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ABSTRACT Article information:
In scheduling algorithms based on the Rate Monotonic (RM) method
which are widely used in development of real-time systems, tasks with
shorter periods have higher priorities. In contrast, ones with longer pe-
riods are likely to su�er from increased response times and jitter due to
their lower priorities. We propose an Execution Right Delegation (ERD)
method based on RM where a high-priority server for particular (or im-
portant) task is introduced to shorten response time and jitter of the task.
In the evaluation, it is con�rmed that response times and jitter of a partic-
ular (important) task are reduced. We also show Response Time Analysis
(RTA), which assures worst-case response time of the task. This paper
shows the algorithm and RTA of ERD and evaluates it by comparing it
to a Deadline Monotonic method. The evaluation by simulation shows
that ERD can reduce the average worst-case response time by 13.45% at
maximum compared to the Deadline Monotonic scheduling. In addition,
we con�rm that the RTA provides a worst-case response time close to the
simulation results.
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1. INTRODUCTION

The main purpose of real-time scheduling algo-
rithms is to achieve optimal scheduling for tasks
which have periodic execution times and/or dead-
lines. It is important for the algorithms to not only
meet the deadline of each task but also to shorten
its response time and jitter. For periodic task sets,
there are two categories in scheduling algorithms; one
is Rate Monotonic (RM) for static priority and the
other is Earliest Deadline First (EDF) for dynamic
priority [1]. EDF has the advantage of high CPU uti-
lization, while RM causes less runtime overhead and
has predictable behavior. In addition, RM is easy
to realize on static-priority-based real-time operating
systems (RTOSs) such as ITRON [2], by associat-
ing tasks' priorities with their periods. As a result,
scheduling algorithms based on the RM method are
widely used in development of real-time systems.

In RM, tasks with shorter periods have higher pri-
orities. In contrast, ones with longer periods are likely
to su�er from increased response times and jitter due

to their lower priorities. In this paper, we propose an
Execution Right Delegation (ERD) method based on
RM where a high-priority server for a particular (or
important) task3 is introduced to shorten response
time and jitter. We also show Response Time Analy-
sis (RTA), which gives the worst case response time
(WCRT) of ERD.

This paper consists of six sections. Section 2 de-
scribes related work in terms of real-time schedul-
ing algorithms and response time analysis. Section 3
proves several theorems and lemmas and shows the
algorithm of our ERD method. Section 4 proposes
RTA of ERD. An evaluation of the proposed method
is shown in Section 5. Finally, Section 6 concludes
the paper.

2. RELATED WORK

2.1 Scheduling Algorithms

In the RM model, task τi,(1≤i≤n) releases an in�-
nite sequence of Jobs. Once a Job is released, it runs
during the de�ned time Ci. A Job is released ev-

1,2The authors are with Japan Advanced Institute of Science and Technology, Tokyo/Ishikawa, Japan, Email: hal-
suzuki@jaist.ac.jp and kiyofumi@jaist.ac.jp
3We assume the particular task has relatively lower priority due to its longer period. For example, for CAN messages in inte-

grated ECUs, control messages have a shorter period, but noti�cation messages have a longer period. However, some noti�cation
messages are urgent and must receive a higher priority (e.g. warning lamp, low fuel).
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ery period Ti. Notation of a task is τi = (Ci, Ti).
A set of tasks is denoted as Γ = {τ1, τ2, ..., τn},
where the smaller the subscript �gure a task has, the
shorter the period and the higher priority it has (i.e.
T1 ≤ T2 ≤ ... ≤ Tn). A deadline miss occurs if a Job
does not �nish by the next task release.

The Deadline Monotonic (DM) [3] model includes
relative deadline Di in addition to period Ti and exe-
cution time Ci. It is another scheduling algorithm.
The shorter the relative deadline of a task is, the
higher its priority is. As priority is determined by
deadline independent of a period, the response time
and jitter of a task with a longer period can be short-
ened by assigning a short deadline.

There are several �xed-priority server algorithms
for shortening response times of particular aperiodic
tasks. Deferrable Server (DS) [4] and Priority Ex-
change (PE) [4] are representatives. Servers in these
algorithms have a period and a capacity which corre-
sponds to execution time. The servers are scheduled
along with a set of periodic tasks while their capacity
is consumed for execution of aperiodic tasks. In these
algorithms, the server period and capacity are de-
cided according to processor utilization of the whole
periodic task set, where the importance of a partic-
ular periodic task is not considered. On the other
hand, the method proposed in this paper obtains and
uses the period and the capacity in favor of a partic-
ular (important) periodic task, although the server
algorithm is basically PE.

Extended Priority Exchange (EPE) [5] does not
involve a server. Instead, execution time of each task
is overestimated. The unused part of the overestima-
tion is exploited as capacity for aperiodic tasks. It
can be regarded as padding a bandwidth for aperi-
odic tasks into the other tasks' execution time. Dual
Priority (DP) [6] is another approach. In contrast to
RM, this algorithm assumes that each task is assigned
two priorities. A periodic task has two priorities, low
and high, and an aperiodic task has middle priority.
After a periodic task is released, it starts to run at
the low priority for a while. The aim of DP is to
treat aperiodic tasks preferentially by delaying peri-
odic tasks as late as possible while meeting all the
deadlines. Zero Slack Scheduling [7] is for a model of
mixed-criticality systems. In this model, one system
contains tasks with di�erent degrees of importance.
A task has criticality as well as a conventional prior-
ity. A task runs in a normal mode unless it is urgent.
However, it switches to a critical mode at some point
to keep schedulability.

