
MFPE : A Loss Function based on Multi-task Autonomous Driving 393

ECTI Transactions on Computer and Information Technology

Journal homepage: https://ph01.tci-thaijo.org/index.php/ecticit/

Published by the ECTI Association, Thailand, ISSN: 2286-9131

MFPE : A Loss Function based on Multi-task Autonomous
Driving

Youwei Li1 and Jian Qu2

ABSTRACT Article information:
Road tracking, tra�c sign recognition, obstacle avoidance, and real-time
acceleration and deceleration are some critical sub-tasks in autonomous
driving. This research proposed to use a single-sensor (camera) based in-
telligent driving platform to achieve multi-task (four subtasks) autonomous
driving. We adjusted the function combinations and hyperparameters of
the model to improve the model training and model testing performance.
The experiments showed that the existing function combinations could
not signi�cantly improve the autonomous driving performance, and the
loss function had a signi�cant impact on the autonomous driving perfor-
mance of the model. Therefore, we designed a novel loss function (MFPE)
based on multi-task autonomous driving. The models with the MFPE loss
function outperformed the original and existing models in model train-
ing and actual multi-task autonomous driving performance. Meanwhile,
the model with the MFPE loss function achieved multi-task autonomous
driving under di�erent lighting conditions, untrained routes, and di�erent
static obstacles, which indicates that the MFPE loss function enhances the
robustness of the model. In addition, the speed of the intelligent driving
platform can reach up to 5.4 Km/h.

Keywords: Convolutional

Neural Network, Recurrent

Neural Network, Deep learning,

Long Short-Term Memory,

MFPE Loss Function, Multi-

task Autonomous Driving

Article history:

Received: April 26, 2022

Revised: July 8, 2022

Accepted: September 3, 2022

Published: September 30, 2022

(Online)

DOI: 10.37936/ecti-cit.2022164.248304

1. INTRODUCTION

Autonomous driving research focuses on the
decision-making and execution of driving behaviors.
We will describe the strengths and weaknesses of ex-
isting research, as well as the decision algorithms,
execution platforms, and experimental environments
used in our research.

The selection of hardware and environment for au-
tonomous driving experiments is the primary issue
that needs to be addressed for autonomous driving
research. The main options for autonomous driving
experiments are real cars, toy cars, and scale model
cars. The control part of the car consists of steer-
ing control and speed control. In terms of steering,
the real car relies on turning the steering wheel for
steering, the toy car is steered by forward and reverse
rotation of the DC motor (DC, Direct Current), and
the PWM controlled servo steers the scale model car.
Compared to real cars and toy cars, scale model cars
use a servo that provides twenty precise angles to con-
trol the direction, which is similar to a real car. In
addition, real cars have di�erent rotation speeds for

the inner and outer wheels when steering. It solves
this problem via di�erential gears in drive shifts. Toy
cars ignore this by using a simple drive shift, thus
making the cars a bit twitchy all the time. However,
steering appears to be less a�ected because of the
light weight of the toy car. Therefore, toy cars that
rely on the forward and reverse rotation of the motor
to control steering are not smooth. The scale model
car uses scaled down di�erential gears on each driv-
ing shift for steering, which maximally simulates the
mechanical structure of a real car. In terms of speed
control, real cars use a combination of engine and
gearbox to control the speed, toy cars control speed
by power on/o�, and scale model cars control speed
by adjusting PWM value. Toy cars and scale model
cars are very di�erent from real cars. However, the
speed control method of the scale model car is similar
to that of the Tesla electric car. Compared with real
cars and toy cars, scale model cars control the speed
by controlling the PWM value through ESC (Elec-
tronic stability control). We can accurately collect
the PWM values (throttle values) for deep learning.

1,2The authors are with Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi, Thailand
11120, Email: youweili19971110@outlook.com and jianqu@pim.ac.th

394 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

In addition, the scale model car has roughly fifty in-
ternally sealed steel ball bearings to smooth the ro-
tation of each part similar to a real car. At the same
time, the scale model car uses oil pressure shock ab-
sorbers, which enable smooth driving at high speed.

In addition, we analyzed the cost and security is-
sues of different hardware. A real car and a chip with
sufficient computational power are necessary to con-
duct experiments with real cars. However, building
a real autonomous car is expensive ($74,031) [1]. At
the same time, safety is also an important issue that
must be considered. The environment for conduct-
ing experiments with real cars needs to be enormous,
sparsely populated, and it must be easy to control
noise. The speed of a real car is fast, which increases
the risk of a traffic incident. In addition, most of the
experiments with real cars for autonomous driving
are conducted by automotive manufacturers. Auto-
motive companies have test sites built explicitly for
conducting autonomous driving tests. Ultimately, it
is almost impossible for a student to experiment with
a real car with his/her budget. Therefore, more stud-
ies are being conducted to solve these problems by us-
ing model cars to simulate real cars for experiments.
First, the model car only costs about $100. Sec-
ondly, the model car requires only a small experimen-
tal space. We can do such an experiment in a room
or a few dozen square meters of space. In addition,
the model car is relatively less dangerous than a real
car. During the experiment, if the model car crashes,
it will only cause damage to the model car and the
objects in the room, and will not cause human casual-
ties. Therefore, after considering the cost, the safety
of the test site, and the related technology, we pro-
pose to use model cars to build an intelligent driving
platform for autonomous driving experiments.

There are several kinds of intelligent driving plat-
forms built using model cars. The components of the
intelligent driving platform are a control chip, sen-
sors, and chassis. First, we must select the control
chip. In the early days of autonomous driving re-
search, researchers used Arduino as a control chip.
However, the computational power of Arduino is lim-
ited, and the computational process requires the help
of a computer, in which case such an intelligent driv-
ing platform is not a standalone agent. AI algorithms
cannot achieve independent reasoning and analysis
due to the lack of computational power of the control
chip.

Existing studies have addressed this problem by
using a combination of vehicle control chips. In the
study by Lee and Lam [2], they used a combination of
Raspberry Pi 3 and Arduino to distribute the work-
load. Therefore, we used the Raspberry Pi as the
control chip for the intelligent driving platform. Next,
we must select sensors. Existing studies used multi-
ple sensors to achieve multi-task autonomous driving.
For example, in the autonomous driving study by Lee

and Lam [2], they used an ultrasonic sensor and a
camera. In the autonomous driving study by Du et al.
[3], they used LIDAR and a camera. They used mul-
tiple sensors for road tracking and obstacle detection.
In their study, ultrasound and LIDAR were used to
detect obstacles only, which would increase the com-
putation and workload of the control platform. For-
tunately, Shukai and Jian [4] verified in their study
that it is possible to achieve double-task autonomous
driving with a single camera. Therefore, we propose
to use one camera for four-task autonomous driving.

Finally, we must select a chassis. The main op-
tions for building autonomous driving platforms in
the existing studies are toy cars and scale model
cars. Toy cars are mainly chosen because of their
cost-effectiveness. The speed control of the toy car
only has power-on and power-off states and cannot
achieve real-time acceleration and deceleration. The
scale model cars can overcome these problems. Scale
model cars use ESC to control speed, and servos to
control steering. The scale model car can achieve
precise real-time speed adjustment and steering con-
trol. In addition, the mechanical structure of the
scale model car is designed according to the driving
system of the real car. Therefore, we propose to use
a scale model car to build an intelligent driving plat-
form to achieve autonomous driving. Our research
achieved multiple autonomous driving subtasks using
a low-cost intelligent driving platform and had good
autonomous driving performance.

