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ABSTRACT Article information:
Falls are uncommon and pose a substantial health danger to adults and the
elderly. These situations are a leading cause of severe injury. More harm
could be averted if the faller could be located in time. The rising older pop-
ulation necessitates the rapid development of fall detection and prevention
technologies. The burgeoning technology industry is focused on developing
such technologies to improve the living conditions for the elderly in particu-
lar. A fall detection system monitors falls and provides an assistance notice
to support mitigation of falls. This study proposes a sensor-based solution
based on a deep learning network named FallNeXt to safeguard individual
privacy and increase fall detection performance. This proposed network
is a novel deep residual network that utilizes multi-branch aggregation to
enhance fall detection capability. The detection e�ectiveness of this study
was evaluated using three benchmark datasets for sensor-based fall detec-
tion: UpFall, SisFall, and UMAFall datasets. Compared to benchmark
deep learning models on the three datasets, the experimental �ndings indi-
cate that the proposed FallNeXt network scored the most signi�cant overall
accuracy and F1-score, with 96.16% and 99.12%, respectively. The bene�t
of the FallNeXt model's small but highly e�ective size for fall detection is
its portability.
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1. INTRODUCTION

The World Health Organization (WHO) reports
that falls are a leading cause of injury in the elderly
[1]. Additionally, medical evaluations have shown
that treatment of fall-related injuries is signi�cantly
reliant on reaction and emergency time [2]. Conse-
quently, it is critical for the elderly to preserve their
well-being by immediately contacting the authorities
and a physician if they fall.

Falls are caused by many factors [3]. They may
occur as a result of an unpredicted health event, such
as a heart condition, or as a result of impaired sen-
sory capabilities, such as vision or cognition, or even
due to long-term diseases that e�ect mobility, such
as arthritis or Parkinson's disease. In any case, it is
critical that an individual who falls gets treatment
as soon as possible. Prompt treatment after a fall

enhances a patient's post-fall living conditions. By
notifying healthcare personnel, fall detection systems
(FDS) play a critical role in ensuring timely treat-
ment [4, 5].

Fall detection is a complex and challenging issue
in human activity recognition (HAR) [6, 7]. The pur-
pose of a FDS is to monitor a person's activity and
identify falls to alert healthcare professionals or other
caregivers. For example, fall detection systems are
essential for older individuals with cognitive impair-
ments who may be unable to stand for extended pe-
riods after a fall, leading to pressure sores and other
complications [8].

Over the past decade, there has been a surge of
studies on FDS, which may be classi�ed into vision-
based FDS and wearable-based FDS [9]. The disad-
vantage of vision-based FDS is that they are limited
to con�ned spaces, such as a room or a care facil-
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ity. This is because they are expensive to build and
maintain and because a permanent installation can
restrict the individual’s mobility. Wearable FDS uses
motion sensors such as accelerometers, gyroscopes,
and magnetometers, as well as pressure sensors and
a variety of health monitoring sensors [10, 11]. The
data collected by these sensors then used to ascertain
whether or not a fall occurred. Wearable FDS typi-
cally make use of a large number of units connected
to the body of the patient to record the individual’s
movement patterns more accurately.

To construct an effective model of sensor-based
FDS, the researchers have combined a great many
machine learning and deep learning techniques since
these learning-based strategies can discover nonlin-
ear patterns in motion or analyze fall information to
recognize the occurrence.

To solve this issue, this article proposes a hy-
brid deep-learning-based strategy in which models
are concurrently trained to identify fundamental and
transitory human actions. Novel characteristics in-
clude implementing several deep learning models to
better differentiate recognition findings and incorpo-
rate transitional activities to provide an effective ac-
tivity identification strategy. The following is a sum-
mary of this work’s primary contributions:
• A proposed deep residual network called FallNeXt
is built on multi-branch aggregation and optimized
for fall detection.
• Various experiments were conducted to evaluate
the proposed network using three benchmark FDS
datasets: SisFall, UpFall, and UMAFall.
• The results demonstrate that the proposed deep
learning network’s effectiveness for FDS has sur-
passed comparable approaches.

