we calculate 

𝛾𝛾3,𝜃𝜃1,3,𝜃𝜃2,3   as 
𝛾𝛾3 = 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 − (𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏)

3𝑥𝑥𝜏𝜏
 

𝜃𝜃1,3 = 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 + 2(𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)
3𝑥𝑥𝜏𝜏

 

𝜃𝜃2,3 = 2𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 + (𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)
3𝑥𝑥𝜏𝜏

 

From equation 2.12 ∫ 𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 can be 

approximated as  
𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏−(𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏)

6𝑥𝑥𝜏𝜏
[2𝜃𝜃1,3𝑓𝑓𝑌𝑌(𝜃𝜃1,3)+ 2𝜃𝜃2,3𝑓𝑓𝑌𝑌(𝜃𝜃2,3)+ 𝑏𝑏3𝑓𝑓𝑌𝑌(𝑏𝑏3)]          

                                                                      (3.6) 
Substitute back to equation (2.12), we obtain the 
first derivative  
 𝑔𝑔2(𝑥𝑥𝜏𝜏 ,𝜆𝜆) =

(ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏)

{
 

 𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
6𝑥𝑥𝜏𝜏

[
2𝜃𝜃1,2𝑓𝑓𝑌𝑌(𝜃𝜃1,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,2𝑥𝑥𝜏𝜏)+

2𝜃𝜃2,2𝑓𝑓𝑌𝑌(𝜃𝜃2,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,2𝑥𝑥𝜏𝜏)+ 𝑏𝑏2𝑓𝑓𝑌𝑌(𝑏𝑏2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑏𝑏2𝑥𝑥𝜏𝜏)]+

𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏−(𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏)
6𝑥𝑥𝜏𝜏

[2𝜃𝜃1,3𝑓𝑓𝑌𝑌(𝜃𝜃1,3)+ 2𝜃𝜃2,3𝑓𝑓𝑌𝑌(𝜃𝜃2,3) + 𝑏𝑏3𝑓𝑓𝑌𝑌(𝑏𝑏3)] }
 

 
−

𝑣𝑣𝜏𝜏𝜇𝜇𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏                                                        (3.7) 
From equation (2.13), the second derivative 
approximation of expected total cost for second 
scenario is  
𝑔𝑔2′ (𝑥𝑥𝜏𝜏 , 𝜆𝜆) = 

(ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) {𝐷𝐷𝜏𝜏
+−𝐼𝐼𝜏𝜏
6𝑥𝑥𝜏𝜏

[2𝜃𝜃1,2
2  𝑓𝑓𝑌𝑌(𝜃𝜃1,2)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,2𝑥𝑥𝜏𝜏)+ 2𝜃𝜃2,2

2 𝑓𝑓𝑌𝑌(𝜃𝜃2,2)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,2𝑥𝑥𝜏𝜏)+
𝑏𝑏2𝑓𝑓𝑌𝑌(𝑏𝑏2)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑏𝑏2𝑥𝑥𝜏𝜏) ]}                                    

     (3.8)        
  

3.2 Iterative processes for finding problem 
solutions based on Newton’s method        
 The proposing algorithm can be applied for 
both scenarios mentioned in the previous 
section. Newton’s Method uses a straight-line 
approximation to the function whose zero we 
wish to find. Given an initial estimate of the 
zero 𝑥𝑥𝜏𝜏,0; the value of the function at 𝑥𝑥𝜏𝜏,0, 𝑔𝑔0 =
𝑔𝑔(𝑥𝑥𝜏𝜏,0,𝜆𝜆 ); and the value of the derivative at 𝑥𝑥𝜏𝜏,0 
, 𝜕𝜕𝑔𝑔0𝜕𝜕𝑥𝑥𝜏𝜏

= 𝑔𝑔0′ (𝑥𝑥𝜏𝜏,0,𝜆𝜆). The new approximation to 
the zero can be defined as: 
                                                                                 