2.2 Priority Assignment

The aim of ERD is to shorten response time of
an important task regardless of its period. In or-
der to assign priority to the task regardless of the
period, Leung and Whitehead generalized that DM
priority assignment is optimal for synchronous pe-
riodic task sets (without phases) with constrained
deadlines [8]. In some di�erent system models (e.g.,
tasks with phases, tasks with arbitrary deadlines,
non-preemptive scheduling), it is known that DM is
not optimal [9].

2.3 Response Time Analysis

There is a classical method to judge whether a task
set is schedulable or not. Liu et al. [1] proposed
a schedulability test by calculating processor utiliza-
tion by all tasks and comparing it with the least up-
per bound for the task set. This test provides only
a su�cient condition, which leaves the estimate pes-
simistic. Bini et al. proposed a polynomial-time and
less-pessimistic way [10].

Response Time Analysis (RTA) [11] provides a
necessary and su�cient condition of schedulability for
RM, which is de�ned as follows:
De�nition 1 (Response Time Analysis (RTA) [11]
of RM). In �xed-priority scheduling, the longest re-
sponse time4, Ri, of task τi is computed as1:

Ri = Ci +

i−1∑
j=1

dRi

Tj
eCj . (1)

Ri appears on both sides. Thus, Ri is calculated
by setting an appropriate value (e.g. Ci) as the initial
value to Ri and increasing Ri until both sides become
equal.

Several RTA methods for multiprocessor system
are proposed. Bertogna et al. proposed RTA for
global �xed-priority multiprocessor scheduling [13].
Compared with single processor RTA, multiproces-
sor RTA provides only a su�cient condition with its
pessimism. In the method, interference time, which is
a total amount of time that higher priority tasks pre-
vent a certain task from working, is introduced. Guan
et al. improved Bertogna's method by limiting carry-
in load, a part of interference time, of higher priority
tasks (RTALC) [14]. Sun et al. revised RTA_LC to
reduce its pessimism. The method provides a more
accurate result [15]. They applied schedulability test
for a multiprocessor partitioned schedule by the RTA
[16]. Zhou et al. showed RTA for a model where
a task has a non-preemptive point under multipro-
cessor global scheduling [17]. As mentioned above,
there are various RTAs dedicated to speci�c models
or di�erent systems.

4 If the �rst jobs of all tasks are released simultaneously at the instant t = 0, response time of each task becomes the worst-case
for the corresponding task (Critical Instant [1]).
The smaller the subscript a task has, the shorter the period and the higher priority it has. That is, for τi and τj , if i < j, τi has
higher priority than τj .
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Coutinho et al. showed another approach for the
model of asynchronous periodic and sporadic tasks
for a single processor5[12]. The approaches men-
tioned above are calculating maximum interference
time from higher priority tasks under a pessimistic
situation. Coutinho's approach is calculating inter-
ference time between the job's release time and the
job's response time, in the same way as multipro-
cessor RTA. This checking is done until hyperperiod
(LCM(T1, T2, ..., Tn−1)). They reduce pessimism of
the algorithm while calculation time easily explodes
due to it's requirement of LCM of tasks' periods.

2.4 Reducing Jitter

In a real-time system, especially in closed-loop con-
trol systems which operate sampling/sensing and ac-
tuating, it is required to reduce not only response
time but also jitter [18]. In order to reduce jitter,
several methods were studied [19] [20] and evaluated
[21]. In this paper, relative �nishing jitter (RFJ) and
absolute �nishing jitter (AFJ) are evaluated by using
the following de�nitions:

RFJi = max
k
|(fi,k − ri,k)− (fi,k−1 − ri,k−1)| (2)

AFJi = max
k

(fi,k − ri,k)−min
k

(fi,k − ri,k). (3)

where ri,k is the release time of τi's kth job and fi,k
is the �nishing time of τi's kth job.

3. EXECUTION RIGHT DELEGATION
(ERD)

3.1 System Model and Theorems

The target system model of this study is single
processor �xed task priority. ERD assumes that each
task has periodic execution time, and that the dead-
line is equal to its period. A task does not have a
phase, which means that the �rst job is released at
t = 0. The scheduling rule follows RM except for a
particular (target) task to which the proposed virtual
server (VS) is applied.

First, we describe theorems and lemmas as well as
de�nitions underlying ERD. Based on these, a virtual
server VS is introduced into a task set.

Theorem 1 (Schedulability Analysis [11]). For each
task τi in a task set Γ, if Ri is equal to or less than
Ti, Γ is schedulable.

De�nition 2 (Assigning Priority to a Task). In the
proposed method, in addition to the priority assign-
ment of RM, a particular (e.g. important) task can
be assigned priority independent of its period.

Lemma 1 (Exchanging Priorities between Tasks).

Assume that a schedulable task set Γ includes τp and
τh and that the priority of τh is higher by one than
that of τp. Let Γ′ be a task set in which the priorities
of τp and τh are exchanged while the other tasks have
the same priority as in Γ. It is schedulable if Rp is
equal to or less than Th.