The core of perception and decision-making tech-
nology for autonomous driving is artificial intelligence
(AI) algorithms. For example, Lin et al. [5] pro-
posed a ten-layer convolutional neural network (CNN,
Convolutional Neural Network) model to achieve au-
tonomous driving. In the study of Valiente et al. [6],
they proposed a twelve-layer CNN-LSTM model to
achieve autonomous driving. However, their studies
were only conducted in Udacity (a simulator for vir-
tual environments) for data collection and model test-
ing. With sufficient hardware computing power, the
virtual simulation environment can generate unlim-
ited data for training and testing. Experimenting in a
virtual simulation environment undoubtedly reduces
the time and difficulty of deep learning. However,
there is a big difference between virtual environments
and actual environments. Virtual environments can-
not simulate realistic lighting changes, shadow shifts,
and environmental noise. Therefore, it is necessary
to validate neural network algorithms in the actual
world.

Fortunately, some AI algorithms have already been
proven in the real world. For example, in the study
of Bechtel et al. [7], they achieved road tracking on
a custom track by an AI algorithm. In the study
of Truong-Dong Do et al. [8], they achieved road
tracking and traffic sign recognition on a custom track
with an AI algorithm. In the study of Karni et al. [9],

MFPE : A Loss Function based on Multi-task Autonomous Driving 395

they achieved road tracking and obstacle recognition
on a custom track with an AI algorithm.

Speed is another important factor that cannot
be ignored for autonomous driving. In a study by
Youwei and Jian [10], they trained a 21-layer CNN
model to achieve road tracking and real-time accel-
eration and deceleration. The existing studies show
that few subtasks are achieved in the multi-task au-
tonomous driving studies. Therefore, we propose to
train a deep neural network model capable of simul-
taneously achieving road tracking, traffic sign recog-
nition, obstacle avoidance, and real-time acceleration
and deceleration.

In this study, we trained lightweight CNN14 and
RNNL19 models, and the models achieved four-task
autonomous driving. However, the model performed
poorly in autonomous driving and was prone to go
out of control. Therefore, we replaced the function
algorithm of the model to improve the performance
of the model. The experiment shows that the loss
function has a relatively large impact on the perfor-
mance of the multi-task autonomous driving model.
However, the experimental results show that the ex-
isting loss functions do not perform well for multi-task
autonomous driving.

Therefore, we propose a novel loss function based
on multi-task autonomous driving to improve the per-
formance of the model. Experiments show that our
proposed loss function reduces the model training loss
and improves the stability of the model. In addi-
tion, the actual autonomous driving performance of
the model was also improved. Furthermore, we fine-
tuned the hyperparameters to further improve the au-
tonomous driving performance of the model. At the
same time, we analyzed the effects of lighting, speed,
untrained routes, and different obstacles on the model
performance.

Our study was inspired by Mnih et al. [11],
who conducted experimental research on autonomous
driving in a virtual environment. It is easy to con-
struct the reward function in a virtual environment.
Meanwhile, the training process we used no longer re-
quires manual labeling and calculation, and the com-
puter can calculate the final reward value directly.
However, the reward function cannot be applied in a
realistic environment. Meanwhile, existing studies us-
ing small-scale intelligent driving platforms can only
achieve one or two subtasks. Therefore, we propose to
validate multi-task (four subtasks) autonomous driv-
ing in a realistic environment. In addition, our ex-
periments are conducted using a Raspberry Pi em-
bedded system. Meanwhile, we have achieved four
autonomous driving subtasks. Our intelligent driving
platform cannot perform more complex tasks, such
as avoiding moving obstacles, because of the lack of
computational power.

2. MATERIALS AND METHODS

In this chapter, we analyze the studies relevant to
our research and propose our research materials, and
methods.

2.1 Research Related to Autonomous Driving

2.1.1 Hardware

The components of the small-scale intelligent driv-
ing platform are chassis, sensors and chips.

Regarding the selection of the chassis, in the re-
searches of Boloor et al. [12] and Bae et al. [13],
they used toy cars to build the intelligent driving
platform. Although the toy car is very cost-effective,
the “switch-type” control method used by the toy car
has only two states of “0%” and “100%” for steering
and speed. This control method does not allow for
precise control of direction and speed. Meanwhile,
the toy car relies on the speed difference of the four
wheels for steering. Therefore, there is a large error
when collecting data with the toy car. The collected
sample data directly affects the performance of the
model. Therefore, driving systems that can precisely
adjust direction and speed are needed.

A scale model car is designed according to the me-
chanical structure of a real car, and the servo and
ESC can precisely control the direction and speed.
Youwei and Jian [10] used a 1/16 scale model car to
achieve road tracking and real-time acceleration and
deceleration in their study. Therefore, we propose to
use a scale model car to build an intelligent driving
platform.

Regarding the selection of sensors, in the study by
Karni et al. [9], Lee and Lam [2], they used a camera
and ultrasonic. In their studies, ultrasonic only en-
abled obstacle detection, and the intelligent driving
platform can only stop and cannot avoid obstacles.
In the study by Du et al. [3], they used a camera
and lidar. They use lidar primarily to measure dis-
tances to aid decision-making. Furthermore, humans
can rely on their vision to drive a vehicle. There-
fore, we propose to use a single camera for multi-task
autonomous driving.

Regarding the selection of chip, in the research of
Yuenyong and Jian [14], the chip they used is Ar-
duino. The computing power of Arduino is minimal.
The calculation process is done on another computer
in their research, and the calculation results are sent
back to the Arduino to control the intelligent driving
platform. Such an intelligent driving platform is not
a stand-alone agent. For this problem, in the research
of Truong-Dong Do et al. [8], they used a combina-
tion of Raspberry Pi and Arduino to build an intel-
ligent driving platform. The Raspberry Pi does the
computing in their intelligent driving platform, and
the Arduino receives the computing results to control
the agent. The lack of computing power of the chips
makes them use two ships to distribute the workload.

396 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

In the study of Bechtel et al. [7], they tested the
performance of autonomous driving on Raspberry Pi
3 B, Intel UP, and NVIDIA Jetson TX2 chips. Exper-
iments show that the Raspberry Pi 3 B has enough
computing power to achieve autonomous driving. We
found the Raspberry Pi 4 Model B to be more power-
ful and more affordable. To address the workload of
the control chip, Youwei and Jian [10] in their study
proposed using a Raspberry Pi 4 Model B loaded with
a lightweight end-to-end neural network model to re-
duce the workload of the chip. Therefore, we propose
using Raspberry Pi 4 Model B with 4Gb memory as
the chip of the intelligent driving platform.

2.1.2 Neural Networks for Autonomous Driving

CNNs and Recurrent Neural Networks (RNNs) can
be used to train autonomous driving. In the study of
Lin et al. [5], they proposed a CNN model to achieve
road tracking. In the study of Viktor Rausch et al.
[15], they proposed a neural network model combin-
ing CNN and LSTM to achieve road tracking. How-
ever, these models are only tested in a virtual simula-
tion environment. For this problem, in the research of
Bechtel et al. [7], they built a small-scale intelligent
driving platform and custom tracks to achieve road
tracking. However, single-task autonomous driving is
not truly autonomous driving. In the study of Karni
et al. [9], they trained a CNN model for road track-
ing and obstacle detection. In the study of Truong-
Dong Do et al. [8], they trained a CNN model that
achieved road tracking and traffic sign recognition.
In the study of Youwei and Jian [10], they added
throttle values while training the autonomous driv-
ing neural network model and successfully achieved
the ability to accelerate and decelerate during road
tracking. The existing multi-task autonomous driv-
ing combines at most two sub-tasks.

We propose to train a neural network to achieve
multi-task autonomous driving for road tracking,
traffic sign recognition, obstacle avoidance, and real-
time acceleration and deceleration. The road tracking
task is when the trained model recognizes the edge
lines and can stay between the two edge lines all the
time. We trained only left-turn and right-turn signs
in the traffic sign recognition task. Traffic sign recog-
nition is when the trained model recognizes a left-
turn or right-turn sign and makes a corresponding
turn according to the signs. The obstacle avoidance
task is when the trained model recognizes an obstacle
and can avoid the obstacle. The real-time accelera-
tion and deceleration task is to adjust the real-time
speed of the intelligent driving platform according to
different scenarios during driving.

