
448 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY, Vol.16, No.4, December 2022

ECTI Transactions on Computer and Information Technology

Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/

Published by the ECTI Association, Thailand, ISSN: 2286-9131

Streaming Accelerator Design for Regular Expression on
CPU+FPGA Embedded System

Hendarmawan1, Morihiro Kuga2 and Masahiro Iida3

ABSTRACT Article information:
A pattern matching application is one of the necessary tasks in streaming
data processing. A hardware accelerator employing FPGA can be faster
than a general-purpose processor in performing data pattern matching us-
ing regular expression methods. However, it is di�cult and time-consuming
to design the hardware on the FPGA for each regular expression pattern.
We are researching a method for automatically designing hardware accel-
erators for higher e�ciency and performance to improve user productiv-
ity. In this research, we propose rules and methods for translating regular
expression patterns into supported hardware code as our contribution to
providing an e�cient design method for regular expression hardware accel-
erators and allowing the e�cient utilization of FPGAs. The performance
evaluation is compared with the regular expression algorithm on ARM
processors, CPU servers, and FPGA data streaming applications. Our re-
sult shows that our FPGA accelerator enables speeding up data streaming
applications on CPU processors. Our solution is 733 times faster than op-
timized C/C++ code. It is 70 times faster than using the Python library.
It is twice as fast as PYNQ-Z2 and 1.5 faster than RE2C. Furthermore,
our proposed accelerator Ultra-96 improves the performance 2 times with
an 8[MB/J] high energy e�ciency from the previous PYNQ-Z2 approach.

Keywords: Stream Process-

ing, Pattern Matching, Complex

Event Processing, Hardware Ac-

celerator

Article history:

Received: May 16, 2021

Revised: July 4, 2022

Accepted: July 30, 2022

Published: October 15, 2022

(Online)

DOI: 10.37936/ecti-cit.2022164.249268

1. INTRODUCTION

Real-time data stream processing in edge comput-
ing has become a priority for data analysis of stored
big data. Data aggregation and processing algorithms
like pattern recognition, complex event processing
(CEP), and high-speed data processing for massive
sensing of data for real-time processing are becoming
a must [1]. Regular expression (regex) pattern match-
ing and feature extractions are the core of big data
analytics and processing real-time data into meaning-
ful information [2].

Because of high productivity with rich libraries
and support, data scientists use Python as the high-
level programming language to perform these pro-
cesses [3]. However, its performance is slow, and
power consumption is also high. Therefore, it is nec-
essary to employ a Field Programmable Gate Array
(FPGA) accelerator to speed up and scale-up per-
formance and, at the same time, lower the energy
consumption [4].

There are two main challenges in integrating FP-
GAs into the edge computing environment: the high
Hardware (HW) and Software (SW) co-design com-
plexity, and HW resource sharing. First, HW and SW
co-design for developing an accelerator requires devel-
opers to have expertise on both sides, especially for
signi�cant architectures and complex projects. High-
Level Synthesis (HLS) methodology helps in these
scenarios. However, HLS is under development with
many limitations and requirements [5].

Second, centralized computing servers are highly
virtualized. Multiple applications can be concur-
rently executed without disturbing each other, which
improves the server utilization rates but leaves the
risk of data overhead while processing data from the
IoT ecosystem. To utilize FPGAs in the same man-
ner, it is necessary to provide virtualization tech-
niques for sharing the resources of many FPGAs.
Useful techniques include lookup tables (LUTs),
block RAMs (BRAMs), and digital signal processors

1,2,3 The authors are with Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto-shi, 860�8555 Japan.,
E-mail: hendarmawan@st.cs.kumamoto-u.ac.jp, kuga@cs.kumamoto-u.ac.jp and iida@cs.kumamoto-u.ac.jp
1Corresponding author: hendarmawan@st.cs.kumamoto-u.ac.jp



Streaming Accelerator Design for Regular Expression on CPU+FPGA Embedded System 449

(DSPs). These allow real-time processing accelera-
tors to be implemented.

This paper proposes rules for designing regex HW
Intellectual Property (IP) for FPGA Accelerators.
We also investigate the behavior and evaluate the cir-
cuit scale and energy consumption. Our approaches
works well on stream data processing related to
regexes.

The rest of this paper is organized in five sections.
In Section 2, we summarize the state of the art from
past research. We introduce the architecture of the
proposed FPGA accelerator, streaming application,
rules, and data streaming framework in Section 3.
Section 4 provides the details of using the proposed
translation rules for streaming data analysis, build-
ing accelerators, and optimization techniques. Imple-
mentation details and experimental results are pro-
vided in Section 5. Finally, Section 6 concludes the
paper.

2. RELATED WORK

Traditional recommendation algorithms are usu-
ally classified into two types: collaborative recom-
mendation and content-based recommendation [5].
Collaborative recommendation uses the past behav-
iors of several users to produce new recommenda-
tions. The limitation of this type is that a large his-
tory of past behavior of users is required to make
a good recommendation. Moreover, scalability prob-
lems can be encountered because all preferences of all
users must be collected, which results in sparse and
excessive data. Examples of this algorithm are matrix
factorization and the restricted Boltzmann machine.