𝑥𝑥𝜏𝜏,1 =  𝑥𝑥𝜏𝜏,0 −

𝑔𝑔0
𝑔𝑔0′

                                          (3.9) 
The process continues until the change in 

the approximations is sufficiently small or 
stopping condition is satisfied. At the kth stage, 
we have 

                                  
𝑥𝑥𝜏𝜏,𝑘𝑘+1 =  𝑥𝑥𝜏𝜏,𝑘𝑘 −

𝑔𝑔𝑘𝑘
𝑔𝑔𝑘𝑘′

                                    (3.10) 
The calculation steps of the proposing 

algorithm are stated as follows: 
 Calculation steps: 
1) Set  𝜆𝜆 = 0 and  𝑘𝑘 = 0. 
2) Define the value of 𝐷𝐷𝜏𝜏+  and  𝑌𝑌𝜏𝜏+ . 
3) Let the value of   𝑥𝑥𝜏𝜏,𝑘𝑘 = 𝜇𝜇𝐷𝐷𝜏𝜏. 
4) Check condition if  𝑥𝑥𝜏𝜏,𝑘𝑘 ≤ (

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑌𝑌𝜏𝜏+

)  go to step 
5 or else go to step 6. 
5) Calculate the value of function 𝑔𝑔1,𝑘𝑘(𝑥𝑥𝜏𝜏) and   
𝑔𝑔1,𝑘𝑘

′ (𝑥𝑥𝜏𝜏), using equation (3.3) and (3.4), 
respectively. Then go to step 7. 
6) Calculate value of function 𝑔𝑔2,𝑘𝑘(𝑥𝑥𝜏𝜏) and   
𝑔𝑔2,𝑘𝑘

′ (𝑥𝑥𝜏𝜏), using equation (3.7) and (3.8), 
respectively. 
7) Compute new value of order quantity (𝑥𝑥𝜏𝜏,𝑘𝑘), 
using equation (3.10).    
8) Check for every item if  𝑔𝑔1,𝑘𝑘(𝑥𝑥𝜏𝜏) = 0 or 
𝑔𝑔2,𝑘𝑘(𝑥𝑥𝜏𝜏) = 0, go to step 9 or else go back to 
step 4 and repeat steps 4 to 7.  At every iteration 
update value of k = k+1 and 𝑥𝑥𝜏𝜏,𝑘𝑘. 
9) Check budget constraint if it is satisfied, stop 
the calculation.  The proper solution is obtained. 
     If it is not satisfied, we have to continue to 
the next steps. 
10) Compute new Lagrange’s multiplier as: 
                                                                                 

𝜆𝜆𝜏𝜏,𝑘𝑘 = ∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏,𝑘𝑘−𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1

∑ ( 𝑐𝑐𝜏𝜏2

𝑔𝑔′(𝑥𝑥𝜏𝜏,𝑘𝑘)
)𝑁𝑁

𝜏𝜏=1

                              (3.11)                     

11) Update value of   𝜆𝜆𝜏𝜏,𝑘𝑘 then repeat steps 4 to 
7. 
12) Check if there are items with negative order 
quantity. Those items have to be eliminated then 
repeat steps 10 to 11. 
13) If order quantities for all items are positive, 
stop the calculation. We obtain the final solution 
or else repeat step 12. 
 
4. RESULT 

This section consists of two numerical 
examples. The first example compares between 
the proposing algorithm with that of Inderfurth. 
As previously mentioned, he assumed that the 
demand and yield are uniformly distributed and 
budget constraint is not present. Therefore, we 
develop a numerical example with five items to 
be purchased with the similar assumptions 
except that the budget constraint is considered in 
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From equation 2.12 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 
can be approximated as  
 
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
6𝑥𝑥𝜏𝜏

[2𝜃𝜃1,2𝑓𝑓𝑌𝑌(𝜃𝜃1,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,2𝑥𝑥𝜏𝜏)+ 2𝜃𝜃2,2𝑓𝑓𝑌𝑌(𝜃𝜃2,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,2𝑥𝑥𝜏𝜏)+
𝑏𝑏2𝑓𝑓𝑌𝑌(𝑏𝑏2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑏𝑏2𝑥𝑥𝜏𝜏) ]   