2.1.3 An end-to-end approach for autonomous driv-
ing

The non-end-to-end learning method consists of
multiple independent modules. Each step is an in-

dependent task, and the quality of the result will af-
fect the next step, which affects the training results.
Non-end-to-end learning requires data annotation be-
fore each learning task is performed. Non-end-to-end
driving methods require hundreds of thousands of la-
belled data samples, the entire data labelling process
is expensive, and human labelling cannot be error-
free.

End-to-end is a concept in deep learning [16]. A
prediction result is obtained from the input data to
the output data during the end-to-end model train-
ing process. If there is an error between the predicted
and actual results during the model training process,
that error will be propagated backward through each
model layer. Each layer will be adjusted according
to the error until the model converges to achieve the
expected results [17]. Furthermore, the end-to-end
autonomous driving approach allows the model to be
lightweight and easy to run on embedded develop-
ment platforms. End-to-end learning delegates the
learning and judgment process to a neural network,
improving efficiency and accuracy.

2.2 Construction of Intelligent Driving Plat-
form

Fig.1: The schematic diagram of the circuit wiring
of the intelligent driving platform.

We built an intelligent driving platform to conduct
experiments. The schematic diagram of the circuit
wiring of the intelligent driving platform is shown in
Figure 1, and the completed intelligent driving plat-
form is shown in Figure 2.

Fig.2: Intelligent driving platform.

MFPE : A Loss Function based on Multi-task Autonomous Driving 397

Fig.3: Model architecture overview.

Fig.4: The coordinate system constructed for the analysis of the loss function.

The intelligent driving platform is designed and
built similarly to the structure of the Donkey Car [18].
We choose a wide-angle camera to get more infor-
mation about the environment to achieve multi-task
autonomous driving. The intelligent driving plat-
form dimensions are 25.1 CM × 21.6 CM × 17.4 CM
(Length × Width × Height). The weight of the in-
telligent driving platform is 1.35 Kg.

2.3 Achieving Multi-Task Autonomous Driv-
ing

Our research achieved four sub-tasks in a neural
network. A schematic diagram of the model archi-
tecture for multi-task autonomous driving is shown
in Figure 3. As shown in Figure 3, two neural net-

work models were trained in this work. We fine-tuned
the architecture of the two models and applied our
proposed novel MFPE loss function. In the MFPE-
CNN14 model, we added dropout layers after each
layer of the model to improve the generalization abil-
ity of the model and prevent overfitting [19]. The
MFPE-RNNL19 model introduced LSTM [20] layers
to consider the effect of time on the model. In deep
learning, the model mainly learns two mapping rela-
tionships. The first mapping relationship is between
images and steering angles. We mark the steering
angle for each image and train the model with the
tagged steering angle. The trained model can make
steering angle predictions based on the images ac-
quired by the camera.

398 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

The second mapping relationship is between im-
ages and throttle values. We mark the throttle val-
ues for each image and train the model with the
tagged throttle values. The trained model can pre-
dict the throttle values based on the images acquired
by the camera. We adjust the PWM values to con-
trol the speed. The range of PWM value is 0-500.
We experimentally found that fast speeds can eas-
ily cause the intelligent driving platform to run off
the track. Therefore, we set 370 as the PWM value
when the speed is 0 and 400 as the PWM value when
the speed is maximum. Our throttle values range
from 0-1. In the speed adjustment, when the throt-
tle value increases by 0.1, the PWM value increases
by 3, the output current increases, and the speed in-
creases. Road tracking, traffic sign recognition, and
obstacle avoidance learning are the same mapping re-
lationship, and the mutual influence of data makes
the performance of multi-task autonomous driving
worse than that of single-task autonomous driving.
Multi-task autonomous driving focuses on balancing
the relationship between these three sub-tasks.

relationships of multiple datasets, we address the
problem of data interactions by replacing the ac-
tivation [21] and loss functions [22] of the model.
We found the best combination of existing activa-
tion functions and loss functions. However, the per-
formance of multi-task autonomous driving is still
poor. We found from the experimental results that
the loss function significantly impacts model train-
ing and actual multi-task autonomous driving perfor-
mance. Therefore, we propose to design a novel loss
function based on multi-task autonomous driving.

2.4 Loss function based on multi-task au-
tonomous driving

The loss function [22] is used to evaluate the in-
consistency between the predicted and actual labels
of the model. The key to the optimization model is
the loss function. The loss value calculated by the
loss function is the error between the predicted value
(Vpre) and the actual value (Vact), allowing us to un-
derstand the gap between the predicted and actual
values intuitively. We separately analyze suitable loss
functions for road tracking, traffic sign recognition,
and obstacle avoidance for the three sub-tasks.

2.4.1 Loss function suitable for road tracking

We created a coordinate system for the road track-
ing custom track, and the completed coordinate sys-
tem is shown in Figure 4 (a).

The true and predicted values in Figure 4 (a) are
set by decoding the images into vectors and calculat-
ing them in combination with the tagged data. As
shown in Figure 4 (a), the position of the intelligent
driving platform Vact = x1 the actual value, and it is
the ideal state for the intelligent driving platform to
drive in the middle of the custom track. The width

of the custom track is W = |w2 − w1|. The ideal
predicted value is when Vpre = w

2 . According to the
definition of the loss function, the minimum loss cal-
culation equation is shown in Equation (1).

L = Min(Vpre − Vact) (1)

According to Figure 4 (a), we calculated the loss
function LRoad tracking for road tracking. The loss
function is a non-negative number, and we cannot
determine the size of Vpre and Vact . Generally, the
absolute value or the square method is used to cal-
culate the values. The loss in road tracking can
be expressed as LRoad tracking 1 = |W2 − x1| and

LRoadtracking2=
(
W
2 − x1

)2
. As shown in the equa-

tions, we found that the predicted and actual values
were suitable for road tracking when they matched
the absolute or squared loss relationship. The cor-
responding loss functions in the existing loss func-
tions are Mean Absolute Error (MAE, Mean Ab-
solute Error) [23] and Mean Squared Error (MSE,
Mean Squared Error) [24,25]. Therefore, the MSE
and MAE loss functions are applicable to road track-
ing.

2.4.2 Loss function suitable for traffic sign recogni-
tion

We created a coordinate system for the traffic sign
recognition custom track, and the completed coor-
dinate system is shown in Figure 4 (b). As shown
in Figure 4 (b), the AD segment is the ideal driv-
ing route for the intelligent driving platform. The
key to traffic sign recognition is to deal with the
BC segment. The width of the custom track is
W = |w2−w1|. We take the position Vact2 = (x1, y1)
of the intelligent driving platform as the real value
and the function expression of the Vpre = OBC :

(x−W)2 +
[
y −

(
y2 − W

2

)]2
=
(
W
2

)2
segment as the

ideal predicted value. The loss in traffic sign recog-
nition can be expressed as Ltraffic sign recognition =√

(x1 −W)2 +
[
y1 −

(
y2 − W

2

)]2 − W
2 , x ∈

[
W
2 ,W

]
.

As shown in the equation, we found that the size

of

√
(x1 −W)2 +

[
y1 − (y2 − W

2)
]2

and W
2 cannot

be determined. In addition, there is a root oper-
ator. We square the traffic sign recognition loss
LTruning signs recognition, and the loss in traffic sign
recognition can be expressed as Ltraffic sign recognition

=
(√

(x1 −W)2 + [y1 −
(
y2 − W

2

)
]2 − W

2

)2

. As

shown in the equation, the relationship between the
predicted and actual values is the squared error re-
lationship. Although Etraffic sign recognition adds the
calculation of the position information of the steer-
ing, the relationship between the predicted and actual
values is still essentially a squared error relationship.
Therefore, the MSE loss function is applicable to road
tracking and traffic sign recognition.