Content-based recommendation analyzes the prop-
erty of each item and makes a recommendation based
on the user’s profile and past behaviors. The limita-
tion of this algorithm is that it cannot recommend
new items apart from items related to the user’s past
behaviors. The examples of this algorithm are näıve
Bayes, decision tree, k-nearest neighbor (KNN), and
support vector machines. Collaborative recommen-
dation and content-based recommendation both have
unique benefits and disadvantages.

2.1 Related Work

Big data processing requires processing a high vol-
ume of event streams in real-time. Examples of this
kind of processing include financial systems, stock ex-
changes, network surveillance, and health care. These
all requires processing stream events in real-time
[6]. Software-based stream monitoring has limitations
due to high network packet rates, as shown in [7].
Event Processing Hardware using FPGA accelerator
has been implemented by ETH Zurich University on
publication [8], achieving high-performance regex en-
gine over data stream by which they have developed
using VHDL / low-level programming language. Us-
ing native design flow will enable boost performance;

however, it has drawbacks on low productivity as it
requires many years to develop their pattern match-
ing hardware accelerator due to complexity.

FPGA has demonstrated excellent speed perfor-
mance and power efficiency advantages over conven-
tional computers in various domains, such as image
processing, communication, and data analysis. In re-
ality, the design and implementation of hardware on
FPGA typically take a more extended time due to its
complexity for core development. It requires under-
standing and skills for circuit design to use tools to
develop accelerator applications on FPGA. This dis-
advantageous attribute makes the development cost
of FPGA expensive.

A pattern matching and feature extraction en-
gines are mainly implement regex algorithms. Regex
matching is an important mechanism used by popular
network intrusion detection systems (NIDS), such as
Bro [9] and Snort to perform deep packet inspection
against potential threats. There are few implemen-
tations of software-based regex for security, like re-
search by [10] to perform SNORT detection [11]. For
hardware-based implementations for pattern match-
ing and stream processing feature extraction has been
carried out [12] to develop regex engines for hard-
ware circuits using the hardware description language
VHDL. In [13], a design, implementation, and evalu-
ation of a high-performance architecture for pattern
matching are performed on FPGA to counteract an
increasing number of patterns to be scanned and net-
work bottleneck. The main objective of using FPGA
to solve this problem is to accelerate the system to
achieve high performance.

3. PROPOSED RULES FOR FPGA PAT-
TERN MATCHING

3.1 Problem and Challenges

This research improves upon prior research on data
processing pattern matching using regex on proces-
sors and hardware FPGA. The original objectives
of the authors were investigate different approaches
for high-level programming libraries like C/C++ and
Python for pattern matching on software and how
to improve the performance over traditional pattern-
matching software using hardware accelerators. We
also wanted to improve productivity by designing an
automation building block for process for software
and hardware developers. Each development flows
from a given pattern to code generation using high-
level programming language into hardware logic ab-
straction, design synthesis, and implementation, and
finally generating a bit-stream for hardware overlays
for hardware accelerator. We propose a hardware de-
sign and abstraction techniques to optimize and uti-
lize hardware resources to get better results and eval-
uations.

There are problems and challenges to overcome to
achieving our research’s objectives. First, we need



450 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

to learn how to get better performance over tradi-
tional pattern-matching software with lower power
consumption. Second, we must investigate how to
promote co-design spaces for software and hardware
developers by designing automation building blocks
for process so that each development flows. Third, we
want to encourage resource sharing within a FPGA
to optimize and utilize hardware resources. Problems
and challenges include:

1. The development flow of the FPGA applications
needs complex and complicated hardware exper-
tise. However, they guarantee better performance
and lower energy consumption. The initial chal-
lenge for hardware developers required compli-
cated coding algorithms and hand wiring blocks
of programmable array logics from bottom-up to
present IP. Finally developers must use shells of a
designated vendor FPGA to implement their code
at the HW level. These bottom-up principles are
challenging and often become obstacles for soft-
ware developers who want to design and deploy
their applications at the HW level.

2. The complexity of each development process at the
HW layer is time-consuming and these steps are
contrary to rapid development scenarios for high
productivity principles. Therefore, some changes
are required to simplify and automate the process.

3. Pattern matching software on processors is easy
to use with libraries provided by a high-level
programming language like C/C++ and Python.
However, the performance of these implementa-
tions is commonly lower compared to complex
coded pattern-matching software. Meanwhile,
pattern matching and feature extraction on gen-
eral purpose processors have lower performances
and higher energy consumption than HW in a cus-
tom chip implementation.

3.2 Developing Pattern Matching

The majority of High-level programming languages
like C/C++, Python, and Java offer extensive li-
braries to help programmers get easy-to-use functions
and procedures to implement their algorithms and ap-
plications. For pattern matching algorithm, C/C++
provides a regex library, and Python provides re li-
brary, which can be quickly deployed by importing
this library into their code. There are advantages
and disadvantages either using software or hardware
for programmers to perform their pattern matching
algorithm in terms of productivity, computing perfor-
mance, difficulties, limitation, complexity, and energy
consumption.

Programmers have the freedom to express their
way of thinking and problem-solving techniques in
their algorithm based on software principles. How-
ever, it is a huge challenge to achieve a rapid
development process, solving compatibility issues,
trouble-shoot, minify resource allocation, and obtain

peak performances for hardware implementation like
FPGA, which require high amount of skill and time
to make them perform with high performance and
low energy consumption [14].