The remainder of this article is structured as fol-
lows: Section 2 summarizes the related literature.
Section 3 details the FDS approach. Section 4 sum-
marizes the experimental findings. The findings are
discussed in Section 5. Lastly, Section 6 summarizes
our study results and makes recommendations for fu-
ture exploration.

2. RELATED WORK

Over the past decade, many of the studies in
the field of FDS have focused on different method-
ologies utilizing machine learning and deep learning
techniques. These studies can be classified into two
broad categories: vision-based FDS and wearable-
based FDS.

2.1 Vision-based Fall Detection Systems

Vision-based FDS acquires motion data by observ-
ing devices and extracting a person’s body appear-
ance inclination [12] or human bone annotations from
received video or image data to determine if a fall has
occurred. Agrawal et al. [13] employed experience
subtraction to locate foreground items and selected

the fall by computing the difference between the top
and middle centers of the rectangle encompassing the
human body. The participant is not required to wear
any additional equipment. Nevertheless, it is simple
to shut off and inevitably invades people’s personal
space. To overcome this challenge, Kong et al. [14]
employed a depth camera to capture the skeletal pho-
tos of a human standing or falling. He encrypted the
images and detected the fall by using Fast Fourier
Transformation.

2.2 Wearable-based Fall Detection Systems

Wearable sensors have gained increasing interest as
a result of their low cost [15]. The calf, spine, head,
pelvis, and foot are the most often employed sites
for wearable sensors to get 3D acceleration at various
places and 3D rotation angular velocity with a gyro-
scope. Shahiduzzaman et al. [16] integrated wearable
cameras, accelerometers, and gyroscope sensors into
innovative headwear and processed data from multi-
sensor cooperation on the edge. Mousavi et al. [17]
suggested a technique for detecting falls using cell-
phones and acceleration signals by employing smart-
phone sensors and providing the user’s location, with
a 96.33% accuracy rate. Desai et al. [18] identified
human falls using a modest 32-bit microcontroller
embedded in a wearable waistband. Threshold ap-
proaches and machine classification algorithms are
often employed to determine falls in wearable elec-
tronics [19].

Additionally, other studies have examined FDS us-
ing alternative sensors, such as environmental sen-
sors. Usually, falls are detected by ambient sensors
by gathering infrared [20], radar [21], or other signals
from the scene sensor. Yang et al. [22] collected data
using radars in three fixed sites and utilized the time-
frequency distribution and range-time intensity as in-
take data for feature extraction to determine falls.
While it does not violate one’s privacy, it has a high
cost, is vulnerable to noise, and has limited detection
coverage.

2.3 Deep Learning Approaches for Fall Detec-
tion Systems

Machine learning techniques are broadly classified
into two categories: traditional pattern identification
and classification and identification based on deep
learning [3,23]. Traditional recognition techniques
(such as the support vector machine, the k-nearest
neighbor algorithm, and others) all depend on hu-
man feature extraction. As a result, investigators’
fall detection criteria must be increased. At first, it
is vital to determine which human body elements are
engaged in the falling procedure. Secondly, it is criti-
cal to analyze how these characteristics are separated
from activity of daily living (ADL) such as seating
and leaping since this will significantly slow down the
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feature extraction process. Classification and identi-
fication algorithms based on deep learning are used
increasingly more often utilized in fall detection ap-
proaches, because they can extract feature details di-
rectly. As a result of this benefit, deep learning strate-
gies have grown in popularity in scientific society [24].
They have been utilized in various domains where
they have accomplished performance levels compara-
ble to human expertise [25-27]. In principle, deep
learning algorithms for the data acquisition of wear-
able sensors entail preprocessing collected signals, ex-
tracting features from signal portions, and training a
model employing features as input [28]. As a result,
current wearable sensor studies in fall risk estimation
mainly focus on technical feature optimization. The
gathered characteristics are provided in several deep
learning techniques used to indicate the recurrence
of falls. Musci et al. [29] employed an LSTM-based
fall detection scheme that used a long-time sequence
as the source and then efficiently extracted temporal
information.