                                               (3.5) 
Let (𝑎𝑎3 = 𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏

𝑥𝑥𝜏𝜏
, 𝑏𝑏3 = 𝑌𝑌𝜏𝜏+), then we calculate 

𝛾𝛾3,𝜃𝜃1,3,𝜃𝜃2,3   as 
𝛾𝛾3 = 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 − (𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏)

3𝑥𝑥𝜏𝜏
 

𝜃𝜃1,3 = 𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 + 2(𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)
3𝑥𝑥𝜏𝜏

 

𝜃𝜃2,3 = 2𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏 + (𝐷𝐷𝜏𝜏+ − 𝐼𝐼𝜏𝜏)
3𝑥𝑥𝜏𝜏

 

From equation 2.12 ∫ 𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 can be 

approximated as  
𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏−(𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏)

6𝑥𝑥𝜏𝜏
[2𝜃𝜃1,3𝑓𝑓𝑌𝑌(𝜃𝜃1,3)+ 2𝜃𝜃2,3𝑓𝑓𝑌𝑌(𝜃𝜃2,3)+ 𝑏𝑏3𝑓𝑓𝑌𝑌(𝑏𝑏3)]          

                                                                      (3.6) 
Substitute back to equation (2.12), we obtain the 
first derivative  
 𝑔𝑔2(𝑥𝑥𝜏𝜏 ,𝜆𝜆) =

(ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏)

{
 

 𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
6𝑥𝑥𝜏𝜏

[
2𝜃𝜃1,2𝑓𝑓𝑌𝑌(𝜃𝜃1,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,2𝑥𝑥𝜏𝜏)+

2𝜃𝜃2,2𝑓𝑓𝑌𝑌(𝜃𝜃2,2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,2𝑥𝑥𝜏𝜏)+ 𝑏𝑏2𝑓𝑓𝑌𝑌(𝑏𝑏2)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑏𝑏2𝑥𝑥𝜏𝜏)]+

𝑌𝑌𝜏𝜏+𝑥𝑥𝜏𝜏−(𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏)
6𝑥𝑥𝜏𝜏

[2𝜃𝜃1,3𝑓𝑓𝑌𝑌(𝜃𝜃1,3)+ 2𝜃𝜃2,3𝑓𝑓𝑌𝑌(𝜃𝜃2,3) + 𝑏𝑏3𝑓𝑓𝑌𝑌(𝑏𝑏3)] }
 

 
−

𝑣𝑣𝜏𝜏𝜇𝜇𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏                                                        (3.7) 
From equation (2.13), the second derivative 
approximation of expected total cost for second 
scenario is  
𝑔𝑔2′ (𝑥𝑥𝜏𝜏 , 𝜆𝜆) = 

(ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) {𝐷𝐷𝜏𝜏
+−𝐼𝐼𝜏𝜏
6𝑥𝑥𝜏𝜏

[2𝜃𝜃1,2
2  𝑓𝑓𝑌𝑌(𝜃𝜃1,2)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃1,2𝑥𝑥𝜏𝜏)+ 2𝜃𝜃2,2

2 𝑓𝑓𝑌𝑌(𝜃𝜃2,2)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝜃𝜃2,2𝑥𝑥𝜏𝜏)+
𝑏𝑏2𝑓𝑓𝑌𝑌(𝑏𝑏2)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑏𝑏2𝑥𝑥𝜏𝜏) ]}                                    

     (3.8)        
  

3.2 Iterative processes for finding problem 
solutions based on Newton’s method        
 The proposing algorithm can be applied for 
both scenarios mentioned in the previous 
section. Newton’s Method uses a straight-line 
approximation to the function whose zero we 
wish to find. Given an initial estimate of the 
zero 𝑥𝑥𝜏𝜏,0; the value of the function at 𝑥𝑥𝜏𝜏,0, 𝑔𝑔0 =
𝑔𝑔(𝑥𝑥𝜏𝜏,0,𝜆𝜆 ); and the value of the derivative at 𝑥𝑥𝜏𝜏,0 
, 𝜕𝜕𝑔𝑔0𝜕𝜕𝑥𝑥𝜏𝜏