MFPE : A Loss Function based on Multi-task Autonomous Driving 399

2.4.3 Loss function suitable for obstacle avoidance

In the multi-task autonomous driving experiment,
we need to pay attention to the relative positions
of the intelligent driving platform and the obstacles.
Therefore, we established a coordinate system of rela-
tive positions to analyze, as shown in Figure 4 (c1-c4).

As shown in Figure 4 (c1-c4), there are four rel-
ative positions between the intelligent driving plat-
form and the obstacle. As shown in Figure 4 (c1)
and (c2), we assume that the length of the obsta-
cle is m and the width is n. We set the obstacle
to be a 1.5 times ellipse. The long semi-axis of the
ellipse is set to a = 1.5 × m

2 , and the short semi-
axis is set to b = 1.5 × n

2 . The mathematical ex-

pression for an ellipse is Oe : x2

a2 + = 1. The ex-
pression for line AB is: lAB : (x2 − x1)y = (y2 −
y1)x. The intersection point C of Oe and lAB is: ab√

b2+a2
(

y2−y1
x2−x1

) , (y2−y1)ab√
b2+a2

(
y2−y1
x2−x1

)2
(x2−x1)

. The new

boundary is the line CD. For the cases in Figure 5
(c) and (d), the intelligent driving platform performs
road tracking before obstacle avoidance. When the
intelligent driving platform goes from Position 1 to
Position 2, it is the same as that shown in Figure 4
(c1) and (c2). In addition, the obstacles we designed
are not only the rectangular objects shown in Figure
5. We can modify the coefficients of the loss function
according to the actual obstacles. We can determine
the values of a and b based on the length and width
of a known obstacle (whether it is a regular shape or
not).

The obstacle avoidance loss can be expressed as
LObstacle avoidance = d1−d2. It can be seen from Fig-
ure 4 (c1) and (c2) that the sizes of d1 and d2 are un-
certain in the case of different positions. We squared
the obstacle avoidance loss LObstacle avoidance and the
loss of the predicted and actual values of obstacle
avoidance can be expressed as LObstacle avoidance =
ab(2x1−w)2·[(x2−x1)2+(y2−y1)2]

(x2−x1)2 − a2b2. Based on this

equation we propose a loss function for the obstacle
avoidance task, as shown in Equation (2).

LObstacle avidance(Vact, Vpre) = (Vact − Vpre)
4 (2)

In Equation (2), the loss relationship between the
predicted and actual values in the obstacle avoid-
ance conforms to the fourth power error relationship.
Obstacle avoidance needs to consider the location of
obstacles, boundary selection in different situations,
and the size of obstacles. Among the existing loss
functions, there is no loss function applicable to au-
tonomous driving obstacle avoidance. Based on our
loss function analysis on different sub-tasks, we pro-
pose the use of a fourth power error loss function for
achieving multi-task autonomous driving.

2.4.4 Loss Function for Multi-Task Autonomous
Driving

According to the analysis of loss functions for dif-
ferent autonomous driving subtasks in sections 2.4.1-
2.4.3. We found that the MSE loss function is suit-
able for road tracking and traffic sign recognition, and
the fourth power error relation is suitable for obsta-
cle avoidance. The fourth power error relation has
the advantages of MSE and is also suitable for ob-
stacle avoidance. Therefore, we use the fourth power
error relationship as the loss function relationship be-
tween the predicted and actual values. At the same
time, we found that the existing loss functions used
the mean error, and the mean error reflects the cen-
tral tendency of the error, which can effectively avoid
the situation where individual values are too high
or too low and have a relatively significant impact
on the whole. Therefore, we propose a novel multi-
task-based Mean Fourth Power Error (MFPE, Mean
Fourth Power Error) loss function for autonomous
driving. In addition, we calculated the coefficients
of the fourth power error function as 4ab. Combining
the above factors, the expression of MFPE is shown
in Equation (3).

LMFPE (Vact, Vpre) =
4ab

n
.

n∑
n=1

(Vact − Vpre)
4 (3)

In this study, we used cone-shaped obstacles.
Based on the dimensions of the conical obstacles we
calculated a = b = 0.08. Substituting a and b into
equation (3) we can obtain the practical application
loss function as LMFPE = 0.0225

n x4. In addition,
we plotted the function graphs of MSE, MAE and
MFPE, as shown in Figure 5. We found that the
function graph of MFPE is smoother than that of
MSE and overcomes the problem of MAE being non-
differentiable at the origin.

Fig.5: The mathematical functions graph of three
loss functions.

400 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

2.5 Method for Evaluating the MFPE Loss
Function in Multi-Task Autonomous
Driving

We divided the evaluation of the loss function
into whether the loss value of model training is re-
duced and whether the performance of multi-task au-
tonomous driving is improved. We will synthesize
the training loss value and the actual multi-task au-
tonomous driving performance to analyze the quality
of different multi-task autonomous driving models.

2.6 Experiment Setup

2.6.1 Custom tracks and simulation environment
module

We built different custom tracks and experimental
environments for multi-task autonomous driving, as
shown in Figure 6.

Fig.6: (a1-a6) Custom tracks overview, (b)
Schematic diagram of lighting and room conditions.

Because of the COVID-19, we had to conduct the
experiment in our home. After we moved all the fur-
niture in our home except the bed, this was the largest
available area in my house. Therefore, we designed
different custom tracks for each task. The completed
custom tracks are shown in Figure 6 (a1-a5). In addi-
tion, we considered that the obstacle avoidance task
needs to be achieved. We designed the width of the
custom track to be 2.5 times the width of the intel-
ligent driving platform. Meanwhile, we stitched the
built custom tracks into a complex scenario, as shown
in Figure 6 (a6). Autonomous vehicles cannot always
be driven in a trained scenario. In the custom track
in Figure 6 (a6), we can test complex and untrained
routes. Our experiments were conducted in a closed
room to reduce environmental noise. We closed the
doors and windows during the experiment, and used
the lamps on the ceiling as the lighting source, as
shown in Figure 6 (b).

2.6.2 Data collection module

We collected datasets on custom tracks and the
simulated multi-task autonomous driving environ-
ment by driving the intelligent driving platform. The
collected datasets consist of pictures, steering angles,
and throttle values. During the data collection pro-
cess, we programmed automatic data annotation of
the images, recording the throttle value and steering
angle corresponding to each image when it was taken.
Each image has a corresponding steering angle and
throttle value. The collected data was directly used
to train the model. Multi-task autonomous driving
needs to achieve four sub-tasks, of which real-time ac-
celeration and deceleration are included in the other
three tasks. We divided the collected datasets into
a road tracking dataset (Dataset I), a traffic signs
dataset (Dataset II), and an obstacle dataset (Dataset
III). When collecting Dataset III, we used red coni-
cal obstacles and the obstacles were not moving. The
details of the collected datasets are shown in Table 1.

Table 1: Overview of the datasets.

2.6.3 Model Training Module

We trained a 14-layer CNN model and a 19-layer
RNNL model to achieve multi-task autonomous driv-
ing, and we named them CNN14 and RNNL19. We
replaced the loss function, activation function and
loss-activation function combination of the two mod-
els and trained the models. The improvement of
the performance of the models after the function re-
placement and combination is not significant. Next,
we applied the proposed MFPE loss function to the
two models. The two models MFPE-RNNL19 and
MFPE-CNN14 with the MFPE loss function per-
formed better than the original model and the models

MFPE : A Loss Function based on Multi-task Autonomous Driving 401

Fig.8: Actual autonomous driving process.

in the existing studies. Then, we fine-tuned the hy-
perparameters of the model to further optimize the
model performance. To find a more suitable hyperpa-
rameter setting, we trained the model with different
batch sizes, epochs, self-drop ratios, learning rates
and optimizers. In addition, we selected existing
multi-task autonomous driving models for compari-
son. In the study of Truong-Dong Do et al. [8], they
achieved the combined autonomous driving of road
tracking and traffic sign recognition, and we called
their CNN model TDD-CNN. In the study of Karni
et al. [9], they achieved a combination of road track-
ing and obstacle avoidance for autonomous driving,
and we called their CNN model UK-CNN. We trained
TDD-CNN and UK-CNN models with our datasets.