Hardware developers and vendors introduced HLS
[15], a state-of-art C-to-FPGA synthesis solution, to
improve design productivity. HLS helps programmers
to implement algorithms using C language. Then
HLS translates it into HDL like VHDL or Verilog.
However, the C libraries cannot be used on HLS
due to limitations described in the HLS manual.
Therefore, the author employs RE2C to implement
regex pattern matching on the hardware level because
RE2C is DFA-based and suitable for programming
logic for a FPGA. Our proposed method combines
high productivity from RE2C and HLS approaches,
enabling rapid development for both hardware and
software developers who want to implement regex
pattern matching accelerators in hardware.

3.3 Overview of RE2C Code generator

Regular expression to C (RE2C) is a free and open-
source software lexer generator for C. Originally writ-
ten by Peter Bumbulis and described in his paper
[16]. It is the lexer generator adopted by projects
such as PHP, Spam Assassin, the ninja build system,
and others. The problems and challenges of using reg-
ular expression patterns for data stream applications
are as include:

1. Limited support for hardware implementation.
2. Slow performance when using the C Library for

Regex.
3. Scarce guidelines for beginners and hardware ac-

celerators.
4. Low productivity with hardcoding necessary for

each step, which makes for HW-SW co-design slow
and tedious.

Unlike other generators, it does not provide de-
fault rules, input pseudo-token, and buffer manage-
ment routines [17] which must instead be provided by
users.

3.4 Internal Process of RE2C

Pattern matching using RE2C begins with scanner
getting input of regex then passing it to the parser
generator, then it is further processed in semantic
analyzer before it optimized and generated into C++
code is generated. Its simplified rules are:

1. Constructing DFA
The first step of the RE2C scanner generator is
constructing a DFA from the pattern to recognize
the implemented regex provided by the user.

2. Generating Code
After constructing DFA, the following steps are
parser generator, semantic analyzer generator, op-
timizer, and code generator. Because of us-
ing DFA, code generated by RE2C is relatively



Streaming Accelerator Design for Regular Expression on CPU+FPGA Embedded System 451

straightforward. It will create some additional
code to save backtracking information.

3. Buffering
The RE2C generated scanner will check if a buffer
is needed by comparing YY-CURSOR and TT-
LIMIT. This attempt is performed to reduce the
amount of checking. This will minimize the steps
needed for checking every running routine.
RE2C generates minimalistic hardcoded C or C++

DFA state machines to process regular expression
syntax input. After that, we directly compile and
use the generated C code for software evaluation.
However, modification and hardcoding based on the
RE2C generated output C code are required to be
able to run in the HLS due to compatibility and sup-
port issues. We propose some rules are required to
make HLS compatible code in the next section.

4. TRANSLATION RULES OF REGULAR
EXPRESSION FOR HARDWARE AC-
CELERATOR

We proposed special rules for regex translation
for FPGA hardware accelerators targeting high-
efficiency, and low-cost HW/SW co-design. This
leads to shorter development curve and development
time because we can reduce development complexity
and the language barrier between high-level and low-
level programming languages at the HW level. This
can be achieved by implementing code translation
and linker for HW-supported codes. After a series of
experiments, we developed a modification of RE2C
together with the HLS technique to develop accelera-
tors quickly with attractive acceleration performance.
In addition, some optimization is also provided to
avoid data overhead and to perform pipelined data
operation.

4.1 Into HLS C

Vivado HLS [21] is one of the HLS tools by Xil-
inx to bridge the hardware and software domains. It
helps hardware developers to work at the level of ab-
straction while creating high-performance hardware.
Meanwhile, for software developers, it has tools to
accelerate computation for their algorithms on FP-
GAs. HLS allows them to develop an algorithm at
the C-Level rather than hard-coding in low-level pro-
gramming hardware languages like what Hardware
programmers do in HDL languages like Verilog or
VHDL. Furthermore, HLS allows users to verify code
and function more quickly than traditional DHL. It
allows control C-Synthesis through optimization di-
rectives and makes it possible to create multiple im-
plementations for different purposes.

4.2 Proposed Translation Rules

There are limitations on Vivado HLS C supported
code [21]; it does not support dynamic memory al-

location, OS operations, or general pointer casting.
Therefore, this paper proposed translation rules to
solve these limitations by modifying RE2C to create
C compatible standard HLS. These rules are:
1. Avoid Dynamic Memory Allocation

With Static Memory Allocation, users are required
to declare variables before using them so that the
compiler can allocate these variables to the mem-
ory. On the other hand, Dynamic Memory Alloca-
tion does not require the user to specify the mem-
ory allocation required for the program in advance
users do not need to worry about any upper limit
for memory allocations. These advanced features
are not supported on HLS. Thus, the first rule is
to adjust the lexical analysis routines in RE2C to
avoid dynamic memory allocation use.

2. Directing Operating System Operations to caller
Operating System (OS) operations such as file
read or write and OS queries like time and date
are not supported by HLS. Therefore, the second
rule for translation is managing OS operation into
an outer platform like a driver and test bench in
C/C++. With OS direct call restriction, all data
from and to FPGA must be read and written from
the input and output ports, respectively.