= 𝑔𝑔0′ (𝑥𝑥𝜏𝜏,0,𝜆𝜆). The new approximation to 
the zero can be defined as: 
                                                                                 
𝑥𝑥𝜏𝜏,1 =  𝑥𝑥𝜏𝜏,0 −

𝑔𝑔0
𝑔𝑔0′

                                          (3.9) 
The process continues until the change in 

the approximations is sufficiently small or 
stopping condition is satisfied. At the kth stage, 
we have 

                                  
𝑥𝑥𝜏𝜏,𝑘𝑘+1 =  𝑥𝑥𝜏𝜏,𝑘𝑘 −

𝑔𝑔𝑘𝑘
𝑔𝑔𝑘𝑘′

                                    (3.10) 
The calculation steps of the proposing 

algorithm are stated as follows: 
 Calculation steps: 
1) Set  𝜆𝜆 = 0 and  𝑘𝑘 = 0. 
2) Define the value of 𝐷𝐷𝜏𝜏+  and  𝑌𝑌𝜏𝜏+ . 
3) Let the value of   𝑥𝑥𝜏𝜏,𝑘𝑘 = 𝜇𝜇𝐷𝐷𝜏𝜏. 
4) Check condition if  𝑥𝑥𝜏𝜏,𝑘𝑘 ≤ (

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑌𝑌𝜏𝜏+

)  go to step 
5 or else go to step 6. 
5) Calculate the value of function 𝑔𝑔1,𝑘𝑘(𝑥𝑥𝜏𝜏) and   
𝑔𝑔1,𝑘𝑘

′ (𝑥𝑥𝜏𝜏), using equation (3.3) and (3.4), 
respectively. Then go to step 7. 
6) Calculate value of function 𝑔𝑔2,𝑘𝑘(𝑥𝑥𝜏𝜏) and   
𝑔𝑔2,𝑘𝑘

′ (𝑥𝑥𝜏𝜏), using equation (3.7) and (3.8), 
respectively. 
7) Compute new value of order quantity (𝑥𝑥𝜏𝜏,𝑘𝑘), 
using equation (3.10).    
8) Check for every item if  𝑔𝑔1,𝑘𝑘(𝑥𝑥𝜏𝜏) = 0 or 
𝑔𝑔2,𝑘𝑘(𝑥𝑥𝜏𝜏) = 0, go to step 9 or else go back to 
step 4 and repeat steps 4 to 7.  At every iteration 
update value of k = k+1 and 𝑥𝑥𝜏𝜏,𝑘𝑘. 
9) Check budget constraint if it is satisfied, stop 
the calculation.  The proper solution is obtained. 
     If it is not satisfied, we have to continue to 
the next steps. 
10) Compute new Lagrange’s multiplier as: 
                                                                                 

𝜆𝜆𝜏𝜏,𝑘𝑘 = ∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏,𝑘𝑘−𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1

∑ ( 𝑐𝑐𝜏𝜏2

𝑔𝑔′(𝑥𝑥𝜏𝜏,𝑘𝑘)
)𝑁𝑁

𝜏𝜏=1

                              (3.11)                     

11) Update value of   𝜆𝜆𝜏𝜏,𝑘𝑘 then repeat steps 4 to 
7. 
12) Check if there are items with negative order 
quantity. Those items have to be eliminated then 
repeat steps 10 to 11. 
13) If order quantities for all items are positive, 
stop the calculation. We obtain the final solution 
or else repeat step 12. 
 