The model training process is carried out on
Google Colab Pro. Google Colab Pro provides a
16GB memory GPU for training, significantly reduc-
ing training time. We trained different routes in dif-
ferent custom tracks, as shown in Figure 7. In partic-
ular, in the custom track of Figure 7 (d), we selected
three routes for training and did not train all possible
routes.

Fig.7: Overview of model training routes.

2.6...4 Model Testing module

The model test was conducted by performing ac-
tual autonomous driving in custom tracks. The ac-
tual autonomous driving process is shown in Fig-

ure 8. Furthermore, actual multi-task autonomous
driving videos for different models are available at
https://github.com/NICESTUDYPAPER/STUDY.
The training process of the model is not done on the
Raspberry Pi 4 Model B. We only test the mod-
els on the intelligent driving platform. Therefore,
the computational power of Raspberry Pi 4 Mode
B is sufficient. However, the models we tested were
lightweight end-to-end neural network models for au-
tonomous driving, and the Raspberry Pi 4 Model B
has enough computational power to load the training
models for predicting throttle values and steering an-
gles. Meanwhile, our intelligent driving platform used
only a camera and the memory of the chip could be
used mainly for processing neural network models.
The largest model we tested took 74.3% of the CPU
when loaded on the Raspberry Pi 4 Model B.

Fig.9: Overview of untrained routes.

We tested both trained and untrained routes. The
trained route is shown in Figure 8 and the untrained
route is shown in Figure 9.

In addition, we tested the autonomous driving per-
formance under different lighting conditions and at
different speeds. We tested the effects of trained ob-
stacles, obstacles of the same shape in different col-
ors, obstacles of different shapes, different obstacle
positions, and moving obstacles on obstacle avoid-
ance performance. The different obstacles are shown
in Figure 10.

402 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

Fig.10: Obstacles.

3. RESULTS AND DISCUSSION

In this section, we analyze and discuss the experi-
mental results of model training and model testing.

3.1 Model Training Performance

3.1.1 The effect of functions and their combinations
on model training

We experimentally found that the existing activa-
tion functions ReLU, ELU, SeLU, Softmax, Softplus,
Softsign, Tanh, Sigmoid, and Hard Sigmoid are suit-
able for training our model [26-28], and the existing
loss functions [29-31] MSE, MAE, MSLE, Logcosh
Hinge, Squared Hinge, and Categorical Hinge are ap-
plicable to train our model.

We used the existing activation functions for model
training. The loss values of the model training under
different activation functions are shown in Figure 11.

Fig.11: Plot of the loss values of the models trained
with different activation functions.

As shown in Figure 11, for the RNNL19 model,
different activation functions have rarying impact on
the model training, and the Softmax activation func-
tion is more suitable for the RNNL19 model. For the
CNN14 model, the activation function has a greater
impact on the model training. The ReLU activation
function is more suitable for the CNN14 model.

We used the existing loss functions for model train-
ing, and the loss values for model training with dif-
ferent loss functions are shown in Figure 12.

As shown in Figure 12, for the RNNL19 model,
the loss activation function has less influence on the
model training, and the MSE loss function is more
suitable for the RNNL19 model. For the CNN14
model, the loss value of the model trained under the

Fig.12: Plot of the loss values of the models trained
with different loss functions.

partial loss function is larger, and the MSLE loss
function is more suitable for the CNN14 model.

However, the control variables approach cannot
cover all possibilities. Therefore, we replaced dif-
ferent combinations of activation-loss functions and
trained the models again. There are nine existing ac-
tivation functions and seven loss functions available.
Each combination of activation-loss functions consists
of a loss function and an activation function. There-
fore, there are sixty-three possible combinations of
all the possible activation-loss function combinations.
All are shown in Table 2. Table 2 shows that among
the available combinations of activation functions and
loss functions, the combination of ReLU for the ac-
tivation function and MSLE for the loss function is
better for the CNN14 model, and the combination of
ELU for the activation function and MSLE for the
loss function is better for the RNNL19 model. In ad-
dition, the loss function has a large impact on the
performance of the model when analyzed in terms of
individual functions.

3.1.2 Effect of MFPE loss function on model train-
ing

We improved the performance of the multi-task
autonomous driving model by combining activation
functions and loss functions, but the effect did not
reach our expectations. Therefore, we proposed the
MFPE loss function to enhance the performance of
the multi-task autonomous driving model. Table 3
shows the training losses of different models. Com-
pared with the original model, the model with the
MFPE loss function applied shows a significant reduc-
tion in the training loss values compared to the model
with the other loss functions applied. The model with
the best training performance in Table 3 is MFPE-
RNNL19, which has 47.14% less training loss than
the original model and 38.77% less training loss than
the model with the combination of functions.

MFPE : A Loss Function based on Multi-task Autonomous Driving 403

Table 2: Loss values of the model trained with different activation-loss function combinations.
Models Functions Categorical hinge Hinge Logcosh MAE MSE MSLE Square hinge

RNNL

Elu 0.072927 0.264778 0.026171 0.064497 0.0415 0.007213 0.239841
Hard Sigmoid 0.070247 0.476006 0.110291 0.280842 0.250061 0.044825 0.504289

Relu 0.066714 0.248949 0.014348 0.296403 0.039006 0.056223 0.241759
Selu 0.571082 0.243625 0.017635 0.0758 0.038907 0.008524 0.246747

Sigmoid 0.072372 0.468255 0.112267 0.279649 0.25408 0.044539 0.500049
Softmax 0.064961 0.482878 0.109122 0.279747 0.249597 0.240206 0.504164
Softplus 0.070469 0.471137 0.110316 0.274023 0.24757 0.044757 0.500106
Softsign 0.078009 0.473277 0.019898 0.35306 0.25499 0.010227 0.499392

Tanh 0.07371 0.470465 0.114359 0.090722 0.031641 0.044756 0.502011

CNN14

Elu 0.135902 0.481975 0.024275 0.142888 0.051007 0.477291 0.530116
Hard Sigmoid 0.512476 0.944434 0.221624 0.528951 0.503145 0.089327 1.001105

Relu 0.12283 0.47783 0.024696 0.150699 0.048308 0.014916 0.48125
Selu 0.141517 0.503492 0.037265 0.143722 0.087184 0.475441 0.505704

Sigmoid 0.518661 0.955428 0.220491 0.517172 0.517403 0.093382 1.002374
Softmax 0.519817 0.976039 0.218504 0.525001 0.511803 0.089453 1.011449
Softplus 0.146964 0.945204 0.219674 0.123859 0.510567 0.476813 0.997498
Softsign 0.522116 0.956425 0.025348 0.533844 0.510269 0.111712 0.99775

Tanh 0.526385 0.93198 0.22437 0.532559 0.517649 0.477551 1.004421

Table 3: Training loss of the model with the com-
bined function.

Models
Activation Loss

Loss
Function Function

CNN14 Linear MAE 0.084306
RNNL19 Softmax MSE 0.058372
Function

ReLU MSLE 0.072837Combinations-
CNN14
MFPE-

ReLU MSLE 0.050384Combinations-
RNNL19
MFPE-

ReLU MSLE 0.058706
CNN14
MFPE-

ReLU MSLE 0.03085
RNNL19

Fig.13: Loss values of the models at different batch
sizes.

3.1.3 Effect of hyperparameters on model training

Fine-tuning hyperparameters is an important tool
to improve the performance of the model. We ad-
justed the hyperparameters of the model to further
improve the model performance. In this work, we
discuss the effects of batch size, epoch, self-drop ra-
tio, learning rate, and optimizers on model training
performance during model training.

