362 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY, Vol.15, No.3, December 2021

A Thermal-Based Fuel-Prediction Method for
Intelligent Fire Extinguishers in an Indoor

Environment
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ABSTRACT: Classification of fuel in the early stage of fire is important to
choose the appropriate type of extinguisher for extinguishing fire. This paper pro-
poses a method of fuel prediction based on heat information for intelligent fire
extinguishers in an indoor environment. Fire flame in the early stage is first de-
tected based on patterns of differences between consecutive thermal image frames
in which temperature rises rapidly and reveals a sharp positive slope. Then candi-
date flame boundaries are detected in the thermal image frames during the early
stage, and boundary matching is performed among the frames. These matched
boundaries are classified as fire flame and fuel class based on LSTM (Long short-
term memory) for extinguisher selection. Experiments were performed with 300
samples for classification into four classes of fuel, and the results based on 9:1
training and testing ratio showed 92.142% accuracy.
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1. INTRODUCTION

Fire has been an incident of man-made disaster
which gives a huge amount of damage to humans
throughout recorded time. According to the statis-
tical data of the national fire protection association,
USA, in 2018 [1], fire has occurred more than 1.3
million times and Killed more than 3.6 thousand peo-
ple a year. Major causes of fire are cooking (49%),
heating equipment (14%), electrical distribution and
lighting equipment (10%), intentional 8%, and smok-
ing materials (5%) [2] in years 2013-2017. These fires
which emerged by different reasons and conditions
might be ignited by different fuels and need different
fire extinguishers [3]. According to a recent survey
[4], the wrong type of fire extinguisher has been used
in fire in many cases, and more than 38 per cent of
workers used the wrong type of fire extinguisher on
an electrical fire. These wrong types of extinguish-
ers may not only be ineffective on the fire itself, but
may also cause excessive damage to equipment. Au-
tomatic system of fire detection is urgently required,
and simultaneously fuels muse be predicted for ap-
propriate extinguisher selection.

To develop an automatic system of fire detection

and fuel prediction, some research work has been
done and can be divided into two groups, which are
learning-based and decision-based approaches. The
methods in the group of learning-based approaches
[5-14] performed with excellent results of fire recogni-
tion based on existing machine learning tools such as
artificial neural networks, convolutional neural net-
works (CNN), and so on. However, the methods re-
quire a training process in which training data must
be selected well and training processes need to be
performed covering all conditions.

On the other hand, decision-based methods [15-19]
basically do not require a complicated training pro-
cess and are workable for fire detection. In the case
of fire detection, safety from fire is the highest pref-
erence for users. The fire detection system should
detect fire correctly in the early state in real time
even with positive errors.

The research work in both mentioned groups has
shown successes in performing fire detection target-
ing the final goal of fire flame detection in early stages
which is accepted as important issue. However, fuel
prediction is important for extinguisher selection, and
is also another crucial issue for fire protection and pre-
vention. The authors of this paper therefore tried to

L.2The authors are with Department of Electronics and Telecommunication Engineering, King Mongkut’s University of Technol-
ogy Thonburi, Bangkok 10140, Thailand., E-mail: teerapong.sj@mail.kmutt.ac.th and kosin.cha@kmutt.ac.th



A Thermal-Based Fuel-Prediction Method for Intelligent Fire Extinguishers in an Indoor Environment 363

find a method of flame detection and fuel prediction
in the early stage for automatic fire extinction in an
indoor environment. Since sometimes fire occurred in
a dark indoor environment without light, a heat sen-
sor, which can sense heat information in both light
and dark, is considered to be used instead of a digital
camera for fire detection. Patterns of heat increment
and change are utilized to detect fire, and features
during heat changes are classified for fire fuel.

The paper is constructed as follows. Analysis of
fuelbased thermal image of fire flame in early stages
is reported in Section 2. The scenario of a future fire
extinguisher is introduced in Section 3. An overview
of the proposed fire detection and fuel prediction is
described in Section 4. Section 5 demonstrates the
experimental results using video datasets of fire. The
discussion of the experimental results is given in 6.
Finally, the conclusion is presented in Section 7.