4. RESULT 

This section consists of two numerical 
examples. The first example compares between 
the proposing algorithm with that of Inderfurth. 
As previously mentioned, he assumed that the 
demand and yield are uniformly distributed and 
budget constraint is not present. Therefore, we 
develop a numerical example with five items to 
be purchased with the similar assumptions 
except that the budget constraint is considered in 

our example.  The second example is the 
implementation of the algorithm for a fruit 
retailer in a market where 5 different kinds of 
tropical fruits are included.   
4.1 1st numerical example  

The numerical data for this example are 
shown in the following Table 2. Demand and 
yield of all items are known uniform and 
continuous which their probability density 
functions can be defined as  

 𝑓𝑓(𝐷𝐷𝜏𝜏) = 1
𝐷𝐷𝜏𝜏+

           for       0 ≤ 𝐷𝐷𝜏𝜏 ≤ 𝐷𝐷𝜏𝜏+ 
      𝑓𝑓(𝑌𝑌𝜏𝜏) =  1

𝑍𝑍𝜏𝜏+
          for        0 ≤ 𝑍𝑍𝜏𝜏 ≤ 𝑍𝑍𝜏𝜏+ 

The available budget for this problem is $300. 
 
Table 2 Numerical data 

Item(𝜏𝜏) 𝐷𝐷𝜏𝜏 (a, b)1 𝑌𝑌𝜏𝜏(a, b) ℎ𝜏𝜏 𝑣𝑣𝜏𝜏 𝑐𝑐𝜏𝜏 𝐼𝐼𝜏𝜏 
1 (0, 120) (0, 0.78) 2.5 13 2 7 
2 (0, 50) (0, 0.82) 3 10 3 2 
3 (0, 45) (0, 0.85) 1 15 3 5 
4 (0, 70) (0, 0.74) 0.5 16 6 3 
5 (0, 20) (0, 0.91) 4.5 20 10 6 

1  a is the lower bound, b is the upper bound 
 

We implement our algorithm to solve the 
problem and then compare obtained solution to 
that of Inderfurth which shown in Table 3. 
 
 

Table 3 Calculated solution comparison 
Item(𝜏𝜏) Order quantity % Error 

Proposed 
algorithm 

Inderfurth 

1 98.28 103.73 5.25% 
2 14.42 15.21 5.19% 
3 28.98 30.59 5.26% 
4 14.50 15.30 5.23% 
5 -9.09 -9.59 5.21% 

 
From table 3, the approximated solution is 

close to the optimal solution with the average 
percentage error of 5.23%. Noted that for 
item#5, the order quantities obtained from both 
algorithms are shown as negative number for the 
comparison purpose which in fact they have to 
be round up to zero.  
4.2 2nd numerical example  

This example illustrates the implementation 
of the model to a fruit store in a market. The 
store sells variety kinds of fruit product but we 
will focus on the most five popular fruits. The 
numerical data of this example is shown in 
Table 4 and the available budget is $150. In this 
problem 𝐷𝐷𝜏𝜏+and 𝑌𝑌𝜏𝜏+for Normal distribution is 
denoted as 𝐷𝐷𝜏𝜏+and 𝑌𝑌𝜏𝜏+ =  𝜇𝜇+ 3𝜎𝜎  and for 
Uniform distribution 𝐷𝐷𝜏𝜏+and 𝑌𝑌𝜏𝜏+ = b. 
 
 

Table 4 Numerical data 
Item(𝜏𝜏) 𝐷𝐷𝜏𝜏  𝑌𝑌𝜏𝜏 ℎ𝜏𝜏 𝑣𝑣𝜏𝜏 𝑐𝑐𝜏𝜏 𝐼𝐼𝜏𝜏 Distribution type Parameters Distribution type Parameters 
1 Normal (𝜇𝜇,𝜎𝜎) (50,15) Normal (𝜇𝜇,𝜎𝜎) (0.75,0.2) 5 13 1 3 
2 Uniform (𝑎𝑎,𝑏𝑏) (0,45) Uniform (𝑎𝑎,𝑏𝑏) (0,0.85) 1 15 3 5 
3 Normal (𝜇𝜇,𝜎𝜎) (36,10) Normal (𝜇𝜇,𝜎𝜎) (0.6,0.15) 3 14 2 10 
4 Normal (𝜇𝜇,𝜎𝜎) (60,7) Uniform (𝑎𝑎,𝑏𝑏) (0,0.82) 0.5 11 4 2 
5 Uniform (𝑎𝑎,𝑏𝑏) (0,120) Uniform (𝑎𝑎,𝑏𝑏) (0,0.78) 4.5 13 2 7 

 
After implement the algorithm, problem solution 
is obtained and shown in Table 5. 
 