Proof. From Theorem 1, schedulability for Γ′ is guar-
anteed by con�rming that every task meets its dead-
line (R′i ≤ Ti). (From this point forward, symbols
with a prime mark, like R′i, denote tasks in Γ′.)

First, Γ is divided into three sets, Γhigh, {τh, τp},
and Γlow, so that priorities of tasks in Γhigh are higher
than that of τh and those in Γlow are lower than that
of τp.

Response time of any task, τhigh, in Γhigh is not af-
fected by exchanging the priorities of τh and τp since
the priority exchange between tasks with lower pri-
orities than τhigh can change scheduling only after
completion of τhigh's �rst job. Similarly, for any task,
τlow, in Γlow, its response time is not a�ected, since
the instant when the right of execution is given to τlow
is not changed by exchanging the execution order of
higher tasks.

The response time of τp does not increase since
its priority is higher than it was before the exchange.
Since Rp ≤ Th, Th ≤ Tp, and R

′
p < Rp, R

′
p ≤ Tp, the

deadline constraint is met.

Next, consider τh in two cases; τp or τh is blocked
by jobs in Γhigh, or they are not blocked. For the
not-blocked case, let sh and sp be start times of Jobs
of τh and τp (before changing priority), respectively.
Then the response time of each task is given as:

Rh = sh + Ch, Rp = sp + Cp.

Letting s′p and s
′
h be the start times of Jobs of τp and

τh, respectively. After the priority exchange, their
response times, R′p and R′h, become:

R′p = s′p + Cp, R′h = s′h + Ch.

sp is equal to Rh (sp = Rh) since neither τh nor τp is
blocked by Jobs in Γhigh and Job of τp starts imme-
diately when τh's Job �nishes. This is the case after
the priority exchange, that is, s′h = R′p. In addition,
obviously, s′p is the same as sh. Then, R′h becomes
equal to Rp as follows:

5If release time/o�set/phase is introduced to the model, WCRT is unknown as is the case in multiprocessor WCRT.
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R′h = s′h + Ch

= R′p + Ch

= s′p + Cp + Ch

= sh + Cp + Ch

= Rh + Cp

= sp + Cp

= Rp

From the prerequisite Rp ≤ Th, it turns out to be
R′h ≤ Th. Thus, the deadline requirement is satis�ed.
Fig 1 and Fig 2 show examples of the case in

which tasks in Γhigh do not block τh or τp.

Fig.1: Not blocked by Γhigh (before exchanging pri-
orities).

Fig.2: Not blocked by Γhigh (after exchanging pri-
orities).

Next, consider the other case in which τp or τh is
blocked by new Jobs of tasks in Γhigh which are re-
leased before Th. From the prerequisite that τh and
τp �nish their jobs by the instant Th, BT , blocking
time of τh's and τp' s job after sh, has the following
upper bound:

BT ≤ Th − sh − (Ch + Cp) (4)

Rp is given as:

Rp = sh + Ch + Cp +BT.

After exchanging priorities, R′h is:

R′h = s′p + Cp + Ch +BT.

With s′p = sh and by moving BT to the left side:

BT = R′h − sh − Cp − Ch.

By expanding BT in (4):

R′h − sh − Cp − Ch ≤ Th − sh − (Ch + Cp)

R′h ≤ Th − sh − (Ch + Cp) +

sh + Cp + Ch

R′h ≤ Th.

Thus, the deadline constraint is satis�ed. 2

Examples of this case are shown in Fig 3 and Fig
4.

Fig.3: Blocked by Γhgih (before exchanging prior-
ity).

Fig.4: Blocked by Γhgih (after exchanging priority).

Theorem 2 (Changing Priorities of Tasks). Assume
that a schedulable task set Γ includes τp and τh and
that the priority of τh is higher than that of τp. Let
Γ′ be a task set in which the priority of τp is changed
to be higher than τh while the other tasks have the
same priority as in Γ. It is schedulable if Rp is equal
to or less than Th

6

Proof. For periods of tasks, τh, τh+1, τh+2, ..., and
τp−1, the following condition is satis�ed:

Th ≤ Th+1 ≤ Th+2 ≤ ... ≤ Tp−1

From the prerequisite, Rp ≤ Th, and the above con-
dition, the following condition is satis�ed.

6 In Lemma 1, there are no other tasks between τp and τh. This theorem relaxes the restriction.
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Rp ≤ Th ≤ Th+1 ≤ Th+2 ≤ ... ≤ Tp−1

Here, focusing on τp−1 whose priority is higher by one
than τp, a task set in which priorities of τp and τp−1
are exchanged is schedulable from Lemma 1. In the
same way, priorities of τp and τp−2 are exchangeable.
This is repeated until the priority exchange is done
between τp and τh. 2

De�nition 3 (Idle Time) Idle Time is a period in
which any task's job is not executed. idle(t) gives the
total amount of idle time between 0 and the instant
t.

Example 1 (Idle Time). In Fig5, idle(4) = 1 and
idle(6) = 2.

Fig.5: idle(t).

Lemma 2 (Idle Time and Completion of Job). The
�rst jobs of all tasks in Γ �nish by the instant t if
idle(t) > 0.