We recorded the loss values of the trained CNN14
and RNNL19 models with different batch sizes, as

shown in Figure 13. As shown in Figure 13, we found
that different models have different adaptability to
the batch size. The MFPE-CNN14 model had the
minimum training loss at a batch size of 64. The
MFPE-RNNL19 model had the minimum training
loss at a batch size of 128. The experimental results
indicated that the more suitable batch size for the
MFPE-CNN14 model is 64, and the more suitable
batch size for the MFPE-RNNL19 model is 128.

We used the early stop method when training the
model. The early stop method is used to stop if
the training loss value no longer decreases during the
training process. The model training will continue
five times, and if the training loss value does not
decrease, the model training will be stopped. The
epoch at which training stops is the epoch required
for model training, and the loss value obtained from
the training is the minimum loss value. We recorded
the epoch of training loss for the MFPE-CNN14 and
MFPE-RNNL19 models and plotted the change of
loss values with the epoch, as shown in Figure 14.

We found that the training loss of the models de-
creases as the epoch increases. As shown in Fig-
ure 14 (a), the training epoch of the MFPE-CNN14
model is around 30 times. As shown in Figure 14 (b),
the training epoch of the MFPE- RNNL19 model is
around 20 times. The experimental results indicated
that the suitable epoch for the MFPE-CNN14 model
is 40, and the suitable epoch for the MFPE-RNNL19
model is 30, under the condition that the minimum
training loss can be obtained.

We added dropout layers to the two models in
order to prevent overfitting, and the dropout layer
needs to set the self-drop ratio value. We trained
the models with different self-drop ratio values and
recorded the loss values. The loss values of different
models trained with different values of self-drop ratio
are shown in Figure 15.

As shown in Figure 15, we found that different
self-drop ratio values affect the loss value of model
training. The MFPE-CNN14 model has the least

404 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

Fig.14: Plots of training loss value with epoch.

Fig.15: Plot of the loss values of the models trained
at different self-drop ratios.

training loss with a self-drop ratio value of 0.2, and
the MFPE-RNNL19 model has the least training loss
with a self-drop ratio value of 0.3. The experimen-
tal results indicated that the more suitable self-drop
ratio value for the MFPE-CNN14 model is 0.2, and
the more suitable self-drop ratio value for the MFPE-
RNNL19 model is 0.3.

The learning rate is another crucial hyperparame-
ter, and we trained the two models at different learn-
ing rates. The loss values of different models trained
with different learning rates are shown in Figure 16.

Both models have the minimum training loss at a
learning rate of 0.005. The experimental results indi-
cated that the appropriate learning rate for MFPE-
CNN14 and MFPE-RNNL19 models should be 0.005.

The existing optimizers Adam [32], SGD [33], and
RMSProp [34] are available to train our model. We
used the existing optimizer for model training, and

Fig.16: Plot of the loss values of the models trained
at different learning rate.

the loss values of the models trained under different
optimizers are shown in Figure 17.

Fig.17: Plot of the loss values of the models trained
at different optimizers.

Figure 17 indicates that the MFPE-RNNL19
model is suitable for using Adam as an optimizer, and
the MFPE-CNN14 model is suitable for using SGD as
an optimizer. The training results of the fine-tuned
hyperparameter-optimized models and the models in
the existing studies are shown in Table 4. Table 4
shows that fine-tuning the hyperparameters can ef-
fectively improve the performance of the model. The
MFPE-RNNL19 model in Table 4 has the smallest
value of loss. The loss of the MFPE-RNNL19 model
was reduced by 33.83% compared to the value be-
fore adjusting the hyperparameters. In addition, we
calculated the variance of the model training loss to
evaluate the stability of each model. The MFPE-
RNNL19 model had the best stability, which indi-
cated that MFPE can improve the stability of the
model as well.

3.2 Model testing performance

3.2.1 Actual performance of multi-task autonomous
driving

We divided multi-task autonomous driving into
four sub-tasks: road tracking (Task I), traffic sign
recognition Task II), obstacle avoidance (Task III),

MFPE : A Loss Function based on Multi-task Autonomous Driving 405

Table 4: Loss values of the model trained with different activation-loss function combinations.
Multi-task

Batch
Epoch Dropout

Learning
Optimizer

Mean Loss
Varianceautonomous driving

Size Rate (5 times)
NN models

CNN14 (Original) 128 33 0.2 0.001 RMSProp 0.084744 3.9E-05
RNNL19 (Original) 128 25 0.2 0.001 SGD 0.058093 9.23333E-05

MFPE-CNN14
(Combination 128 33 0.2 0.001 RMSProp 0.01541 9.33333E-06

Functions)
MFPE-RNNL19
(Combination 128 25 0.2 0.001 SGD 0.01576 1.63333E-05

Functions)
MFPE-CNN14

64 40 0.2 0.005 SGD 0.014744 2.33333E-08
(Optimized)

MFPE-RNNL19
128 30 0.3 0.005 Adam 0.010427 1.30363E-08

(Optimized)
TDD-CNN (Existing) 64 47 0.1 0.01 SGD 0.239057 0.0004
UK-CNN (Existing) 64 38 0.1 0.01 SGD 0.262084 0.0013

and real-time acceleration and deceleration (Task
IV). We assumed that the total score of multi-task
autonomous driving (MTADS, score of multi-task au-
tonomous driving) is 100 points. The total score
of each sub-task is 25 points. In the process of
multi-task autonomous driving, if the sub-task can be
achieved, the original score of the corresponding sub-
task is 25 points. In the process of achieving different
sub-tasks, if the intelligent driving platform touches
the black line, one point will be deducted. If the intel-
ligent driving platform does not recognize the traffic
signs or avoid obstacles, two points will be deducted.
If the intelligent driving platform runs off the custom
tracks, four points will be deducted. We accomplish
five laps of multi-task autonomous driving for each
sub-task on custom tracks. The MTADS of different
multi-task autonomous driving neural network mod-
els are shown in Table 5.

Table 5 showed that the MFPE-CNN14 model ob-
tained the highest MTADS of 81. Compared with the
original model, the MFPE-CNN14 model improved
autonomous driving performance by 13%. The
MFPE-CNN14 model improved autonomous driving
performance by 41% over the TDD-CNN model com-
pared to the models in the existing studies. In addi-
tion, we found that optimizing the hyperparameters
of the models improved the multi-task autonomous
driving performance of the models. Hyperparame-
ter fine-tuning resulted in an 8% improvement in au-
tonomous driving performance of the MFPE-CNN14
model.

3.2.2 Multi-task autonomous driving in different
lighting conditions

We tested the autonomous driving performance
of the model under two different lighting conditions.
Condition 1 used an indoor light source. Condition
2 used a natural light source. Figure 18 shows the
MTADS of the autonomous driving model under dif-
ferent light sources.

Figure 18 shows that the autonomous driving per-
formance of the model under indoor lighting is a little

Fig.18: Magnitude and Phase Response of the
Dolph-Chebyshev Filter.

better than under natural lighting. The autonomous
driving performance of our models are better under
indoor lighting conditions.

3.2.3 Multi-task autonomous driving performance
at different speeds

We tested the effect of different speeds on the per-
formance of the model. The intelligent driving plat-
form cannot drive when the throttle ratio is below
80%. Therefore, we divided the speeds into three
classes: slow speed (80% throttle ratio, 4.8 Km/h),
normal speed (90% throttle ratio, 5.4 Km/h) and fast
speed (100% throttle ratio, 6 Km/h). The MTADS of
the model at different speeds are shown in the Table
6.

We found that the faster the speed, the worse the
performance of the model. This is because the in-
crease in speed will increase the number of images
acquired in the same time. A large number of images
will be transferred to the Raspberry Pi for process-
ing, and the increase in processing volume will lead
to inference errors in the model. We must control the
speed to be between 4.8-5.4 Km/h to ensure a good
autonomous driving performance.