Table 5 Calculated Solution 

Item(𝜏𝜏) Orderquantity 
(𝑥𝑥𝜏𝜏) 

Budget usage 

1 59.12 59.12 
2 -6.94 -20.83 
3 34.80 69.60 
4 1.90 7.59 
5 17.26 34.52 

 
From Table 5, one can see that the order 

quantity of item# 2 is a negative amount; 
therefore, we have to eliminate that item out of 
consideration and recalculate the new value of  
𝜆𝜆2,𝑘𝑘 , according to step 12 in sections 3.2. The 

new value of  𝜆𝜆𝜏𝜏,𝑘𝑘 is 1.135. Then we obtain the 
order quantity for product 1, 3, 4, 5 as 58.88, 
68.69, -1.27, 13.76 respectively. As one can see 
that, product 4 has a negative order quantity 
which we have to eliminate. Then, we repeat 
step 12 to 14, we obtain final order quantity for 
product 1, 3, 5 as 58.73, 34.06, and 11.58 
respectively. 

 
5. CONCLUSIONS 

As literature in this arena, the stochastic 
single-period inventory problem with 
proportional costs, we could not obtain the 
analytical solution when demand or yield is not 
follow uniform distribution. Hence, we present 
the developed algorithm to overcome the 
limitation based on two main steps which are 
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1) the approximation of cost function by 
composite trapezoid numerical integration and 
2) the solution procedures by the Newton’s 
method. The algorithm is applied with a 
numerical example of 5 products to purchase 
and two types of budget constraint; binding 
constraint ($600) and tight constraint ($150). 
The obtained solution for binding constraint 
case shows that budget is enough to purchase all 
products and the total utilized budget is $600.20 
which equal to budget error of 0.03 percent. For 
the tight constraint case, the available budget is 
not enough to purchase all products; hence some 
product must be eliminated, in this example 
eliminated products are product 2 and product 4, 
the total utilized budget is $150.01 (error of 0.01 
percent). This shows that develop algorithm is 

accurate and easy to use with Microsoft Excel to 
conduct each algorithm step. Furthermore, when 
budget is tight the proposing method is different 
than others in two aspects which are 1) it does 
not allow negative order quantity 2) it provides 
the step to prioritized the order; the item ordered 
first is the item that give more profit, on 
contrary item ordered last is the least profit 
utility.  
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7. APPENDIX 
 In this appendix, proofs of equation 2.8, 2.9, 2.12 and 2.13 are provided respectively. 

 

𝜕𝜕𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝜏𝜏

 [∑ {

𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 +

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏+

0

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝑌𝑌𝜏𝜏+

0

} +            𝜆𝜆(∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1 )𝑁𝑁

𝜏𝜏=1 ]  

Let differentiate the equation separately for each term as follow. 
𝜕𝜕(𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏)
𝜕𝜕𝜕𝜕 =  𝑐𝑐𝜏𝜏  

 
𝜕𝜕(∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏−𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏
+

0 )
𝜕𝜕𝑥𝑥𝜏𝜏

= ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0

𝑌𝑌𝜏𝜏
+

0
  

                                                                 = ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑌𝑌𝜏𝜏
+

0
𝑑𝑑𝑌𝑌𝜏𝜏 

 
𝜕𝜕(∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏−𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏
+

0
)

𝜕𝜕𝜕𝜕        = −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)[1 − ∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0 ]𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+

0   

                                     = −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)[1 − 𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )]𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏

+

0
 

                             = −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏

+

0

𝑌𝑌𝜏𝜏
+

0
  

                                     =  −𝑣𝑣𝜏𝜏𝐸𝐸[𝑌𝑌𝜏𝜏] + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏

+

0
   

 
Therefore, combine all terms, we obtain equation 2.8 
For equation 2.9, we applied the following derivative property, T.W. Epps [17]  

              𝜕𝜕𝜕𝜕𝜕𝜕 𝐹𝐹𝑥𝑥[ℎ(𝑦𝑦)] = 𝑓𝑓𝑥𝑥[ℎ(𝑦𝑦)]𝜕𝜕ℎ(𝑦𝑦)
𝜕𝜕𝜕𝜕    

then, take the second derivative we obtain equation 2.9 as follow 
                         𝜕𝜕

2𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏2

= 𝑔𝑔1′ (𝑥𝑥𝜏𝜏 , 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏)∫ 𝑌𝑌𝜏𝜏2𝑓𝑓(𝑌𝑌𝜏𝜏)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
0     

   
  

Let proof equation 2.10  



158 159

742

1) the approximation of cost function by 
composite trapezoid numerical integration and 
2) the solution procedures by the Newton’s 
method. The algorithm is applied with a 
numerical example of 5 products to purchase 
and two types of budget constraint; binding 
constraint ($600) and tight constraint ($150). 
The obtained solution for binding constraint 
case shows that budget is enough to purchase all 
products and the total utilized budget is $600.20 
which equal to budget error of 0.03 percent. For 
the tight constraint case, the available budget is 
not enough to purchase all products; hence some 
product must be eliminated, in this example 
eliminated products are product 2 and product 4, 
the total utilized budget is $150.01 (error of 0.01 
percent). This shows that develop algorithm is 

accurate and easy to use with Microsoft Excel to 
conduct each algorithm step. Furthermore, when 
budget is tight the proposing method is different 
than others in two aspects which are 1) it does 
not allow negative order quantity 2) it provides 
the step to prioritized the order; the item ordered 
first is the item that give more profit, on 
contrary item ordered last is the least profit 
utility.  
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7. APPENDIX 
 In this appendix, proofs of equation 2.8, 2.9, 2.12 and 2.13 are provided respectively. 

 

𝜕𝜕𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝜏𝜏

 [∑ {

𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 +

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏+

0

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝑌𝑌𝜏𝜏+

0

} +            𝜆𝜆(∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐵𝐵𝐵𝐵𝑁𝑁
𝜏𝜏=1 )𝑁𝑁

𝜏𝜏=1 ]  

Let differentiate the equation separately for each term as follow. 
𝜕𝜕(𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏)
𝜕𝜕𝜕𝜕 =  𝑐𝑐𝜏𝜏  

 
𝜕𝜕(∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏−𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏
+

0 )
𝜕𝜕𝑥𝑥𝜏𝜏

= ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0

𝑌𝑌𝜏𝜏
+

0
  

                                                                 = ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑌𝑌𝜏𝜏
+

0
𝑑𝑑𝑌𝑌𝜏𝜏 

 
𝜕𝜕(∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏−𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏

𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝑌𝑌𝜏𝜏
+

0
)

𝜕𝜕𝜕𝜕        = −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)[1 − ∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0 ]𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+

0   

                                     = −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)[1 − 𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )]𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏

+

0
 

                             = −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏

+

0

𝑌𝑌𝜏𝜏
+

0
  

                                     =  −𝑣𝑣𝜏𝜏𝐸𝐸[𝑌𝑌𝜏𝜏] + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏

+

0
   

 
Therefore, combine all terms, we obtain equation 2.8 
For equation 2.9, we applied the following derivative property, T.W. Epps [17]  

              𝜕𝜕𝜕𝜕𝜕𝜕 𝐹𝐹𝑥𝑥[ℎ(𝑦𝑦)] = 𝑓𝑓𝑥𝑥[ℎ(𝑦𝑦)]𝜕𝜕ℎ(𝑦𝑦)
𝜕𝜕𝜕𝜕    

then, take the second derivative we obtain equation 2.9 as follow 
                         𝜕𝜕