Proof. In �xed priority scheduling, the highest-
priority job is necessarily scheduled if there exist
released jobs in a ready state. Thus, it turns out that
no job exists during an Idle Time. Therefore, the
�rst job of each task has �nished execution by t (or
by the �rst Idle Time). 2

Lemma 3 (Adding an Idle Task). If there exists
Idle Time between 0 and τh's period Th, adding a
new task τidle, whose execution time is idle(Th)7 and
whose period is Th, to Γ leaves the new task set
schedulable.

Proof. Γ is divided into two sets, Γhigh =
{τ1, τ2, ..., τh−1} and Γlow = {τh, τh+1, τh+2, ..., τn}.
Any task in Γhigh has a period equal to or shorter
than Th. On the other hand, any task, except τh, in
Γlow has a period equal to or longer than Th. For
tasks in Γhigh, through the same discussion as in the
proof for lemma 1, their feasibility is not a�ected. For

τidle, the deadline requirement is met since its job's
response time clearly becomes equal to or less than
Th. Therefore, it is su�cient to con�rm the schedu-
lability for Γlow.

Focusing on the lowest-priority task τn in Γlow, the
response time Rn of the �rst job of τn and Th have
the following relationship:

Rn + idle(Th) +BT = Th (5)

Here, BT is the sum of time duration when the sec-
ond or subsequent jobs of tasks in Γhigh are scheduled
from the instant Rn to Th. Let R′n be the response
time of τn's job after adding τidle = (idle(Th), Th) to
Γ. τidle releases its job only once from 0 to Th and
interferes with τn by idle(Th).

From lemma 2, before adding τidle to Γ, all jobs
�nish the execution by the instant Th. At the instant
Th after adding τidle, tasks in Γhigh have �nished their
�rst job since addition of τidle does not a�ect Γhigh.
Thus, the maximum interference in τn by adding τidle
is idle(Th) mentioned above and the total amount of
execution time of the second or subsequent jobs of
Γhigh's tasks before Th

8 is just BT . Therefore, R′n
has the following upper bound.

R′n ≤ Rn + idle(Th) +BT (6)

From equations (5) and (6):

R′n ≤ Rn + idle(Th) +BT

= Rn + idle(Th) + Th −Rn − idle(Th)

= Th.

From Th ≤ Tn, R
′
n ≤ Th ≤ Tn so that τn meets its

deadline constraint.

For tasks in Γlow after adding τidle, the response
times and periods satisfy the following condition:

R′h ≤ R′h+1 ≤ ... ≤ R′n ≤ Th ≤ Th+1,≤ ... ≤ Tn

Therefore, by theorem 1, all tasks in Γlow meet their
deadlines after τidle is added. 2

Example 2 (Addition of τidle). Fig6 shows an ex-
ample of adding τidle to Fig 5, where τh = τ2 and
Th = T2 = 6.

7 In this case, a relative time duration, e.g., Th, is regarded as a time instant (t = Th).
8 The reason for 'maximum' is simple. Suppose Th = T3(= 7) and τn = τ3 in Fig 5. In that case, BT = 2, since the second

jobs of τ1 and τ2 are scheduled before the instant Th. After adding τidle, τn is not a�ected by τ2's second job, and �nally
R′

n = 6(< 7) is given.
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Fig.6: Addition of τidle.

3.2 Execution Right Delegation (ERD)

ERD is a method to shorten response time and jit-
ter of a particular (or important) task, τp, in a task
set by using a high-priority virtual server, VS, which
has capacity of Cs and period of Ts while meeting the
deadline constraints of the task set. We assume τp
has a relatively lower priority due to its longer period.
By making the priority of VS high with short Ts, τp
can be executed at the high priority while consuming
Cs. The basic behavior of VS is from PE [4].

De�nition 4 (Delegation of Execution Right). In
the ERD method, VS is scheduled based on an RM
rule. When VS is given the execution right, a partic-
ular periodic task, τp, is executed instead of VS. This
situation is called Delegation of Execution Right. If
Job of τp has already �nished when the execution right
is available, the behavior follows PE rule [4] where
jobs of the other tasks are executed while the server
capacity is accumulated at the priority level of the
running job.

Next, the following de�nition gives the algorithm
for �nding Cs and Ts.

De�nition 5 (Candidates of VS). Let Γ be a schedu-
lable task set and τp in Γ be a particular task whose
response time and jitter should be shortened. Then,
RTA in De�nition 1 is applied to τ1, ..., and τp. From
the relationship between Rp and T1, ..., Tp−1, Cs and
Ts for VS are obtained as follows:

Cs =

{
Cp, if Rp ≤ Tp−1 (7)

idle′(Ts), otherwise (8)

Ts =

{
Th, if Rp ≤ Tp−1 (9)

t ∈ Ψ, otherwise (10)

where

Ψ = {T1, T2, ..., Tp−1}
Th = min( {t | t ∈ Ψ, Rp ≤ t} )

idle′(t) = t−
p−1∑
j=1

d t
Tj
eCj (t ∈ Ψ)

VS derived by the equations (7) and (9) makes it
possible for τp to be executed at the same priority
as a higher priority task. Fig 7 shows an example.
Since Rp � T1 but Rp ≤ T2, VS = (Cp, T2) = (1, 6).