3. Changing General Pointer Casting into State Ma-
chine
C-style pointer casts, in this case, are “goto” state-
ments, which are not supported by HLS. These
limitations exist probably because, first, it can be
challenging to manage flow control. Second, it
may be error-prone, which can cause disaster (wild
pointer) if used excessively. Therefore, in the third
rule, we replaced this pointer casting with a sim-
ple state machine which works perfectly, and more
importantly, it is supported by HLS. RE2C is con-
sidered the fastest framework for regex pattern
matching compared to optimized C and Python
regex libraries and code generators for re-patterns
into C. Our proposal enables accelerating its com-
putation at the hardware level with our proposed
rules.

4. Inserting design directives and wrapping code
Our translator translates the regex function gen-
erated by RE2C for High-level synthesizing with



452 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

Vivado HLS. It contains pre-developed data struc-
tures, data processing, and common functions
that can be reused in various regex applications.
Adding HLS directives and wrapping code will
provide IPs and drivers to accelerate the functions
of the designed regex application. Vivado HLS can
support original SW classes and HW versions at
the runtime after translation. Therefore, applica-
tions can be accelerated without any modifications
on Vivado HLS. Although this method can only
accelerate regex functions imported into applica-
tions, it is meaningful because SW engineers can
easily use the regex HW class library generated by
Vivado HLS.
Our approaches are the best fit for stream data

processing related to regular expressions. However,
there are currently some limitations. First, not all
regular expression matching has been tested. Second,
these rules and translation do not support a complex
regular expression requiring resource sharing, much
backtracking, and a deep first algorithm.

4.3 Regex Accelerator

It is easier to develop HLS-compatible C/C++
code by benefiting from our proposed rules. This is
crucial for designing regex HW accelerators, and any
regex pattern would be supported as long as it is a
standard C code reference supports it.

Fig.1: Development of data streaming accelerator
workflow.

Figure 1 shows a workflow for processing regex pat-
tern using an algorithm suitable for enabling high-
performance HW on an FPGA accelerator. It start
with a regex pattern, then RE2C generates generic
C++ code with the command “re2c -0 example.c ex-
ample.re” where “example.re” is the input code, and
“example.c” is the output code. Then, using our
translation rules, we generate C++ code for HLS to
design HW accelerator IP. Finally, regex HW is gen-
erated by Vivado HLS and Vivado for the PYNQ de-
vices.

Source code 1 shows HW interface design to con-
nect with regex “accel hw” it works as follows: Func-

tion “ip accel” handles data streaming communica-
tion with “HLS INTERFACE axis port” from axis
source, using “HLS INTERFACE axis port” desti-
nation for results, and “HLS INTERFACE s axilite”
for the controller. Then function “axis2Arr()” con-
verts axis data into array data A that we can pro-
cess reading all streaming and converting it in real-
time. Function “accel hw()” is the function which
runs the regex pattern, where all streaming data
on array A is processed with a Pipeline DFA State
machine. As a result, every matched character is
be saved and then transferred into array C. Finally,
Function “Arr2axis()” converts data from array C
into the AXIS type, channeled to the “HLS INTER-
FACE axis port” destination.

4.4 Design Parameter on Vivado HLS

HW performance can be improved by using the de-
sign parameter offered by HLS compilers. These pa-
rameters aim to improve HW performance, and HLS
directives are inserted onto the C program as prag-
mas. We incorporate the design parameter on source
code 1 as pragma dataflow, pragma HLS pipeline,
pragma HLS unroll and pragma HLS loop flatten off
in the accel hw function.

The following three are complementary technique
to our work to allow using optimized hardware
FPGA:

A. Loop flatten off
Loop flattening unrolls instructions inside a loop,
to remove the overhead associated with checking
for the end of the loop at the beginning of each
iteration.

B. Loop unroll
The iteration loops of the HW implementation
are unrolled into independent mechanisms instead
of one for parallel computation of FPGA regex
accelerator.

C. Pipeline Technique
Pipelines are a scheduling technique used in HLS.
Pipeline execution allows concurrent execution of
operations within a function by allowing the sub-



Streaming Accelerator Design for Regular Expression on CPU+FPGA Embedded System 453

Fig.2: Internal behavior and structure of proposed
regex HW.

sequent execution of the task to begin before the
current execution has been completed. For our
improved implementation, the operation between
stages can be well pipelined with an interval of 1,
which means our HW can process one incoming
key in each clock cycle. This behavior are illus-
trated in figure 2. It is explained data workflow
for proposed regex HW where data pipelined into
four channels of AXI-Array A data read on our
“accel hw()” function (function accelerated HW
on our source code 1) in 32 bit for Pynq-Z2 and 64
bit for Ultra96. It is further processed into DFA
on our Intellectual Property (IP) on the HW level.
This behavior explained the internal technique of
our rules to accommodate faster processing regex
pattern matching in real-time uses, which is com-
patible with the FPGA accelerator, where it can
be done at the software level.

5. EVALUATION

We implemented pattern matching using regexes
both software and hardware approach for implemen-
tation and evaluation. Our evaluation focuses on the
novelty use of our rule framework for cross-platform
regex computation. We repurpose existing hardware
on the PYNQ Family (Pynq Z2 and Ultra96) for de-
bugging and do not introduce additional overhead.