2𝑇𝑇𝑇𝑇1(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏2

= 𝑔𝑔1′ (𝑥𝑥𝜏𝜏 , 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏)∫ 𝑌𝑌𝜏𝜏2𝑓𝑓(𝑌𝑌𝜏𝜏)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
0     

   
  

Let proof equation 2.10  

                          𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏) = ∑

{
  
 

  
 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 + ∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

0

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0

∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐷𝐷𝜏𝜏+
0

𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 }
  
 

  
 

𝑁𝑁
𝜏𝜏=1 + 𝜆𝜆(∑ 𝑐𝑐𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐵𝐵𝐵𝐵𝑁𝑁

𝜏𝜏=1 ) 

Let differentiate the equation separately for each term as follow. 

 𝜕𝜕𝜕𝜕𝑥𝑥𝜏𝜏 [∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 ∫ ∫ ℎ𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 − 𝐷𝐷𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
0

𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

] 

 =  ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏 +𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0 ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏

𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
0   

            =  ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏 + ℎ𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏  

𝜕𝜕
𝜕𝜕𝑥𝑥𝜏𝜏

[∫ ∫ 𝑣𝑣𝜏𝜏(𝐷𝐷𝜏𝜏 − 𝐼𝐼𝜏𝜏 − 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑓𝑓(𝐷𝐷𝜏𝜏)𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 ]  

            =  −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏𝑑𝑑𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏  

            =  −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏) [1 − ∫ 𝑓𝑓(𝐷𝐷𝜏𝜏)𝑑𝑑𝐷𝐷𝜏𝜏
𝐼𝐼𝜏𝜏+𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏
0 ] 𝑑𝑑𝑌𝑌𝜏𝜏  

            =  −𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏  

              =  −𝑣𝑣𝜏𝜏 [∫ 𝑌𝑌𝜏𝜏𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
0 − ∫ 𝑌𝑌𝜏𝜏

𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏]+  𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏  

              =  −𝑣𝑣𝜏𝜏𝐸𝐸[𝑌𝑌𝜏𝜏] + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏 )𝑑𝑑𝑌𝑌𝜏𝜏 + 𝑣𝑣𝜏𝜏 ∫ 𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏  

Therefore, combine all terms, we obtain equation 2.12 
 

𝜕𝜕𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏)
𝜕𝜕𝑥𝑥𝜏𝜏

= 𝑔𝑔2(𝑥𝑥𝜏𝜏 , 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏)

[
 
 
 ∫ 𝑌𝑌𝜏𝜏

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝐹𝐹𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 +

∫ 𝑌𝑌𝜏𝜏
𝑌𝑌𝜏𝜏+
𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

𝑓𝑓(𝑌𝑌𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏 ]
 
 
 
− 𝑣𝑣𝜏𝜏𝜇𝜇𝜏𝜏 + 𝑐𝑐𝜏𝜏 + 𝜆𝜆𝑐𝑐𝜏𝜏  

then, take the second derivative we obtain equation 2.13 as follow 
𝜕𝜕2𝑇𝑇𝑇𝑇2(𝑥𝑥𝜏𝜏)

𝜕𝜕𝑥𝑥𝜏𝜏2
= 𝑔𝑔2′ (𝑥𝑥𝜏𝜏 , 𝜆𝜆) = (ℎ𝜏𝜏 + 𝑣𝑣𝜏𝜏) [∫ 𝑌𝑌𝜏𝜏2

𝐷𝐷𝜏𝜏+−𝐼𝐼𝜏𝜏
𝑥𝑥𝜏𝜏

0 𝑓𝑓(𝑌𝑌𝜏𝜏)𝑓𝑓𝐷𝐷𝜏𝜏(𝐼𝐼𝜏𝜏 + 𝑌𝑌𝜏𝜏𝑥𝑥𝜏𝜏)𝑑𝑑𝑌𝑌𝜏𝜏]  
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