Theorem 3 (Schedulability with VS (Exchange of
Priority)). Let Γ be a schedulable task set and Γ′ be
the new task set which is derived by applying equa-
tions (7) and (9) to change the priorities of τp and
τh which has higher priority than τp in Γ. Then, Γ′

is schedulable.

Proof. Since Rp ≤ Th, theorem 2 guarantees that Γ′

is schedulable. 2

Fig.7: Example of Rp ≤ Tp−1.

The following gives a scheduling example with VS
derived from equations (7) and (9).

Example 3 (ERD method - 1). With Γ =
{(2, 4), (3, 12), (3, 14)} and τp = τ3, RTA gives re-
sponse times of the three tasks as R1 = 2, R2 = 7,
and R3 = 12. Since R3 ≤ T2(= 12), equations (7)
and (9) o�er VS = (3, 12).

Scheduling results by RM and ERD are shown
in Fig 8 and Fig 9, respectively. At the instants
t = 2, 3, and 6, delegation of execution right can be
con�rmed. In this example, ERD improves response
time of τ3 from 12 to 79.

9 Strictly speaking, ERD does not improve response time of τ3 but τ3's �rst job. We discuss this problem in the next section.
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Fig.8: Schedule by RM for Γ =
{(2, 4), (3, 12), (3, 14)}.

Fig.9: Schedule by ERD.

As for VS provided by the equations (8) and
(10), more than one candidate can exist. Ψ =
{T1, T2, ...Tp−1} is a set of periods which are shorter
than Tp, and idle

′(Ti) gives the length during which
τp is executed. (Note that idle() in De�nition 3.1and
idle′() in De�nition 3 are di�erent. While the former
gives the sum of all idle times before any instant t,
the latter means, in each period in Ψ, the sum of time
slots during which any task in τ1, ..., τp−1 is not exe-
cuted but τp is executed due to Rp > Tp−1.) Fig 10
shows an example. With Ψ = {T1(= 4), T2(= 6)},
idle′(4) = 1 and idle′(6) = 2, two candidates for VS
are derived: (1, 4) and (2, 6).

Using VS from (8) and (10), the �rst job of τp
is necessarily preempted by the other tasks and the
execution is split. For example, in Fig 10 , when
V S = (1, 4) is used, the �rst part of τp's job would
be executed at the highest priority. In this case, al-
though VS does not shorten response time, it can con-
tribute to reducing jitters in practice if an important
part of the job (e.g. polling sensors) is located in the
�rst half of the task program code. In addition, a job
does not spend its worst-case execution time in most
practical situations. If the actual execution time is
less than or equal to the server capacity, the response
time is expected to be substantially shortened.
Theorem 4 (Schedulability with VS (Split of Job)).
With a schedulable task set Γ, τp whose execution is
split by VS derived from equations (8) and (10) meets
its deadline constraint, and the new task set Γ′ with
VS is schedulable.
Proof. After introducing VS, schedulability for
Γhigh = {τ1, τ2, ..., τp−1}, where each element has
higher priority than τp, and that for Γlow =
{τp+1, ..., τn}, which includes lower priority tasks
than τp, are shown along with the feasibility of τp.

For the job of τp, let τps be the part executed by

VS and τpo be the remaining part. Note that if the
whole job is accommodated by VS, τpo does not exist.
Obviously, early completion of a part of a job does not
extend the response time. Thus, τpo meets its dead-
line constraint since it is included in the schedulable
task set, Γ.

Next, it is shown that τps does not a�ect the
schedulability of Γhigh. The existence of VS means a
positive idle time (idle′(Tp)) exists at the instant Tp.
By lemma 3, addition of τidle leaves Γhigh schedula-
ble. Since τidle can be represented (or replaced) by
VS, or τps, Γhigh is schedulable.

For Γlow, similar to the discussion in the
proof for lemma 1, exchange of the execution or-
der among higher priority tasks than Γlow does
not change the instant when the right of execu-
tion is given to Γlow. Thus, Γlow is schedula-
ble. 2

Fig.10: Example in case of Rp > Tp−1.

Fig.11: Schedule by RM for Γ =
{(1, 5), (1, 6), (2, 8), (4, 14)}.

Fig.12: Schedule by ERD with VS1 for Γ.

Example 4 (ERD method - 2) With Γ =
{(1, 5), (1, 6), (2, 8), (4, 14)} and τp = τ4, RTA gives
R1 = 1, R2 = 2, R3 = 4, and R4 = 14 (Fig 11)
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VS is given by equations (8) and (10) since R4 >
T3. With Ψ = {T1, T2, T3}, idle′(Ti) is calculated for
each period. Since idle′(T1) = 1, VS1 = (1, 5) is de-
rived. With VS1, R

′
4 = 14, which does not shorten

response time (Fig 12). Similarly, VS2 = (1, 6) is
obtained from idle′(T2) = 1. However, VS2 still gives
R′4 = 14.

Then, from idle′(T3) = 2, VS3 = (2, 8) is derived
and found to give R′4 = 10 (Fig 13) Finally, the re-
sults of VS1, VS2, and VS3 are compared and VS3
is chosen as VS because of the shortest response time
for τ4.

Fig.13: Schedule by ERD with VS3 for Γ.