3. THE PROPOSED DEEP LEARNING
MODEL

As shown in Fig. 1, the framework used in this
study is comprised of four main stages: data acquisi-
tion, data pre-processing, DL-based model training,
and model evaluation.

First, we gathered FDS datasets, including wear-
able sensor data of ADLs and fall behaviors. Follow-
ing analysis of the relevant literature, we have cho-
sen three publicly accessible datasets to analyze in
this research: UpFall, SisFall, and UMAFall. Three-
dimensional accelerometer and three-dimensional gy-
roscope data are included in the sensor data. The
sensor data was then denoised, normalized, and seg-
mented using a sliding window method to create sam-
ple data for training and evaluating the deep learning
algorithms. The output of the deep learning meth-
ods was examined using a 10-fold cross-validation
methodology. Finally, four standard criteria were em-
ployed to assess and compare the trained models: ac-
curacy, precision, recall, and F1-score. Each proce-
dure is described in depth in the upcoming subsec-
tions.

3.1 Data Acquisition

According to their prevalence and scale, this study
investigates fall detection using data from three
FDS public datasets, namely UpFall, SisFall, and
UMAFall. Each dataset is unique in terms of the
number of ADLs and categories of falls, and the
method used to gather sensor data. Many FDS inves-
tigations have made extensive use of these resources.
Fig. 2 shows some accelerometer and gyroscope data
samples from the three datasets, UpFall, SisFall, and
UMAFall. The details of the three datasets are shown
in Table 1.

The UpFall dataset [30] is the first FDS dataset we
studied in this work. This dataset contains six activi-
ties of daily living (ADLs) (walking, standing, sitting,
picking up an item, leaping, and lying down) as well
as five distinct kinds of human falls (falling forward
using hands, falling forward using knees, falling back-
ward, falling sideways, and falling from sitting in an
empty chair). The actions of 17 healthy young indi-
viduals were captured utilizing a multimodal method,
including wearable sensors, ambient sensors, and vi-
sion equipment. For all activities, the sampling fre-
quency is set to 100 Hz.

The SisFall dataset [31] is the second FDS dataset.
This public dataset collects 3D accelerometer and 3D
gyroscope data from subjects as they complete 19
ADLs and 15 fall actions. The wearable equipment
was worn around the waist by 38 willing volunteers
(23 young people and 15 older adults). The dataset
was acquired from the sensors at a sampling rate of
200 Hz.

The UMAFall dataset [32] is the last FDS dataset
used in this investigation. Three kinds of falls and
twelve activities of daily living were gathered using
a smartphone carried in the right thigh pocket and
four wearable sensors worn on the ankle, left wrist,
right wrist, and chest. Seventeen volunteers (seven fe-
males and ten males) completed a minimum of three
sessions of each action in a household setting. Fall-
backward, fall-forwards, and fall-lateral are the three
distinct types of falls included in this dataset. Fur-
thermore, the 12 ADLs are applauding, body bend-
ing (squatting), descending stairs, ascending stairs,
lifting hands, hopping, light jogging, lying down on
a bed, making a phone call, opening a door, sitting
down, and walking. The sampling frequency for all
activities in this dataset is harmonized at 20 Hz.

3.2 Data Pre-Processing

The raw sensor data contains system measurement
noise or other unanticipated noise resulting from the
individual’s lively motions during the investigations.
A noisy signal distorts the signal’s usable information.
As a result, it was critical to decrease the influence
of the noise to recover relevant information from the
signal for subsequent processing. The most frequently
used filtering techniques are the mean filter, the low-
pass filter, the Wavelet filter, and the Gaussian filter.
Our investigation used an average smoothing filter for
the accelerometer and gyroscope sensors to denoise
the signals.