406 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

Table 5: MTADS of different neural network models for multi-task autonomous driving.

Multi-task autonomous Task
Single

MTADS Multi-task autonomous Task
Single

MTADS
driving NN models

task
driving NN models

task
score score

Original-CNN14

I 17

68 MFPE-CNN14

I 20

81
II 15 II 19
III 11 III 17
IV 25 IV 25

Original-RNNL19

I 13

60 MFPE-RNNL19

I 18

77
II 11 II 17
III 11 III 17
IV 25 IV 25

Function Combinations-CNN14

I 19

73 TDD-CNN

I 18

40
II 17 II 19
III 12 III 3
IV 25 IV 0

Function Combinations-RNNL19

I 14

63 UK-CNN

I 17

37
II 13 II 2
III 11 III 18
IV 25 IV 0

Table 6: MTADS of the model at different speeds .

Models Speed MTADS

MFPE-
Slow (80%) 94

CNN14
Normal (90%) 92

Fast(100%) 84

MFPE-
Slow (80%) 92

RNNL19
Normal (90%) 92

Fast(100%) 82

3.2.4 Multi-task autonomous driving on untrained
routes

We tested the performance of the models for multi-
task autonomous driving on untrained routes by ran-
domly placing traffic signs. We observed whether dif-
ferent models could achieve autonomous driving in
untrained scenarios without going off track. Dur-
ing autonomous driving, if the model achieved au-
tonomous driving and did not lose control (run off
track) during the autonomous driving process, then
we calculated the MTADS of the models based on
their performance on different untrained routes. The
details are shown in Table 7.

As shown in Table 7, we found that the Optimized-
CNN14, Optimized-RNNL19, MFPE-CNN14, and
MFPE-RNNL19 models achieved multi-task au-
tonomous driving for unseen scenarios. From the
route analysis, Route 2 is more complex than Route 1,
so the MTADS of Route 2 is lower than the MTADS
of Route 1. The MTADS of the untrained scenario
decreased compared to the MTADS of the trained
route. Although the performance of the intelligent
driving platform in the untrained scenario is not as
good as that in the trained scenario, the intelligent
driving platform did achieve multi-task autonomous
driving.

3.2.5 Multi-task Autonomous driving obstacle
avoidance performance

We tested the performance of the intelligent driv-
ing platform for obstacle avoidance using different ob-
stacles. The results showed that the color of the ob-
stacles did not affect the obstacle avoidance perfor-
mance of the model. The shape of the obstacle had
little effect on the obstacle avoidance performance of
the model. Even with the changes in color and shape,
the model could still achieve the obstacle avoidance
task. The position of the obstacle has little effect on
obstacle avoidance. Obstacles can be placed in any
position, including untrained positions, without im-
pacting obstacle avoidance. The model achieved poor
performance in the obstacle avoidance task of mov-
ing obstacles. Based on the system memory footprint,
the computational power of the Raspberry Pi is not
sufficient to support the model’s inferential comput-
ing process if the obstacles are moved in real time,
based on the four complex subtasks already achieved.
The disadvantage of the embedded development plat-
form is that the lack of computational power makes
certain tasks impossible.

Youwei Li conducted the experiment and drafted
the manuscript. Jian Qu guided and advised the ex-
periment and co-drafted the manuscript. Both au-
thors each contributed equally to this work. Jian Qu
is the corresponding author.

4. CONCLUSIONS

We integrated four sub-tasks into one neural net-
work to achieve multi-task autonomous driving. We
built a single-camera intelligent driving platform for
experimentation.

In this work, we trained two types of deep neu-
ral networks: CNN14 and RNNL19. We improved
the performance of the model by using different acti-
vation functions, loss functions, and activation-loss
function combinations. However, the existing loss

MFPE : A Loss Function based on Multi-task Autonomous Driving 407

Table 7: MTADS of different models on untrained routes.
Multi-task

Untrained Out of
MTADS

Multi-task
Untrained Out of

MTADSautonomous
Route control?

autonomous
Route control?

driving NN models driving NN models

Original-CNN14
Route 1 YES 0

MFPE-CNN14
Route 1 NO 75

Route 2 YES 0 Route 2 NO 77

Original-RNNL19
Route 1 YES 0

MFPE-RNNL19
Route 1 NO 69

Route 2 YES 0 Route 2 NO 73

Optimized-CNN14
Route 1 NO 55

TDD-CNN
Route 1 YES 0

Route 2 NO 62 Route 2 YES 0
Optimized- Route 1 NO 46

UK-CNN
Route 1 YES 0

RNNL19 Route 2 NO 51 Route 2 YES 0

function cannot handle the relationship between dif-
ferent subtask datasets. Therefore, we designed a
new loss function (MFPE) based on multi-task au-
tonomous driving. The MFPE loss function has the
advantages of MSE and overcomes the disadvantages
of MAE.

The MFPE loss function effectively improved the
training and testing performance of the model. The
MFPE-RNNL19 model performs best in model train-
ing, and its loss value is 47.14% less than the loss
value of the original model. In addition, we opti-
mized the model by fine-tuning the hyperparame-
ters, which further reduced the loss of the MFPE-
RNN19 model by 33.83%. The MFPE-CNN14 model
performed the best in actual multi-task autonomous
driving, and it improved its performance by 41%
over the existing studies. In addition, we tested
the effects of different lighting conditions, different
speeds, untrained routes, and different obstacles on
the actual autonomous driving performance of the
model. The model using the MFPE loss function
achieved multi-task autonomous driving under differ-
ent lighting conditions. The intelligent driving plat-
form performs better at speeds between 4.8 Km/h
and 5.4 Km/h. The model using MFPE loss function
achieved multi-task autonomous driving in different
untrained routes. In the autonomous driving obsta-
cle avoidance process, the model using the MFPE loss
function can achieve multi-task autonomous driving
using different colored obstacles, different shaped ob-
stacles, and even with different positions of obstacles.

In addition, we tested avoidance of moving obsta-
cles. The results show that the limitation of the com-
putational power of the embedded platform makes
the failure frequency of avoiding moving obstacles
very high. In our future work, we will try more pow-
erful chips to achieve moving obstacle avoidance.

ACKNOWLEDGMENT

Youwei Li received scholarship support from
CPALL for conducting this research in PIM.

References

[1] J. Stilgoe, “Machine learning, social learning and
the governance of self-driving cars,” Social stud-
ies of science, vol. 48, no. 1, pp. 25-56, 2018.

[2] K. L. Lee and H. Y. Lam, “Development of Deep
Learning Autonomous Car Using Raspberry Pi,”
Progress in Engineering Application and Tech-
nology, vol. 2, no. 1, pp. 534-548, 2021.

[3] X. Du, M. H. Ang, and D. Rus, “Car detec-
tion for autonomous vehicle: LIDAR and vision
fusion approach through deep learning frame-
work,” 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS),
pp. 749-754, 2017.

[4] S. Ding, and J. Qu, “Smart car with road track-
ing and obstacle avoidance based on Resnet18-
CBAM,” 2022 7th International Conference on
Business and Industrial Research (ICBIR), pp.
582-585, 2022.

[5] W. Y. Lin, W. H. Hsu, and Y. Y. Chiang,
“A combination of feedback control and vision-
based deep learning mechanism for guiding self-
driving cars,” 2018 IEEE International Confer-
ence on Artificial Intelligence and Virtual Real-
ity (AIVR), pp. 262-266, 2018.

[6] R. Valiente, M. Zaman, S. Ozer, and Y. P. Fal-
lah, “Controlling steering angle for cooperative
self-driving vehicles utilizing cnn and lstm-based
deep networks,” 2019 IEEE intelligent vehicles
symposium (IV), pp.2423-2428, 2019.