It is worth noting that Deadline Monotonic
scheduling does not shorten the response time of τ4
with the above Γ. DM is e�ective only when the rela-
tive deadline of τ4 can be made less than or equal to
the deadline of a higher-priority task. However, for Γ
in this example, if the deadline is set to be less than
or equal to T3, τ3's job misses its deadline.

The following theorem and de�nition bring more
improvement in response time.

Theorem 5 (Recursive Application of VS). If the
response time of τp is still equal to or less than Th−1
after VS is applied, de�nition 5 can be applied again
and new VS′ can be obtained. This is done recursively
until the response time becomes longer than Th−1.

Proof. By theorem 3, Γ′ = {τ1, τ2, ..., τh−1,
VS, τh, ..., τp−1, τp+1, ...} is a schedulable task set.
Thus, de�nition 5 provides new VS′ and a new
schedulable task set Γ′′ as a result of applying
VS′. 2

De�nition 6 (Shortening Period of VS). If V S ob-
tained by equations (7) and (9) results in Rp ≤ T1,
Ts can be Cp (i.e. VS = {Cp, Cp})10 .

The ERD method can underutilize server's capac-
ity and fail to delegate the execution correctly when
Tp and Ts are not synchronized (Section 4.4 discusses
the details). This does not happen when de�nition 6
can be applied.

Fig.14: Schedule by RM for Γ =
{(2, 5), (2, 8), (2, 10))}.

Fig.15: Schedule by ERD.

Example 5 (ERD method - 3).For Γ =
{(2, 5), (2, 8), (2, 10)} and τp = τ3, RTA leads to
R1 = 2, R2 = 4, and R3 = 8. From R3 ≤ T2(= 8),
VS = {2, 8} is obtained from the equations (7) and
(9). Fig 14 and Fig 15 show results of scheduling
by RM and ERD, respectively.

As a result of scheduling by the ERD method,
R′1 = 2, R′2 = 8, R′3 = 4, and R′p ≤ T1(= 5). In

addition to obtaining new server VS′ = (2, 5) by the-
orem 5, it is con�rmed that Rp ≤ T1, which leads to
VS′ = (2, 2) by de�nition 6. The result of scheduling
with VS′ is shown in Fig 16.

Fig.16: Schedule by ERD (applying theorem 5 and
de�nition 6).

4. RTA OF ERD

This section provides response time analysis (RTA)
of ERD.

10The apparent CPU utilization of 100% does not spoil the schedulability, since VS only delegates its capacity to a particular
task.
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4.1 Interference Time

In the previous section, we reviewed several exam-
ples in which response time of a speci�c task τp is
shortened in the scheduling chart. In other words, it
was no more than simulation-based con�rmation. In
this section, WCRT is provided from a mathemati-
cal perspective. In the model of single processor RM,
WCRT of a task is equal to the response time of its
�rst released job. On the other hand, as in multipro-
cessor scheduling, τp's WCRT is unknown in ERD.
In some cases, τp's �rst job's response time becomes
its WCRT like the examples in the previous section.
However, Fig 17 shows the second job's response
time is longer than the �rst job's one.

Fig.17: Second Job has longer response time.

Then, it is required to build RTA of ERD. Let
RRM

i be a WCRT of τi in RM scheduling, and RERD
i

be a WCRT of τi in ERD scheduling.
De�nition 7 (τvs and τh) τvs is a task whose period
is the same as VS and whose priority is treated as
being lower than VS. τh is a task whose priority is
higher than τp but excludes τvs.
τ2 in Fig 9, τ1 in Fig 12, and τ3 in Fig 13 are

τvs.
Lemma 4 (Upper bound of WCRT in ERD). For τp,
RERD

p ≤ RRM
p .

Proof. In the ERD method, τp can be executed if
VS whose priority is higher than τp has execution
right. As a result, τp's execution is advanced. Oth-
erwise, τp is scheduled according to the same rule as
the RM method. Therefore, the response time can be
no longer than that in the RM method. 2

Theorem 6 (WCRT of High Priority Task). A task
subset Γhp consists of tasks whose priority is higher
than τp. For any τi ∈ Γhp(i < p), a response time of
τi's �rst job exhibits RERD

i .

Proof. For τi, VS can be regarded as a task with ex-
ecution time Cs and period Ts. Let VS be appended
as a periodic task to Γhp, and make a task set Γhp′ .
After scheduling Γhp′ with RM rule, WCRT of τi can
be retrieved from De�nition 2.3. 2

De�nition 8(Interference Time). Interference time
IERD
i is the maximum time during which some
higher-priority task τi a�ects response time of τp
under ERD scheduling. IRM

i is the case under RM

scheduling and calculated as IRM
i = dR

RM
p

Ti
eCi.

Lemma 5 (Upper bound of Interference Time of τh).
For τh ∈ Γhp(h < p, h 6= vs), IERD

h ≤ IRM
h .

Proof. From a contribution of VS, IERD
h ≤

dR
ERD
p

Th
eCh. From Lemma 4, dR

ERD
p

Th
eCh ≤

dR
RM
p

Th
eCh = IRM

h . Thus, IERD
h ≤ IRM

h .
2

Now that we have obtained an upper bound of in-
terference time of τh, with regards to the estimate
of interference time of τvs, we start a method based
on Bertogna's way [13]. We focus on the interfer-
ence time while a task τvs with higher priority than
τp operates in an interval L. L is divided into 3 sub
intervals (Fig 18): Lbody is the interval consisting of
τvs's successive periods which are totally included in
L. Lcarry_in, or Lcin is the interval between the be-
ginning of L and the beginning of Lbody. Lcarry_out,
or Lco is the interval between the end of Lbody and
the end of L. Similar to the single processor RTA in
De�nition 1, ERD RTA repeats the calculations so
that the right and left sides get equal. Let the ini-
tial value of L be the response time of τp in the RM
method.