Then, as seen in Eq. (1), the raw sensor data is
normalized to the range 0 to 1. This procedure assists
in resolving the model learning issue by ensuring that
all measured values are within a comparable degree.
As a consequence, gradient descents could achieve a
higher rate of convergence.



FallNeXt: A Deep Residual Model based on Multi-Branch Aggregation for Sensor-based Fall Detection 355

Fig.1: The Framework for FDS used in this study..

Fig.2: Some samples of accelerometer and gyroscope data from the three datasets: (a) UpFall, (b) SisFall,
and (c) UMAFall.

Table 1: Public benchmark datasets for FDS used in this work

Dataset Type of Sensors Position Subjects Activities
UpFall [30] 1 accelerometer

and 1 gyroscope
left wrist, under the neck, right pocket
of pants, middle of waist (in the belt),
and left ankle

17 5 types of fall and 6 ADLs

SisFall [31] 2 accelerometers
and 1 gyroscope

waist 38 15 types of fall and 19 ADLs

UMAFall [32] 1 accelerometer
and 1 gyroscope

thigh pocket, ankle, waist, and right
wrist

72 3 types of fall and 8 ADLs

Xnorm
i =

Xi − xmin
i

xmax
i − xmin

i

, i = 1, 2, ... (1)

Xnorm
i denotes the normalized data, n denotes the

number of channels, and xmax
i and xmin

i are the maxi-
mum and minimum values of the i-th channel, respec-
tively.

Because of the high volume of signal data gath-
ered by wearable sensors, it is hard to incorporate all
the data into the FDS system at once. As a result,
sliding window segmentation must be performed be-
fore feeding data into the system. The sliding window
approach is widely employed in HAR for the identi-
fication of periodic activities (e.g., running, walking)

and static actions (e.g., standing, sitting, and lay-
ing) [33]. The unprocessed sensor data was divided
into fixed-length windows of 3 seconds. A fraction
of the neighboring windows overlap to maximize the
quantity of training data samples and prevent the loss
of information during transition from one activity to
the next. In this work, the overlapping proportion is
50%. The fixed-length sliding window technique used
in this work is illustrated in Fig. 3.

3.3 Model Training

We implemented a multi-branch aggregation ap-
proach in this study influenced by ResNeXt [34].
Unlike InceptionNet [35], this approach utilizes the
various-sized kernel feature maps rather than con-
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Table 2: The summary of hyperparameters for the FallNeXt network used in this work

Stage Hyperparameters Values

Convolutional Block

Conv1D Kernel Size 5
Filters 64

Batch Normalization -
Activation ReLU
Max Pooling 2

Multi Kernel Block x 5

Branch-1-1

Conv1D
Kernel Size 1

Filters 10

Conv1D
Kernel Size 3

Filters 10
Branch-1-2

Conv1D
Kernel Size 1

Filters 10

Conv1D
Kernel Size 5

Filters 10
Branch-1-3

Conv1D
Kernel Size 1

Filters 10

Conv1D
Kernel Size 7

Filters 10
Branch-1

Conv1D
Kernel Size 1

Stride 1
Filters 64

Branch-2

Conv1D
Kernel Size 1

Stride 1
Filters 64

Classification Block
Global Average Pooling -
Flatten -
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

Fig.3: Fixed-length sliding window technique used
in this work.

catenating them. This drastically reduces the model’s
parameter set, enabling adequate performance appro-
priate for edge and low latency operations. The sum-
mary of the hyperparameters of FallNeXt is given in
Table 2. Fig. 4 illustrates FallNeXt in detail.

The FallNeXt model consists of four modules with

convolutional kernels of varying sizes. Each MultiK-
ernel (MK) component has three kernels of varying
sizes: 1 × 3, 1 × 5, and 1 × 7. Additionally, 1 ×
1 convolutions are performed to reduce the mode’s
overall complexity and parameter count before de-
ploying these kernels. Fig. 5 illustrates the architec-
ture of the MultiKernel component.