2. ANALYSIS OF FUEL-BASED THERMAL
IMAGE OF FIRE FLAME IN EARLY
STAGES

Our research work initially aims to solve a prob-
lem of detecting fire in early stage, especially when
fire flame just emerges in the indoor environment. In
fact, vision sensors nowadays are regarded as a pow-
erful and effective tool for sensing and monitoring
things based on brightness information, but it may
not work well in a dark environment. On the other
hand, thermal sensors have recently become attrac-
tive tools which sense heat information in terms of
thermal images. The thermal sensor can be applied
for fire flame detection and fuel classification based
on analysis results.

2.1 Fire Flame In A Thermal Image

A thermal sensor is assumed to be installed in a
position in an indoor environment in which the sensor
can see all views in the space, and a video consisting
of thermal image frames is observed. If we perform
sampling on a point on a boundary of a cup of hot
coffee and another point on a fire flame in the same
thermal video frame (0), temperature of those points
can be shown in Fig. 1 (a). In this case, the tempera-
ture of the cup of coffee (T;) is as warm as around 60
degree Celsius, and the change of temperature tends
to maintain or even decrease the room temperature.
Simultaneously, a fire flame emerges. The tempera-
ture (Ty) increases in the early stage, maintains in
the middle stage, and quickly cools down in the last
stage. If we find temperature differences (D) between
object boundaries of consecutive frames, temperature
differences of a cup of hot coffee (D, ) and fire flame
(D7) can be plotted, as shown in Fig. 1 (c) and (d),
respectively.

As observed, the graphs of temperature differences
between consecutive frames of coffee, as shown in Fig.

1 (¢) have no outstanding spike, while the ones of
the flame reveal outstanding positive and negative
peaks during the early and last stages, respectively,
as shown in Fig. 1 (d). Ideally, the case of fire flame
without any noise can be described by equation (1).
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In another case of hot objects such as a cup of cof-
fee, although the initial temperature is much higher
than the room temperature, it may gradually de-
crease to be the same as the room temperature. This
can be simply expressed in differentiation as shown
in equation (2).
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Theoretically, differentiation of the objects’ results
are nearly zero except in the cases of the early and
last fire stages. In fact, noise exists, and it will ham-
per peak detection. To detect peaks representing the
early fire stage, existing noise should be suppressed.
A way to simply suppress noise is to initially train an
appropriate threshold value (Th) on some fire video
samples. The threshold value is obtained and used to
delete noises in testing as shown in equation (3) and

(4).

A M
Th= > 16— bl (3)
’ 0, (51 < Th
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A is a parameter for segmentation and i = 1,..., M.

When noise is suppressed by the mentioned thresh-
old value, peaks are detected early, and last fire stages
should outstandingly appear. Then, the positive and
negative peaks can be detected as early and last fire
stages, respectively.
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Fig.2: Video frames in early stage.

In applications for extinguishing fire in an indoor
environment, fire must be detected as soon as possible
during the early stage to safely extinguish the fire in
time. Based on the phenomenon mentioned above, it
is observed that the slope of temperature difference
would be none during normal or non-fire duration,
and become positive during the early fire stage, as
shown by the shaded area in Fig. 2. The thermal
video frames during the period should be then recog-
nized as fire flame.

In observing the phenomenon of flames in the early
stage, it differences can be observed among flames ig-
nited by different fuels, as shown in Fig. 3. Differ-
ences among five fuel classes [4] can be seen as pat-
terns of flame growing. Although a pattern of flame
growing among different fuels in the same class can
be superficially recognized, they are differentiated at
least in the number of frames. In practice, it is needed
to recognize the fuel class level so that a state transi-
tion concept can be usefully applied to solve the fuel
class recognition.

Class A
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Class C
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Fig.3: Flame growing among fuel classes.

2.2 Fire Flame Features of Fuel Types

Nowadays, The NFPA (National Fire Protection
Association) has defined the fire classification into
five classes based on fuels with a standard [3]. In
the standard, A, B, C, D, and K classes, as shown in
Table 1, are classified according to fuels such as wood,
cloth, and paper for A, liquid, oil, and alcohol for B,
electrical equipment for C, magnesium, titanium, zir-
conium, sodium, and lithium for D, and combustible
cooking media for K classes. These fuel classes re-
quire specific types of extinguishers, as shown in the
last column of Table 1. This means it is necessary to
know fuel for extinguishing fire flame by the appropri-
ate extinguishers. Otherwise, fire is not extinguished,
and the extinguishers may damage the objects.