L = RRM
p (11)

Now we consider values for Lcin, Lbody, and Lco

that maximize an interference time of τvs. There are
two cases in which the interference time is maximized:
L starts at the time when the job of τvs starts execut-
ing, and the job �nishes at the end of L. The same
discussion can be made for both cases. We choose the
former case here.

Fig.18: Body, Carried-in and Carried-out jobs.

In the interval Lcin, in order to maximize inter-
ference time of τvs, the whole job is required to be
executed. On the other hand, in order to maximize
the length of Lbody plus Lco, Lcin must be minimized.
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Such an Lcin is calculated as:

Lcin = Tvs −RERD
vs + Cvs, (12)

where RERD
vs is derived from Theorem 6. With Lcin,

Lbody and Lco are:

nbody = bL− Lcin

Tvs
c

Lbody = nbody × Tvs
Lco = L− (Lcin + Lbody).

Thus, the execution times, cin and body, of τvs's jobs
in the intervals Lcin and Lbody, respectively, are cal-
culated as follows:

cin = Cvs

body = nbody × Cvs

Lemma 6 (Carried-out job of τvs) Upper bound of
the execution time, co, of τvs's job in the interval Lco

is calculated as follows:

co = min(max(Lco − Cs, 0), Cvs)

Proof. From De�nition 7, τvs's priority is evidently
lower than VS and its period is the same as VS. That
is, at the release instant of τvs's job, VS is ready to
execute. If there is no higher priority task's job than
VS, τp's job is executed. In the case that a higher
priority task's job is released, that job is executed.
In any case, τvs's job must wait for Cs, since τp's job
does not �nish before the end of L. 2

Lemma 7 (Interference Time of ERD). Interference
Time IERD

i of τi during an interval L is calculated
as follows.

IERD
i =

{
cin+ body + co if τi = τvs (13)

IRM
i otherwise (14)

Proof.By Lemmas 5, 6 and the discussion in this sec-
tion. 2

4.2 Reducing Carry-in

The discussion in the previous subsection supposes
that, in an interval L, the interference time to τp is
the maximum one. Thus, the response time of τp is
to be pessimistic. In regard to τvs's carry-in job, we
consider whether it is possible to be shorten it or not.
First, focus on the interval L′ which is τp's period im-
mediately before L (Fig 19).

Fig.19: Body, Carried-in and Carried-out length in
L'.

Each sub interval of L′ is calculated as follows:

L′ = Tp

L′co = Tvs − Lcin

nbody′ = bL
′ − L′co
Tvs

c

L′body = nbody′ × Tvs
L′cin = L′ − (L′co + L′body)

Thus, co′, body′, and cin′ are as follows:

co′ = 0

body′ = nbody′ × Cvs

cin′ = min(max(L′cin − Tvs +RERD
vs , 0), Cvs)

Let empty(l) be an idle/empty time in the interval
l. Intuitively, l minus the sum of Cp and the inter-
ference time of all tasks of higher priority than τp
is idle/empty time. If there is idle/empty time, it
means there is room to advance the carry-in job of
τvs in Lcin. Then, we calculate empty time in the
interval L′ as follows:

empty(L′) = max(L′ − (cin′ + body′ + co′)−

Cp −
p−1∑

j=1,j 6=vs

IERD
j , 0)

empty(L′) is the amount of time by which the carry-
in job is advanced. That is, a part of the carry-in
job in Lcin is moved to L′co. Then, we update the
execution time of the carry-in job as ncin.

ncin = cin− empty(L′)

Compared to the formula (12), Lcin of interval L can
be reduced as follows:

Lcin = Tvs −RERD
vs + ncin

We can replace cin and Lcin in the formulas in the
previous subsection by ncin and the reduced Lcin, re-
spectively, and therefore can alleviate the pessimism
of the interference time.
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4.3 Updating L

With the updated IERD
i , the initial value of RERD

p

is calculated as follows:

RERD
p =

∑
i<p

IERD
i + Cp

Recalling (11), L can be updated by RERD
p . In ad-

dition, the formula (14) in Lemma 7 can be updated
since the response time of τp is now shortened com-
pared with RM (see De�nition 8). Consequently, the
formula of Lemma 7 is updated as follows:

IERD
i =


cin+ body + co if τi = τvs (15)

d
RERD

p

Ti
eCi otherwise (16)

Theorem 7 (RTA of ERD). In ERD, τp's WCRT is
calculated as :

RERD
p =

∑
i<p

IERD
i + Cp, (17)

where the initial value of RERD
p is RRM

p . Calculation

is repeated until RERD
p is unchanged.