3.4 Model Evaluation

A member of the study population is assumed true
positive (TP) if the classification action is correctly
identified; false positive (FP) if the classification ac-
tion is incorrectly identified; true negative (TN) if
the classification action is correctly denied; and false
negative (FN) if the classification action is incorrectly
denied. The proposed methodology was assessed in
this paper using the following four performance mea-
sures: accuracy, precision, recall, and F1-score. For-
mulae for these are shown in Eq. (2) through Eq.
(5).

Precision(%) =
TP

TP + FP
× 100% (2)
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Fig.4: The proposed FallNeXt model.

Fig.5: Structure of a MultiKernel module.

Recall(%) =
TP

TP + FN
× 100% (3)

F1 − score(%) = 2 × Precision×Recall

Precision + Recall
× 100%

(4)

Accuracy(%) =
TP + TN

TP + FP + TN + FN
× 100%

(5)

4. EXPERIMENTAL RESULTS

This section discusses the experimental design
used in this study and the observed outcomes for
deep learning models, including the proposed Fall-
NeXt model.

4.1 Experimental Setup

In this step, training and test data samples are par-
titioned for investigations, temporal windows from
the signals were used to develop a model, and test
data was used to evaluate the developed model. The
standard procedure for splitting data into training

and test sets is cross-validation. Numerous tech-
niques, such as k-fold cross-validation, might segre-
gate training data from testing data. This step eval-
uates the ability of the learning algorithm to gener-
alize to new data. This step employed stratified 10-
fold cross-validation inside of the smartwatch-based
personal identification architecture. This validation
technique divides the entire dataset into equal folds.
Each repetition operates nine of these folds for train-
ing and one for testing. This step is conducted ten
times, utilizing all data for both training and testing.
Each fold has the same percentage of data from each
participant when stratified.

The investigations in this research were done us-
ing the Google Colab Pro+ platform. The Tesla
V100-SXM2-16GB graphics processing unit (GPU)
was used to accelerate the training of the deep learn-
ing models. The proposed FallNeXt model was im-
plemented in Python using the Tensorflow backend
(version 3.9.1) and CUDA (version 8.0.6). The GPU
accelerated deep learning model training and testing.
The tests were conducted using the Python libraries
listed below:
• Numpy and Pandas were used to read, manipulate,
and analyze sensor data.
• Matplotlib and Seaborn were used to plot and
present the results of knowledge discovery and model
evaluation.
• Scikit-learn (Sklearn) was utilized in studies as a
library for sampling and data production.
• TensorFlow, Keras, and TensorBoard were used to
construct and train deep learning models.

4.2 Baseline Deep Learning Models

This research used five deep learning networks
(CNN, LSTM, BiLSTM, GRU, and BiGRU) as
baseline models to evaluate the proposed FallNeXt
model’s performance on fall detection.

The CNN model is a standard Convolutional Neu-
ral Network consisting of N convolutional layers acti-
vated by ReLU and a hidden dense layer. The CNN
architecture employed in this study is shown in Fig.
6.

CNN hyperparameters include:
• The number of convolutional layers.
• The number of filters in each convolutional layer.
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Fig.6: The CNN architecture used in this work.

• The number of neurons in the hidden dense layer.
We opted not to add pooling layers in this work

since reducing the spatial size of the sequence is often
unnecessary when there are sufficient convolutional
layers.

The Long Short-Term Memory (LSTM) network
architecture is a frequently used variation of the re-
current neural network (RNN) structure. Hochre-
iter and Schmidhuber [36] presented LSTM to ad-
dress the vanishing gradient issue in long-term de-
pendency learning. LSTM utilizes memory cells with
three gates and parameters to describe long-range in-
terdependence in temporal sequences. These gates
regulate when states are modified, and previously hid-
den conditions are discarded, thereby governing the
memory cells’ overall functionality. The LSTM de-
sign employed in this investigation is shown in Fig.
7.