We are able to reduce overheads with our rules, of-
fering novelty on rapid transition and translation be-
tween Software (SW) and Hardware (HW) accelera-
tor for streaming data computation with regex with-
out sacrificing performance.

Table 1: Hardware details.
Features CPU ARM+ FPGA ARM+ FPGA

Vendor Intel CPU Tul PYNQ-Z2 Avnet Ultra96v2

Processor Core i7 Arm Cortex-A9 Cortex-A53

Cores(threads) 6 (12) 2 4

Architecture 64 bit 32 bit 64 bit

Process 32nm 28nm 28nm

Clock Freq. 3.4 GHz 450 MHz 450 MHz

Level 1 cache 256 KB 32 kB 32 kB

Level 2 cache 1 MB 512 kB 1MB

Level 3 cache 8 MB - -

TDP 130 W 4 W 24 W

Memory 16 GB 512 MB 2GB

OS Ubuntu Ubuntu18.04 Ubuntu18.04

18.04 LTS LTS LTS

PS-PL max. - 800MB/s 1600MB/s

data transfer

The system setups are shown in table 1. In the
implementation, we use four different setups: System
CPU Processor using Intel Core i7 servers with DDR3
memory 16GB. Second, we employ ARM on PYNQ
Z2 which has a 650MHz dual-core Cortex-A9 ARM
type processor with 512MB of DDR3 memory. Third,
we used a ZYNQ XC7Z020-1CLG400C on PYNQ Z2
boards. Fourth, we used a Xilinx ZYNQ UltraScale+
MPSoC ZU3EG A484 with Micron 2 GB LPDDR4
memory on Ultra 96 Board. Pynq is an open-source
project from Xilinx that makes it easy to design em-
bedded systems with Zynq Systems on Chips [18].

5.1 Dataset

The email dataset contains approximately 500,000
emails generated by employees of the Enron Corpo-
ration. The Federal Energy Regulatory Commission
discovered it during their investigation of Enron’s col-
lapse between 1999 and 2003. We used the May 7th,
2015, dataset version [19]. We divided into ten differ-
ent sets of datasets for the evaluation.

5.2 Case Study and Implementation

We use a case study for the most common uses
of regular expression pattern matching used in real-
world problems, as explained in table 2. These five
case studies are Email addresses, URL addresses,
ZIP codes (US), Phone numbers, and Date calendar
regex pattern matching, relevant for the data in the
dataset. Other regex patterns also can be applied.
However, we only focused on these five. From these
patterns, we then perform pattern matching using dif-
ferent scenarios and environments to understand bet-
ter the relationship between patterns, regex libraries



454 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

on C/C++, and Python, and the performance for
these scenarios.

Table 2: Configuration of a Hadoop cluster.

The measurement of code productivity is based on
a different approach to the workflow than the one
used normally in this research. It measures the to-
tal number of instructions in each step of the work-
flow for the initial re code as input to RE2C, C code
as generated code from RE2C, than for the HLS C
code after translation of our rules with optimization
methodology, and finally for the Verilog HDL of RTL
generated code after HLS.

Table 3 shows the total number of lines of instruc-
tions for five different case studies (Email address,
URL, ZIP Code, Phone Number, and Date Calen-
dar). Input code “*.re” are identic of all case studies
because there are no different codes except the regex
pattern string. Translated C codes from “*.re” by
re2c are required to modify for Vivado HLS using
our proposed rules. It takes some costs to rewrite by
hand rewriting and may lead to some bugs. Using our
translation tool with proposed rules omits the hand
rewriting cost and highly efficient.

Table 3: The number of lines of code for various
case studies.

Email URL ZIP Phone Date

Re code re2c 49 49 49 49 49

C code from re 595 471 216 263 427

Translated Code 382 211 309 170 352

Verilog HDL 1,380 860 923 898 957

Implementation details can be seen in Table 4. For
regex stream data processing with the five case stud-
ies mentioned previously, we implemented application
design with eight different architecture approaches
implemented on CPU server, ARM processor, and
proposed FPGA evaluation on PYNQ Z2 and Ultra96
boards. We evaluate the performance of C/C++ op-
timized Library, Python Library, and RE2C on both
CPU and ARM processors compared to FPGA accel-
erators.

5.3 Architecture design on PYNQ

Our architecture for hardware regex accelerators is
designed with the FPGA design Tool Vivado/Vivado
HLS version 2019.1(see Figure 3). It begins with
the data stream passing through PS, using C/C++

Table 4: Implementation methods for evaluation.

Type Methods

A1 C Library for CPU on PC

A2 C Library for ARM on PYNQ

B1 Python Library for CPU on PC

B2 Python Library for ARM on PYNQ

C1 RE2C for CPU on PC

C2 RE2C for ARM on PYNQ

D Proposed FPGA on PYNQ Z2

E Proposed FPGA on PYNQ ULTRA 96

Fig.3: Architecture design on PYNQ Framework.

code and Python API on PYNQ Framework. The
data is then sent to a memory map at the Processing
System (PS) level. Passing through a Python ker-
nel and shell driver, the data in the memory map is
connected to Direct Memory Access (DMA) on the
hardware FPGA. Then the data is processed on In-
tellectual Property (IP) on Programming Logic (PL)
level. Communication between the DMA and cus-
tom IP using AXI Stream with 100MHz for PYNQ-
Z2 and 187MHz for Ultra96 was the operating fre-
quency and 32bit/64bit data widths. The generated
result from regex IP on the PL side is then trans-
ported with DMA one more to be exported to the
PS side using a memory buffer. Finally, the resulting
pattern matching and feature extraction instructions
are delivered to an application like Jupyter Notebook
for interactive use.