[7] M. G. Bechtel, E. McEllhiney, M. Kim, and
H. Yun, “Deeppicar: A low-cost deep neu-
ral network-based autonomous car,” 2018 IEEE
24th international conference on embedded and
real-time computing systems and applications
(RTCSA), pp. 11-21, 2018.

[8] T. D. Do, M. T. Duong, Q. V. Dang, and M.
H. Le, “Real-time self-driving car navigation us-
ing deep neural network,” 2018 4th International
Conference on Green Technology and Sustain-
able Development (GTSD), pp. 7-12, 2018.

[9] U. Karni, S. S. Ramachandran, K. Sivaraman,
and A. K. Veeraraghavan, “Development of au-
tonomous downscaled model car using neural
networks and machine learning,” 2019 3rd In-
ternational Conference on Computing Method-
ologies and Communication (ICCMC), pp. 1089-
1094, 2019.

[10] Y. Li and J. Qu, “Intelligent Road Tracking
and Real-time Acceleration-deceleration for Au-

408 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.16, NO.4 December 2022

tonomous Driving Using Modified Convolutional
Neural Networks,” Current Applied Science and
Technology, vol. 22, no. 6, pp.1-26, 2022.

[11] V. Mnih, et al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529-533, 2015.

[12] A. Boloor, K. Garimella, X. He, C. Gill, Y.
Vorobeychik, and X. Zhang, “Attacking vision-
based perception in end-to-end autonomous
driving models,” Journal of Systems Architec-
ture, vol. 110, no. 101766, 2020.

[13] Y. Bae, E. Gomez, A. Haywood, J. Lazo, P.
Whitson, and Y. Wang, “Prototyping a System
of Cost-Effective Autonomous Guided Vehicles,”
Proceedings of the Annual General Donald R.
Keith Memorial Conference, pp. 138-143, 2021.

[14] S. Yuenyong and J. Qu, “Generating synthetic
training images for deep reinforcement learning
of a mobile robot,” Journal of Intelligent Infor-
matics and Smart Technology, vol. 2, pp. 16-20,
2017.

[15] V. Rausch, A. Hansen, E. Solowjow, C. Liu,
E. Kreuzer, and J. K. Hedrick, “Learning a
deep neural net policy for end-to-end control of
autonomous vehicles,” 2017 American Control
Conference (ACC), pp. 4914-4919, 2017.

[16] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu,
and A. M. López, “Multimodal end-to-end au-
tonomous driving,” IEEE Transactions on In-
telligent Transportation Systems, pp. 1-11, 2020.

[17] Z. Chen and X. Huang, “End-to-end learning
for lane keeping of self-driving cars,” 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 1856-
1860, 2017.

[18] A. Seth, A. James, and S. C. Mukhopadhyay,
“1/10th scale autonomous vehicle based on con-
volutional neural network,” International Jour-
nal on Smart Sensing and Intelligent Systems,
vol. 13, no. 1, pp. 1-17, 2020.

[19] D. Molchanov, A. Ashukha, and D. Vetrov,
“Variational dropout sparsifies deep neural net-
works,” International Conference on Machine
Learning, pp. 2498-2507, 2017.

[20] S. Phiphitphatphaisit and O. Surinta, “Deep fea-
ture extraction technique based on Conv1D and
LSTM network for food image recognition,” En-
gineering and Applied Science Research, vol. 48,
no. 5, pp. 581-592, 2021.

[21] S. M. J. Jalali, P. M. Kebria, A. Khosravi, K.
Saleh, D. Nahavandi, and S. Nahavandi, “Opti-
mal autonomous driving through deep imitation
learning and neuroevolution,” 2019 IEEE Inter-
national Conference on Systems, Man and Cy-
bernetics (SMC), pp. 1215-1220, 2019.

[22] Y. H. Ko, K. J. Kim, and C. H. Jun, “A new
loss function-based method for multiresponse op-
timization,” Journal of Quality Technology, vol.
37, no. 1, pp. 50-59, 2005.

[23] J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.
H. Lee, “On mean absolute error for deep neu-
ral network based vector-to-vector regression,”
IEEE Signal Processing Letters, vol. 27, pp.
1485-1489, 2020.

[24] J. M. Martin-Donas, A. M. Gomez, J. A. Gon-
zalez, and A. M. Peinado, “A deep learning loss
function based on the perceptual evaluation of
the speech quality,” IEEE Signal processing let-
ters, vol. 25, no. 11, pp. 1680-1684, 2018.

[25] S. Fatimah, “Artificial neural network for mod-
elling the removal of pollutants: A review,” En-
gineering and Applied Science Research, vol. 47,
no. 3, pp. 339-347, 2020.

[26] A. D. Rasamoelina, F. Adjailia, and P. Sinčák,
“A review of activation function for artificial
neural network,” 2020 IEEE 18th World Sym-
posium on Applied Machine Intelligence and In-
formatics (SAMI), pp. 281-286, 2020.

[27] J. Schmidt-Hieber, “Nonparametric regression
using deep neural networks with ReLU activa-
tion function,” The Annals of Statistics, vol. 48,
no. 4, pp. 1875-1897, 2020.

[28] P. Bohra, J. Campos, H. Gupta, S. Aziznejad,
and M. Unser, “Learning activation functions
in deep (spline) neural networks,” IEEE Open
Journal of Signal Processing, vol. 1, pp. 295-309,
2020.

[29] M. Carvalho, B. Le Saux, P. Trouvé-Peloux,
A. Almansa, and F. Champagnat, “On regres-
sion losses for deep depth estimation,” 2018 25th
IEEE International Conference on Image Pro-
cessing (ICIP), pp. 2915-2919, 2018.

[30] X. Zhu, H. I. Suk, and D. Shen, “A novel matrix-
similarity based loss function for joint regression
and classification in AD diagnosis,” NeuroImage,
vol. 100, pp. 91-105, 2014.

[31] Z. Allen-Zhu, Y. Li, and Z. Song, “A con-
vergence theory for deep learning via over-
parameterization,” International Conference on
Machine Learning (PMLR), vol. 97, pp. 242-252,
2019.

[32] D. O. Melinte, and L. Vladareanu, “Facial ex-
pressions recognition for human–robot interac-
tion using deep convolutional neural networks
with rectified Adam optimizer,” Sensors, vol. 20,
no. 8, pp. 2393, 2020.

[33] J. Yang, and G. Yang, “Modified convolu-
tional neural network based on dropout and
the stochastic gradient descent optimizer,” Al-
gorithms, vol. 11, no. 3, pp. 28, 2018.

[34] A. M. Taqi, A. Awad, F. Al-Azzo, and M. Mi-
lanova, “The impact of multi-optimizers and
data augmentation on TensorFlow convolutional
neural network performance,” 2018 IEEE Con-
ference on Multimedia Information Processing
and Retrieval (MIPR), pp. 140-145, 2018.

MFPE : A Loss Function based on Multi-task Autonomous Driving 409

Youwei Li is currently studying for
the Master of Engineering Technology,
Faculty of Engineering and Technolog-
y, Panyapiwat Institute of Management,
Thailand. He received B.B.A from Nan-
jing Tech University Pujiang Institute,
Chaina, in 2020. His research inter-
ests are Research direction is artificial
intelligence, image processing, and au-
tonomous driving.

Jian Qu is an Assistant professor at
the Faculty of Engineering and Tech-
nology, Panyapiwat Institute of Man-
agement. He received Ph.D. with Out-
standing Performance award from Japan
Advanced Institute of Science and Tech-
nology, Japan, in 2013. He received
B.B.A with Summa Cum Laude hon-
ors from Institute of International Stud-
ies of Ramkhamhaeng University, Thai-
land, in 2006, and M.S.I.T from Sirind-

horn International Institute of Technology, Thammast Univer-
sity, Thailand, in 2010. He has been a house committee for
Thai SuperAI since 2020. His research interests are natural
language processing, intelligent algorithms, machine learning,
machine translation, information retrieval and image process-
ing.