Table 1: Fuel classes.

Fuel Paper Plastic Wood Types of Fire Extinguishers

4| 1. Stored pressure water

2. Aqueous film forming foam
3. Film-forming fluoroprotein
4. Halon 1211

5. Halocarbon

6. Dry Chemical

ClassA

Fuel Alcohol Diesel Types of Fire Extinguishers

1. Carbon Dioxide (CO,)

2. Aqueous film forming foam
3. Film-forming fluoroprotein
4. Halon 1211

5. Halon 1301

6. Halocarbon

d| 7.Dry Chemical

ClassB

Types of Fire Extinguishers

$4| 1. Carbon Dioxide (CO,)
||| 2 Halon 1211
3. Halon 1301
GemC ' 4. Halocarbon

5. Dry Chemical

Fuel Types of Fire Extinguishers

1. Dry Powder

ClassD

Types of Fire Extinguishers

§H| 1. Wet Chemical
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To find different features in the fire flame in each
class, fire flames were ignited in a lab, as shown in
columns 2-4 of Tablel. Fire flame feature of each
class can be simply extracted in different geometric
shapes, as shown in column 5.

Analytically, there exist few features of fire flame
in the mentioned five types, which are in classes A-
D, and K. Some features such as color correlogram,
contour signature, and shape can be categorized, as
shown in Fig. 4. These features are then considered
as static patterns of fire flames in fuel types.

To conclude what are explained in subsections 2.1
and 2.2, these differences among fuel types in a class
and among classes can be seen as dynamic or transi-
tion patterns in a state transition diagram, as shown
in Fig. 5. The situation normally stays at neutral
state. When fire is ignited, the state starts to tran-
sit to early fire stage, gradually moves to middle fire
stage and last fire state, respectively. If fire flame is
extinguished in time, the situation returns to the neu-
tral state. This means geometric shape of fire flame,
perceptron images of fire flame, and changes of tem-
perature layers can be regarded as features to clas-
sify fire fuel class, and our paper tried to employ and
study these three features for fuel classification based
on a state transition concept.
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Fig.5: State transition of fire flame.

3. SCINARIO OF INTELLIGENT FUEL-
BASED EXTINGUISHING SYSTEM
AND OVERVIEW OF PROPOSED
METHOD OF FIRE-BASED FUEL PRE-
DICTION

A Scenario of proposed intelligent fuel-based extin-
guishing system is introduced in subsection 3.1, and
an overview of our proposed method of fire-based fuel
prediction is discussed in subsection 3.2.

3.1 Scenario of Fuel-based Intelligent Fire Ex-
tinguishing System

In an indoor environment, suppose a thermal sen-
sor is installed with a system box containing a proces-
sor and a video memory on the ceiling of the room,
as shown in Fig. 6. The sensor always senses heat
in the room in terms of consecutive video, and stores
video data in the video memory for processing. When
the system detects fire flame, especially in the early
stage, the detected boundaries of fire boundary can-
didates will be analyzed for features such as fire flame
shape, ratio of heat area, and so on, and these fea-
tures of fire flame in the boundaries are classified for
fuel class. Then, the extinguishing system selects the
most appropriate extinguisher substance according to
the fuel class, and spouts it to extinguish fire by pin-
pointing exactly to the fire flame boundaries in the
early fire stage.
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Fig.6: A scenario of intelligent fire extinguisher.

3.2 Overview Proposed Method of Fire-based
Fuel Prediction

As shown in Fig. 7, the proposed fire-based fuel
prediction method starts from video input processing.
The input video is checked for fire candidates in an
infinite loop until a fire candidate is detected. When
it is detected, the video frames are preprocessed, de-
tecting boundaries of fire flame candidates, and fire
flame is confirmed at the boundary segmentation and
fire detection processes, respectively. Unless there is
fire flame, the system goes back to input another ther-
mal video as normal. If fire flame is confirmed in the
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video, detected fire flame fuel is selected by feature
extraction and classification in the fuel classification
process. The predicted fuel information is used to
select an appropriate extinguisher substance in the
extinguisher selection process.