5.4 Result

The implementation result can be seen in Table 6,
where all cases of pattern matching with ten different
datasets implemented on CPU, ARM, and FPGA.
Based on our evaluation, regex pattern matching on
ARM or CPU servers using C/C++ and Python
Library is much slower due to type checking and
other overhead needed to interpret code and sup-
port C/C++ and Python abstractions. Sometimes,
the user faults must also be taken into considera-
tion. That case is called Catastrophic Backtracking,
which requires recursively backtracking for finishing a
line/dataset. Furthermore, the time complexity both



Streaming Accelerator Design for Regular Expression on CPU+FPGA Embedded System 455

of the C++ and Python Library, which uses NFA,
leads to overhead. Instead of having O(N ∗M) com-
plexity in terms of the number of states N and tran-
sitions M of the input NFA, they can have O(2M)
or worse. The evaluation C/C++ regex library is
slower than Python re library because, in the cur-
rent std :: regex design and implementation, the
regex pattern is parsed and compiled at runtime even
though it does not need a runtime regex parser en-
gine as the pattern is known during compilation in
many use cases. Meanwhile, RE2C and our approach
to translating NFA into DFA mean pattern matching
can be processed with linear time complexity (O(N)
complexity) resulting in higher performance.

Finally, using our rules to adapt C++ on HLS is
resulting ultrafast regex accelerators. Our approach
using optimized, pre-compiled C code is able to avoid
a lot of the overhead. On the HLS side, we imple-
ment optimization using data flow, pipeline, and loop
unrolling. Another reason why our approach using
hardware accelerators is fast is the use of memory
map and DMA to transport streaming data. Then
AXI 4 Stream custom IP does the computation.

The overall performance of our proposed accelera-
tor consists of five different case studies and ten dif-
ferent datasets sizes. Email, ZIP, URL, Date calen-
dar, and Phone regexes have similar profiles, with
throughput distributed fairly evenly throughout the
evaluation. While Data increases lead to through-
put increases towards the end of the dataset. All
five groups also show a peak of around 18-24% of
maximum throughput at 47.26MB/s compared to
200MB/s in theory [20]. Evaluation on Ultra96
achieved 17-24% of maximum throughput, which is
almost double compared to PYNQ Z2’s result at
88.57MB/s compared to 375MB/s in theory. Our
lightweight hardware IP is able us to perform at a
maximum 187.5MHz frequency clock based on HLS
runtime and evaluation. The reason why the mea-
sured throughput is only one-fourth of the theoreti-
cal peak performance is the IP can only process one
character for each clock.

Figure 4 illustrates the speed-up of performance
when comparing our FPGA accelerator to CPU ap-
proaches. Figure 5 compares the speedup between
FPGA and ARM’s performance . Implementation us-
ing RE2C for software processors on CPU and ARM
is quite fast compared to equal benchmarks with
C/C++ and Python regex library toward evaluation,
whereas PYNQ-Z2 and Ultra96 accelerators are faster
among all other evaluation both CPU and ARM pro-
cessors.

The hardware accelerator using our rules is shown
in Appendix 2. It dominates performance up to over
3,900 times that of A2 (C/C++ Library ARM), up to
418 times that of B2 (Python Library on ARM), up
to 275 times that of A1 (C/C++ Library CPU) and
39 times that of B1 (Python Library CPU). Mean-

Fig.4: Speedup of performance in comparison be-
tween PYNQ FPGA Accelerator vs. CPU approach.

while, compared to RE2C, our implementation also
dominated up to 39 times that of C2 and processing
up to 1,4 times that of C1 despite the low hardware
specifications and low power consumption of the Ul-
tra96 board.

We also evaluated head-to-head with the PYNQ-
Z2 Zynq programmable device, which is significant.
Improve by doubling the performance for all case
studies and datasets.

Table 5: Resource utilization of FPGA.

Resource Utilization
The fundamental building blocks inside of an

FPGA are the flip-flop (FF), the lookup table (LUT),
and the Block of RAM (BRAM). Table 5 shows
the resource utilization for three window parameters,
Flip-flop (FF), Look Up Table (LUT), and Block of
RAM (BRAM) for the PYNQ-Z2 and Ultra96 FPGA
boards. The resource utilization number is provided
by the Vivado tool. In contrast, LUT, FF, and
BRAM are the percentage of resources utilized from
the maximum available for the particular FPGA.

The next most important resource is the dis-
tributed memory, particularly for many pipeline
stages. It is used for temporary storage and by com-
pute module. By carefully designing the stage to
eliminate or reduce duplication in the input buffer
and temporary storage, the distributed memory usage
is limited to 45% on PYNQ-Z2 and 25% on Ultra96.
Our HW accelerator design, it is important that we
have only small resource usage so that we can make
a more complex circuit with our limited resources.