Fig.7: The LSTM architecture used in this work.

Schuster and Paliwal [37] proposed the Bidirec-
tional LSTM (BiLSTM) to expand the level of knowl-
edge provided in the LSTM network. The BiLSTM
is connected in two directions to two hidden layers.
This design will learn knowledge from both prior and
future sequences concurrently. Fig. 8 illustrates the
BiLSTM design used in this research.

Fig.8: The BiLSTM architecture used in this work.

While LSTM is considered to be a reasonable alter-
native to RNNs’ vanishing gradient challenge, the ar-
chitecture’s memory cells result in a rise in computa-
tional requirements. Cho et al. [38] published a paper
in 2014 introducing the gate recurrent unit (GRU)

network, a novel RNN-based model. The GRU is a
simplified view of the LSTM that lacks a dedicated
memory cell. A GRU network contains an update
and reset gate that manages the level of adjustment
of each hidden state. That is, it establishes which
awareness should be transmitted and which should
not. The GRU structure included in this study is
depicted in Fig. 9.

Fig.9: The GRU architecture used in this work.

One significant constraint of such a network is that
it is unidirectional. That is, besides the input data,
the output at a specific time step is determined solely
by the data contained in the input sequence in the
previous time step. Nevertheless, under certain cir-
cumstances, it could be advantageous to make fore-
casts by looking not only at the history but also at the
future. Alsarhan et al. [39] suggested a framework
for identifying human actions based on bidirectional
gated recurrent units (BiGRUs). The findings sug-
gest that using the BiGRU model to detect human
activity from sensor data is quite efficient. The Bi-
GRU structure used in this investigation is depicted
in Fig. 10.

Fig.10: The BiGRU architecture used in this work.

4.3 Experimental Findings

The purpose of this research was to determine
whether sensor-based FDS can be used to identify
fall actions using deep learning models. We gathered
ADLs and fall activities using three FDS datasets:
UpFall, SisFall, and UMAFall. Preprocessed ac-
celerometer and gyroscope data was used to train and
then analyze the trained deep learning models using
a 5-fold cross-validation procedure. Tables 3, 4, and
5 summarize the experimental findings using the Up-
Fall, SisFall, and UMAFall datasets, respectively.



FallNeXt: A Deep Residual Model based on Multi-Branch Aggregation for Sensor-based Fall Detection 359

4.4 Comparison of Results with Previous
Work

This section compares FallNeXt to earlier efforts
that have influenced the recommended network. Pre-
viously, ResNeXt [34] was suggested for image cate-
gorization, and the ResNeXt model is based on the
cross-layer link concept of ResNet and integrates the
VGG and Inception networks. FallNeXt is based on
the design concept of ResNeXt and is intended to
distinguish falls from other daily life activities for re-
liable fall detection with low-memory computing. To
assess the effectiveness of fall detection, we performed
further investigations using three data sets (UpFall,
SisFall, and UMAFall). In Table 6, the comparison
findings are shown.

5. RESEARCH DISCUSSION

This section discusses the enhancements to the rec-
ommended FallNeXt model. The obtained results are
compared utilizing three datasets depicted in Fig. 11,
Fig. 12, and Fig. 13.

5.1 Comparison Results with Baseline Models

The comparative results of the training parameters
of the deep learning models are illustrated in Fig. 14.
When considering the number of training parameters
used, notice that the FallNeXt model uses fewer pa-
rameters than all of the other deep learning models in
the experiment. These findings make it clear that the
proposed FallNeXt model is less complicated than the
other deep learning models and consumes less energy
when practically implemented.

Fig.11: Comparative results of deep learning models
using the UpFall dataset.

These comparative results indicate that the pro-
posed FallNeXt model achieved the highest accuracy
and F1-scores for the three datasets.

5.2 Fall Detection Performance of the Fall-
NeXt Model

In this part, we investigate the effect of the Fall-
NeXt model’s multi-branch aggregation. Considering

Fig.12: Comparative results of deep learning models
using the SisFall dataset.