Proof. By the discussion in this section. 2

5. EVALUATION

5.1 Task Sets and Simulation Environment

In this section, we evaluate the proposed method
by showing how much the analyzed WCRT is short-
ened compared with RM. For comparison, we show
the results of ERD RTA and DM. In addition, the
longest response times in the task scheduling sim-
ulation with ERD (ERD simulation) are shown for
reference11. We also provide simulation results for
AFJ12. For evaluation, 30,000 task sets are syn-
thetically generated. Each task set is schedulable
(with no deadline misses) under RM and has pro-
cessor utilization of 72% to 96%. When generating
task sets, tasks' periods are decided by random num-
bers based on the uniform distribution between 10
and 100. Their execution times are decided by ran-
dom numbers based on the exponential distribution
where the upper bound, Umt, is 25% or 10% of the
corresponding periods. On average, each task set has
5.06 tasks and 9.38 tasks in case of Umt = 25% and
Umt = 10%, respectively.

For the evaluation, the target task τp whose re-
sponse time should be shortened is a task with the
lowest priority (longest period). To raise the prior-
ity of τp, we applied the following policy. For DM,
τp was given the shortest deadline possible while the
schedulability was guaranteed. For ERD, after sev-
eral candidates of VS were derived, the best server
for the results of τp was selected.

The simulation period is 10,000 ticks. The same
task sets are used for ERD RTA and DM as well as
ERD simulation. We use Python 3.6.5 for the simu-
lation. For task set generation, we use schedcat [22]
modi�ed for our experiment environment. For simu-
lation, the source code including the ERD scheduling
algorithm is available in the author's repository [23].

Fig.20: WCRT Evaluation : Ratio of task sets with
shortened WCRT (Umt = 25%).

5.2 Results

The ERD method shortens the response time by
using a high-priority virtual server, while the DM
method can shorten the response time when the pri-
ority of τp can be raised by regulating its relative
deadline. Fig 20 shows the ratio of task sets which
can reduce WCRT when Umt is 25%. The horizon-
tal axis indicates the processor utilization of the task
sets, and the vertical axis indicates the ratio of the
task sets that can have WCRT reduced. In the ERD
simulation, the longest response times can be reduced
for almost all task sets whose processor utilization is
up to 84%. Even when the utilization is 96%, 95% of
the task sets succeeded to reduce τp's response time.
In the DM method, it is con�rmed that fewer task
sets than in ERD RTA can have shortened WCRT
for τp.

11 In ERD simulation, the obtained longest response times might not be WCRTs, since the simulation period is limited.
12 We exclude RFJ since there was not big di�erence between AFJ and RFJ.
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Fig.21: WCRT Evaluation : Average WCRT nor-
malized to RM (Umt = 25%).

Fig 21 shows the average WCRT normalized to
RM RTA. While ERD RTA exhibits shorter WCRT
than DM, it is longer than ERD simulation due to
its pessimism, which implies there is room for fur-
ther improving the analysis. When the utilization is
86%, it is confrmed that ERD can reduce the average
WCRT by 13.45% at maximum compared to the DM.

Fig.22: WCRT Evaluation : Ratio of task sets with
shortened WCRT (Umt = 10%).

Fig.23: WCRT Evaluation : Average WCRT nor-
malized to RM (Umt = 10%).

Fig 22 and Fig 23 are the results when Umt =
10%. Similar trends to Fig 20 and Fig 21 can be
seen. Fig 22 exhibits better results compared to Fig
20. This shows that if Umt is lower, VS could easily
obtain high priority in ERD case and τp could in-
crease its priority in DM case even when it has the
lowest priority.

Fig.24: Jitter Evaluation : comparison of average
AFJ (Umt = 25%).

Fig.25: Jitter Evaluation : comparison of average
AFJ (Umt = 10%) .

Fig 24 shows simulation results of the average
AFJ when Umt = 25%. The vertical axis indicates
absolute value of the average AFJ. In RM, AFJ is
around 30 to 35 when the utilization is in the 72%
to 78% range. Over the 80% range, AFJ is around
40. The AFJ of ERD and DM is less than 5 when
utilization is below the 80% range and up to 10 or
11 when utilization is more than 80%. Fig 25 shows
the results when Umt is 10%. In this case, the AFJ
of RM is higher than that for Umt which is 25%. The
AFJ of ERD and DM is almost the same as Umt is
10%.

For jitter, it can be said that ERD does not have
a big advantage over DM when the utilization is be-
tween 72% and 78%. These methods show good re-
sults compared with RM.
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The algorithm we proposed in this paper handles
only one target (important) task, τp. Theoretically,
the capacity of VS can be used for any task whose
priority is higher than τp. However, this approach is
not su�cient to shorten multiple target tasks' WCRT
due to the limited capacity of VS on a single proces-
sor. Since multi processor systems have more capac-
ity than a single processor system, building a multi
processor version of ERD which serves multiple target
tasks is a goal of future work.

6. CONCLUSIONS

Execution Right Delegation (ERD) is a real-time
scheduling technique that improves real-time perfor-
mance of tasks which have long periods but are of
high importance, while RM necessarily gives low pri-
ority to tasks with long periods. In this paper, after
reviewing ERD, we showed a response time analysis
(RTA) method of ERD and evaluated it in compar-
ison with DM and the simulated behavior of ERD.
The results showed that ERD RTA can give shorter
worst-case response times (WCRTs) than DM but is
still a pessimistic analysis compared with the simu-
lation results. There is room to improve the analysis
for further reduction of WCRT.
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