4. PROPOSED FIRE-BASED FUEL PRE-
DICTION

To realize fuel prediction based on the heat infor-
mation for the mentioned scenario, our paper pro-
poses a procedure, as shown by the flowchart in Fig.
7. A stream of video data representing heat informa-
tion in a room detects candidate frames of fire flame
in the first step. If there is no change in a couple
of consecutive frames, which is not regarded suspi-
cious as fire candidate, the system continues to in-
put the next video stream. If it is suspicious as the
frames of fire flame candidate, the system starts to
find candidate boundaries, perform boundary match-
ing between consecutive frames, and predict fuel in
the boundaries. The details are described next.

Start

e

Video Input

v

Early stage fire
detection (4.1)

No

—>

Fire ?

¢ Yes

Boundary segmentation (4.2)

\/

Boundary matching (4.3)

\4

Feature Extraction (4.4)

v

Fuel classification (4.5)

v

Extinguisher Selection

v

Extinguishment

Fig.7: Flowchart of overview proposed method of
thermal-based fuel prediction.

4.1 Early-Stage Fire Detection

Normally, a thermal camera or heat sensor, which
is assumed to be installed at the ceiling of a room,
captures video data representing temperature as heat
information, as shown by colors in Fig. 8 (a). Both

fire flame and a cup of hot coffee appear in the room,
and the sensor catches the temperature and displays
color images. If differentiation is performed between
consecutive video frames (f; ), a peak representing
the border between the non-fire and fire candidates
is simply detected, as shown in Fig. 8 (b) with some
small spikes which are considered as noise. It is ob-
served in Fig. 8 (a) that nothing is detected during
video frames at t; — t3 which is normal state. When
a cup of hot coffee is laid in the room during video
frames during t14 — t18, although the hot coffee is
in high temperature, nothing is detected due to no
obvious difference between consecutive video frames.
However, an outstanding peak is found during video
frames during toy — to; because fire is ignited. There
is no difference in the middle fire state during video
frames during too — t97, and obvious peaks appear
again at video frames during tog —t31 which is the last
fire state. Therefore, this paper proposes to first set
up a thresholding value (T'hy) for suppressing noise,
and then detect the first peak in the differentiation
signal period as the starting video frame of fire flame
candidate to extinguish fire flame at the early fire
state. The thresholding value is set up according to
equations (3) and (4).

To implement a function of fire detection, the func-
tion can be developed based on the observation re-
sults in Fig. 8 (b) in which peaks in differences of
consecutive frames are suspicious as fire-flame candi-
date frames. Therefore, the algorithm, as shown in
Algorithm 4, should search for the differences of con-
secutive frames, and try to find the difference of a
couple of consecutive frames that is over the thresh-
old value for noise suppression and where the slope
is positive. This situation might be continued until
it reaches the peak where the slope turns to nega-
tive. This means the system finds that fire occurs,
and it immediately calls a subroutine to find flame
boundaries and fuels.
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Fig.8: Differentiation between consecutive frames
for fire frame detection.
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Algorithm 1 Selection of fire candidate frames

1: START

2: SET n = frames position, N = maximum number of frames,
VF = video frames, Th; = thresholding,
FB = frames after binarization, DF] = frame difference,
NR = frames after noise reduction, PF = peak frame

number

SP = summation of pixel

3: REPEAT //Video input and Binarization

4: COMPUTE video frames of image color channels
RGB from a thermal camera as VF

5: COMPUTE binarization frames VF with Th; as FB

6: UNTIL frames position = N

7: REPEAT //Frame difterence

8: COMPUTE difterentiation value of FB, and FBy+;

as DF1.
9: UNTIL frames position = N-1

10: REPEAT //Noise reduction

11: COMPUTE remove noise DF1,+; with moving
average
among consecutive frames as NR.

12: UNTIL frames position = N

13: REPEAT // Finding peak frames which are regarded as

fire candidate frames.

14: COMPUTE summation of pixel NR.+1 as SP»
15: IF SP, # 0 THEN
16: Time count = Time count +1
17: slope = SPy+1—SP»
18: IF slope <0 OR Time count=7 THEN
19: get FCy
20: END IF
21: END IF
22: UNTIL Time count =7 OR slope >0
23: END
Step Processing Example

1 Thresholding

2 Binarization —

Original image

AND operation |gg
between 3 D _
3 binarized and —

original images

Birarized image

Original image Bimrized image  AND operaion image

4 Bounding box

Fig.9: Steps in boundary segmentation.