Fig.13: Comparative results of deep learning models
using the UMAFall dataset.

Fig.14: Comparative results of training parameters
of deep learning models.

Fig.15: Confusion matrices of the FallNeXt based
on different datasets: (a) UpFall, (b) SisFll, and (c)
UMAFall.
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Table 3: Experimental result of deep learning models using the UpFall dataset

Model Parameter
Performance

Accuracy Loss F1-score
CNN 508,098 92.69% (±1.557%) 0.87 (±0.252) 91.70% (±1.962%)

LSTM 85,890 87.34% (±1.535%) 0.66 (±0.104) 85.94% (±1.743%)
BiLSTM 171,394 85.90% (±1.923%) 0.83 (±0.088) 84.22% (±2.170%)

GRU 68,994 86.41% (±0.960%) 0.98 (±0.092) 85.00% (±1.107%)
BiGRU 137,602 86.41% (±2.645%) 0.74 (±0.200) 84.81% (±3.095%)

FallNeXt 23,870 98.13% (±0.693%) 0.23 (±0.162) 97.92% (±0.775%)

Table 4: Experimental result of deep learning models using the SisFall dataset

Model Parameter
Performance

Accuracy Loss F1-score
CNN 2,018,754 94.17% (±0.063%) 0.28 (±0.137) 48.89% (±0.529%)

LSTM 26,754 97.13% (±0.145%) 0.11 (±0.008) 84.78% (±0.851%)
BiLSTM 171,394 97.61% (±0.326%) 0.12 (±0.023) 87.39% (±2.174%)

GRU 22,402 97.47% (±0.244%) 0.10 (±0.018) 86.64% (±1.732%)
BiGRU 137,602 98.30% (±0.317%) 0.08 (±0.022) 91.44% (±1.759%)

FallNeXt 23,870 99.16% (±0.133%) 0.04 (±0.012) 96.14% (±0.641%)

Table 5: Experimental result of deep learning models using the UMAFall dataset

Model Parameter
Performance

Accuracy Loss F1-score
CNN 33,474 97.84% (±0.324%) 0.14 (±0.034) 97.21% (±0.414%)

LSTM 102,786 97.69% (±0.496%) 0.09 (±0.015) 97.01% (±0.644%)
BiLSTM 205,186 97.85% (±0.185%) 0.08 (±0.011) 97.20% (±0.241%)

GRU 81,666 97.70% (±0.140%) 0.08 (±0.007) 97.01% (±0.184%)
BiGRU 162,946 97.91% (±0.231%) 0.07 (±0.006) 97.29% (±0.305%)

FallNeXt 26,972 99.12% (±0.197%) 0.07 (±0.015) 98.87% (±0.250%)

Table 6: Comparative results with the ResNeXt model

Dataset Model Parameter
Performance

Accuracy Loss F1-score

UpFall
ResNeXt 18,966,658 94.07% (±0.138%) 0.29 (±0.125) 94.41% (±0.177%)
FallNeXt 23,870 98.13% (±0.693%) 0.23(±0.162) 97.92% (±0.775%)

SisFall
ResNeXt 18,955,458 98.81% (±0.351%) 0.05 (±0.011) 94.39% (±1.611%)
FallNeXt 23,870 99.16% (±0.133%) 0.04(±0.012) 96.14% (±0.641%)

UMAFall
ResNeXt 18,957,954 93.75% (±1.883%) 0.19 (±0.048) 91.88% (±2.492%)
FallNeXt 26,972 99.12% (±0.197%) 0.07(±0.015) 98.87% (±0.250%)

the confusion matrices in Fig. 15, the findings reveal
that the proposed FallNeXt model performed well on
the three benchmark datasets, as indicated by its high
F1-scores.