456 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

Fig.5: Speedup of performance in comparison be-
tween PYNQ FPGA Accelerator vs. CPU approach.

Energy Efficiency
We investigated the energy consumption of CPUs

on PC, ARM, PYNQ, and FPGA on PYNQ during
the evaluations. Using equations 1 and 2, we can
calculate and then evaluate the power efficiency.

E[J ] = P [W ] × t[s] (1)

The energy E in joules [J] is equal to the average
power P in watts [W], times processing time t in sec-
onds [s]. Power is measured by USB power checker
TAP-TST8 for CPU on PC and RT-USBVATM for
PYNQ.

EE =
Throughput[MB/s]

W [J/s]
=

ProcessedDatasize[MB]

Energy[J ]
(2)

The energy efficiency EE is equal to the through-
put [MB/s], divided by watts W in joules per-second
[J/s] or Processed data size in Megabytes divided by
energy consumption [MB/J].

Table 6: Energy efficiency evaluation.

Table 6 shows the energy consumption compari-
son from evaluations of software and the accelerated
cases between CPU, ARM, and the Zynq platforms.
The highest power consumption is for Core i7 pro-
cessors. The DRAMs is 74.0[W] for the Python Li-
brary on CPU and 64.9[W] for C Library on CPU.
Energy consumption of both Zynq platforms (both
the MPSoC FPGA and the DRAM) is 5.03[W] or
1.4 [J] and 8.4[W] or 1.24[J] for PYNQ-Z2 and Ul-
tra96, respectively, when both tested with an RT-
USBVATM power meter. Ultra96 energy efficiency
for our proposed accelerator is slightly better than
with PYNQ-Z2 because of the higher specifications

ARM processor, larger DRAM Size, and circuit size.
This efficiency is a huge advantage due to lower power
consumption and faster execution time.

6. CONCLUSION

In this paper, we presented rules and methods
for translating regular expression patterns into sup-
ported hardware code. We perform pattern matching
and feature extraction from data stream with five dif-
ferent use-cases with seven different implementations
for evaluation. We able to get better performance
on HW chips compared with existing high-level pro-
gramming using commonly used libraries (C/C++
and Python regex libraries) and the RE2C toolkit on
embedded platforms and processors. Our translation
rules for hardware accelerators are proven to allow
higher performance than other implementations on
optimized software regexes for CPU and ARM pro-
cessors. With throughput exceeding 88[MB/s], which
is up to over 300 times better than ARM evaluation
using C Library and up to 74 times that of the Python
library. When we compared to CPU usage, both li-
braries were up to 21 and 39-times as fast, respec-
tively. Next, when compared to RE2C, we achieved
up to 16 times on ARM and 1.4 times speedup on
CPU. Finally, compared head-to-head with PYNQ-
Z2, our proposed accelerators achieved almost dou-
ble the performance on all case studies and datasets.
Furthermore, our accelerator consumed only 1.24[J]
energy with an efficiency of 8[MB/J].

Vivado HLS has limitations for C/C++ language
expression and support, so we claim that our trans-
lation rules are required in the regex system. The
environment in which we introduced rules are im-
plemented is operating without a problem, and the
design of a regular expression processing circuit has
become more accessible. The rules and translation
are important for efficient design flow, as it would be
impossible to break through the current limitation
of HLS. Although it takes a long time to design the
FPGA circuit and synthesis it, the circuit data (con-
figuration data) is reusable. Benefiting our transla-
tion tool with proposed rules leads to omitting the
hand rewriting cost and high productivity.

It is an essential factor for the rapid development of
FPGA accelerator design. Furthermore, we demon-
strate that it is possible to avoid the high overhead
for data communication (data movement) by apply-
ing in-memory data processing architectures prin-
ciples. We develop an architecture that supports
streaming data computation by reducing data trans-
fer overheads with in-memory transfer DRAM-DMA
(Direct Memory Access) between Processing System
(PS) and Programming Logic (PL) on the FPGA ac-
celerator. Resulting in our approach system does not
incur significant hardware overheads once compiled.
In addition, our rules enable us to solve the com-
plexity of hardware connectivity targeting to improve



Streaming Accelerator Design for Regular Expression on CPU+FPGA Embedded System 457

performance, lower energy consumption, and adapt
software algorithms into hardware accelerators.

For future work, we plan to develop a hardware-
software co-design framework for rapid prototyping
and high productivity by evaluating the different
types of FPGAs. It will enable people to develop real-
time data processing on the FPGA accelerators for
high performance and high energy efficiency. More-
over, considering the small resource usage is from our
evaluation, it is possible to make more complex cir-
cuits for optimum resource utilization.

References

[1] K. Yasumoto, H. Yamaguchi and H. Shigeno,
“Survey of Real-time Processing Technologies of
IoT Data Streams,” Journal of Information Pro-
cessing, vol. 24, no. 2, pp. 195-202, 2016.

[2] K.S. Bok, D. Kim and J. Yoo, “Complex Event
Processing for Sensor Stream Data,” Sensors,
vol. 18, no.9, 2018.

[3] W. McKinney, Python for Data Analysis: Data
Wrangling with Pandas, NumPy, and IPython,
O’reilly, 2017.

[4] J. Teubner and L. Woods, Data Processing on
FPGAs, Springer, 2013.