4.2 Fire Boundary Segmentation

At the timing that fire is suspiciously detected as
mentioned earlier, a threshold value is first deter-
mined in a histogram in an original video frame, as
shown in the first row of Fig. 9, Then the thresh-
old value is used to binarize the original video frame
into a binary one which reveals boundaries, as shown
in the 2nd row. Fire-flame candidate boundaries are
determined by an AND operation between the origi-

nal and binary video frames, as shown in the 3rd row
in Fig. 9. Finally, boundary boxes of the candidate
boundaries are drawn by the most upper, lower, left,
and right lines, as shown in the last row. This can be
implemented with Algorithm 2.

Algorithm 2 Fire boundary segmentation

1: START

2: SET n = frames position, N = maximum number of frames
FC=candidate frames, GL= gray level, Hf= Histogram,
Th = threshold value, Mx G = maximum gray level,
BV =binary image, SG = segmented image,
BB = Bounding boxes, Th=10

3: REPEAT // Threshold value determination

4: COMPUTE video candidate frames of image color
channels RGB from algorithm 1 as FC
5: COMPUTE convert RGB FC with grayscale as GL

6 COMPUTE histogram GL as Ht

7 COMPUTE smoothing histogram with Mx G as Ht

8: UNTIL frames position =N

9: REPEAT // Thresholding to find a value to segment
foreground image

10: COMPUTE binarization FC (row, column) as
BV (row, column)

11: IF FC (row, column) > 7h THEN

12: BV (row, column) = 0

13: Else

14: BV (row, column) = Mx G

15: END IF

16: UNTIL frames position = N

17: REPEAT // AND operation for boundary segmentation

18: RETURN FC with AND operation BV as SG.

19: UNTIL frames position = N

20: REPEAT // Create Bounding boxes

21: /I regionprops [20]

22: COMPUTE regionprops THEN

23: get BB (coordinate of the top-left corner,
horizontal width)

26: UNTIL frames position = N

27: END

4.3 Boundary Matching

When a frame of suspicious fire is detected as
mentioned in subsection 4.1, the fire monitoring sys-
tem immediately considers it as an emergency and
switches itself into the fire detection, fuel prediction,
and extinguishing modes. The system starts to seg-
ment possible boundaries in several video frames sur-
rounding the detected suspicious fire frame, as men-
tioned in subsection 4.2. The number of video frames
selected for the classification process should be deter-
mined by training on some samples in an appropriate
number of video frames in advance, and this paper
utilized seven consecutive video frames counting from
the fire detected frame. Those selected video frames
are supposed to be detecting a bounding box sur-
rounding candidate boundaries (e.g., Al- 4, and B1-
4), as shown in the first row in Fig. 10. To perform
matching among bounding boxes in those consecu-
tive video frames, existing point-matching tools such
as SURF, SIFT, and so on are possibly considered to
apply on bounding box contours between consecutive
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video frames, and the most matched bounding boxes
should be selected as the same boundaries, as shown
by linked lines in the bottom row. The series of the
same boundaries are then fed to the next processes
of feature extraction and classification, respectively.
Based on the mentioned ideas, the process of bound-
ary matching can be implemented by Algorithm 3.

Step Processing

Example

Labeling with
bounding boxes

2 Bounding boxes
matching
fu fa
Al matched with B1
A2 matched with B2
A3 matched with B3
A4 matched with B4

Fig.10: Steps and examples in boundary matching.

Algorithm 3 boundary matching of fire candidate frames

1: START
2: SET n = frames position, N = maximum number of frames
BB = Bounding boxes, KP = Key point, 4 = label,
B =label, FV = features value, MIF' = match features
3: REPEAT // Labeling with bounding boxes
4: COMPUTE labeling all of boxes in F'C, as 4»
5 COMPUTE labeling all of boxes in FC,+; as By,

6: UNTIL frames position=N
7: REPEAT // Key point from surf
8: //SUREF, extract features, and match feature [21]
9: COMPUTE SURF features THEN
10: get KP(4») and KP (By)
11: COMPUTE extract features THEN
12: get F'V (KP(A4»)) and FV (KP (B))
13: COMPUTE match features THEN
14: get Retrieve the locations of matched

points as MF.
15: UNTIL frames position =N
16: REPEAT // Bounding boxes matching
17: COMPUTE matched points in bounding boxes with