To conduct a more in-depth analysis, we exam-
ined various samples for which FallNeXt generated
false-negative findings. We discovered that the sam-
ples consisted of data segments pertaining to transi-
tional behaviors, including a portion of fall activity.
As seen in Fig. 16, 3D-accelerometer data (displayed
in blue shading) and 3D-gyroscope data (displayed
in orange shading) had both stable and dynamic por-
tions within the same segment. These factors im-

peded FallNeXt’s ability to identify fall actions.

5.3 Complexity Analysis

We performed a complexity study of the proposed
FallNeXt model based on the analytical technique for
human activity recognition described in [40]. The
complexity of each model is measured by its memory
consumption, mean prediction time, and the number
of trainable parameters. The model was evaluated on
the three benchmark datasets (UpFall, SisFall, and
UMAFall) used in this study.
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Fig.16: Some samples that result in false negatives from different datasets: (a) UpFall, (b) SisFll, and (c)
UMAFall.

Fig.17: Mean prediction time in seconds of of the
FallNeXt model.

5.3.1 Memory Consumption

Considering contemporary wearable technologies,
memory usage is no longer a problem. Apple Watch
Series 7 and later models already have 1 GB of RAM,
whereas the Samsung Galaxy Watch 3 includes 1.5
GB of RAM. Consequently, designing smartphone or
wristwatch applications to use FDS machine learning
should not provide complications. If we were to create
our own wearable device, memory usage would be
more vital if we wanted to reduce the size of the

hardware or enhance power consumption. As sug-
gested in [40], the FallNeXt model is implemented on
an iPhone XR using the Tensorflow Lite platform to
monitor and compare the memory utilization in this
study. Using an Xcode debug session, the memory
utilization of each model can be estimated. Fig. 17
depicts the data obtained from monitoring memory
utilization.

Based on the comparative findings in Fig. 17, Fall-
NeXt uses less than 0.5 MB of RAM while processing
the three datasets. The memory usage reveals that
the FallNeXt model requires less than 1 MB of mem-
ory use to function on wearable devices.

5.3.2 Prediction Time

We continued comparing complexity and mean
prediction time for efficiency purposes. To obtain the
mean prediction, a series of test data samples were in-
put into the Tensorflow Lite models, which were then
averaged to determine the mean prediction time.

The research findings are shown in Fig. 18 as
the mean prediction time in seconds for one window

Fig.18: Mean prediction time in seconds of of the
FallNeXt model.

processed by the deep learning models on the three
datasets. It can be seen that FallNeXt requires 0.12
to 0.38 seconds to produce a forecast.

5.3.3 Trainable Parameters

Considering memory usage and mean prediction
time, we can examine our third model complexity in-
dicator: the number of trainable parameters. A stan-
dard statistical indicator for deep neural networks is
the number of trainable parameters. Each parame-
ter’s weight can be learned throughout model train-
ing, indicating one trainable parameter. The more
parameters a deep learning network maintains, the
more detailed data it can describe. However, it is
more likely to overfit the training data if it is not
very complicated.

Fig. 14 displays the findings of the trainable pa-
rameters of FallNeXt presented in this study. The
values could be derived from the model summary of
many tests using distinct HAR benchmark datasets.
The findings demonstrate that FallNeXt has a sub-
stantially lower number of parameters than other
deep learning models.

6. CONCLUSION AND FUTURE WORK

We proposed a deep learning network that is based
on wearable sensor information and compared it to
other networks in this research. The exploratory re-
sults indicate that the proposed FallNeXt network
surpassed other benchmark models (CNN, LSTM,
BiLSTM, GRU, and BiGRU). On the UpFall, Sis-
Fall, and UMAFall datasets, the proposed model had
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identification accuracy rates of 98.13%, 99.16%, and
99.12%, respectively. The advantage of the FallNeXt
model is its compact but highly effective model size
for fall detection. It can potentially run on various
wearable devices.

For future work, we plan to develop a multimodal
fall detection system to detect falls and emit real-
time alerts on wearable devices such as smartphones
or smartwatches. We also plan to gather additional
data on elderly falls and further train the network
systems to enhance performance.
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