[5] Vivado Design Suite User Guide High-Level Syn-
thesis UG902. (2019). UG902 (v2020.1) June 3,
2020.

[6] K. Carruthers, “How the internet of things
changes everything: The next stage of the digital
revolution,” Journal of Telecommunications and
the Digital Economy, vol. 2, no.4, 2014.

[7] R.P. Sidhu and V. Prasanna, “Fast Regular
Expression Matching Using FPGAs,” The 9th
IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM’01), pp. 227-
238, 2001.

[8] L. Woods, J. Teubner and G. Alonso, “Complex
event detection at wire speed with FPGAs,” Pro-
ceedings of the VLDB Endowment, vol .3, pp.
660-669, 2010.

[9] V. Paxson, S. Campbell, C. Leres and J. Lee,
Bro Intrusion Detection System, 2006.

[10] S. Prithi, S. Sumathi and C. Amuthavalli, A Sur-
vey on Intrusion Detection System using Deep
Packet Inspection for Regular Expression Match-
ing, 2017.

[11] S.A. Shah and B. Issac, “Performance Compar-
ison of Intrusion Detection Systems and Appli-
cation of Machine Learning to Snort System,”
Future Gener. Comput. Syst., vol. 80, pp. 157-
170, 2018.

[12] L. Woods, J. Teubner and G. Alonso, “Real-time
pattern matching with FPGAs,” 2011 IEEE
27th International Conference on Data Engi-
neering, pp. 1292-1295, 2011.

[13] Y. Yang and V. Prasanna, “High-Performance
and Compact Architecture for Regular Expres-

sion Matching on FPGA,” IEEE Transactions
on Computers, vol. 61, pp. 1013-1025, 2012.

[14] W.P. Kiat, K.M. Mok, W. Lee, H.G. Goh and
R. Achar, “An energy efficient FPGA partial
reconfiguration based micro-architectural tech-
nique for IoT applications,” Microprocess and
Microsystems, vol.73, 2020.

[15] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K. Vissers and Z. Zhang, “High-Level Synthesis
for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol .30, pp.
473-491, 2011.

[16] P. Bumbulis and D. Cowan, “RE2C: a more ver-
satile scanner generator,” ACM Letters on Pro-
gramming Languages and Systems, vol. 2, pp. 70-
84, 1993.

[17] U. Trofimovich, “RE2C: A lexer generator based
on lookahead-TDFA,” Software Impacts, vol. 6,
2020.

[18] http://www.pynq.io/

[19] https://data.world/brianray/

enron-email-dataset

[20] Hendarmawan, M. Kuga and M. Iida, “Transla-
tion Rules of Regular Expression Code for Hard-
ware Accelerator,” Proc. of Asia pacific Con-
ference on Robot IoT System Development and
Platform, Digital Library, Information Process-
ing Society of Japan, pp. 51-58, March 15th,
2021.

[21] Vivado design suite user guide: High-
level synthesis, UG902 (v2019.1) Au-
gust 12, 2021. [Online]. Available:
https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2019_

1/ug902-vivado-high-level-synthesis.pdf



458 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

APPENDIX 1. Throughputs for all evaluations [MB/s].

APPENDIX 2. FPGA Accelerators (Ultra96) vs. other evaluation [] speedup].



Streaming Accelerator Design for Regular Expression on CPU+FPGA Embedded System 459

Hendarmawan received his BSc in
Computer Science from University of
Brawijaya, Indonesia, in 2008 and
M.Eng in Computer Science from Ku-
mamoto University. He was a junior lec-
turer at University of Brawijaya. Cur-
rently, he is a PhD student at Ku-
mamoto University, Graduate School of
Science and Technology. He has been
involved in various research projects,
including FPGA Accelerator, IoT and

Big Data Processing. His research interests include interests
include parallel processing, computer architecture, reconfig-
urable system and design methodology. He is a student mem-
ber of IEEE.

Morihiro Kuga received his B.Eng. in
Electronics from Fukuoka University in
1987 and an M.Eng. and a D.Eng. in
Information Systems from Kyushu Uni-
versity in 1989 and 1992. From 1992 to
1998, he was a lecturer at the center for
Microelectronic Systems, Kyushu Insti-
tute of Technology. He has been an as-
sociate professor of computer science at
Kumamoto University since 1998. His
research interests include parallel pro-

cessing, computer architecture, reconfigurable system, and
VLSI system design. He is a member of the IPSJ and the
IEICE.

Masahiro Iida received his B.Eng.
in Electronic Engineering from Tokyo
Denki University in 1988. He was a re-
search engineer at Mitsubishi Electric
Engineering Co., Ltd. from 1988 to
2003. He received his ME in Computer
Science from Kyushu Institute of Tech-
nology in 1997. He received his DE from
Kumamoto University, Japan, in 2002.
He was an associate professor at Ku-
mamoto University until 2015, and from

2002 to 2005, he held an additional post as a researcher at
PRESTO, Japan Science and Technology Corporation (JST).
He has been a professor in the Faculty of Advanced Science and
Technology at Kumamoto University since January 2016. His
current research interests include high-performance, low-power
computer architectures, FPGA computing, VLSI devices, and
design methodology. He is a senior member of the IPSJ and
the IEICE, and a member of IEEE.