18: compare between 4»and By
19: UNTIL frames position =N
20: END

4.4 Feature Extraction

As explained in subsection 2.2 of the previous sec-
tion, and shown in Fig. 4, some features such as color
correlogram [22], contour signature [23], shape [24],
and so on should be analyzed and confirmed as fea-
tures for classification in advance. In case of selection
of those features mentioned in Fig. 4, a segmented
thermal image, as shown in Fig. 11, is extracted into

contour signature, color correlogram, and shape, and
those vales will be then fed to a classifier. A sequence
of processes in feature extraction are depicted in Al-
gorithm 4.

Algorithm 4 features extraction of fire candidate boundaries.
1: START
2: SET n = frames position, N = maximum number of frames
CB = fire candidate boundaries, CL= color correlogram
feature, CS = contour signature feature,
§ = shape feature, I = feature one dimension.

3
4: COMPUTE contour signature feature in CB» as C'S»
5: COMPUTE color correlogram feature in CB, as CLy

6: COMPUTE shape teature in CB, as S,
7: COMPUTE normalization CS, CL, and CBxto
the range of 0 to 1
8: COMPUTE arrangement of CS, CL.,CB, to be
one dimention as F,
9: UNTIL frames position = N
10: END

Framel | Frame2 | Frame3 | FrameN
532470077 | 052166838 | 0520651118 | 0.52166858
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604779201 | 0589147388 | 0.588220634 | 0.589147388

672653737 | 0655632385 | 0.654779537 | 0655632385
636351956 | 066731598 | 0666481329 | 066731598
0697493295 | 069667811 | 0697493295
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Fig.11: Example of feature extraction in the coarse
level.

4.5 Feature Extraction

When a fire flame is detected in a boundary in the
early stage, the fire flame boundary urgently must be
classified to find the fuel class to select an appropriate
extinguisher for extinguishment. As observed, with
fire flames in different classes, features for fuel class
classification should be a thermal image of fire flame,
color ratio, and contours of fire flame in all layers.
Since these features dynamically change all the time,
the suitable classifier should be a time-independent
state-transition based one. LSTM (Long short-term
memory) [25] is currently regarded as an appropri-
ate classifier in this case, as shown in Fig. 12. The
network structure is basically comprised of input, hid-
den, and output layers, and a number of data modules
are required in the vertical and horizontal directions,
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respectively. The LSTM is set up with parameters for
structure, as shown by a sample in Table 2. In this
paper, features of fire flame for fuel class classifica-
tion, which are contour signature, color correlogram,
and shapes including circle, rectangle, and ellipse, are
serially input into the input layer. Some samples are
used to train in advance, and other samples are clas-
sified for fuel classes in the testing state.

Parameter setting should be performed in advance
in a training stage. We recommended performing a
pretest on some samples in possible parameters [26].
In the input layer, batch size, input size per series,
input feature, and learning rate, as shown in Table
2, are trained by a number of 2" within the capa-
bility of GPU memory, total number of input data
of all features, input data dimension, and appropri-
ate rate for gradient descent taking appropriate time
without overshoot [27], respectively. In the hidden
layer, a hidden node is recommended as two thirds
of input size per series, and the activation function
can be appropriately selected from existing ones such
as softmax, relu, sigmoid, tanh, and so on. Finally,
output class is determined by the number of classes,
which are A, B, C, D, K, and non-class in this paper.

Sequence Length ( Number of key frames )
;

2

1 3 !
X1 (X211 X310 Xnll
Xi2 (X212 X312 Xnl2
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Fig.12: LSTM structure.

Table 2: Classification specification.

Layer Parameter Value
Input Batch size 8
Input size per series 561
Input feature 1 dimension
Learning rate 0.0001
Hidden layer ~LSTM hidden layer
Hidden node 374
Activation function SoftMax

LSTM model
Output class 6

Output layer

5. EXPERIMENTS AND RESULTS

To evaluate the performance of proposed method,
several indoor environments for experiments and ex-
periment specification were established, as shown in
Fig. 13 and Table 3, respectively. In experiments,
four types of fuel in each class were selected as fol-
lows. As materials for experiments, alcohol, gasoline,
and diesel; flexible wire and cable (VFF), American
wire gauge (AWG), and insulated flexible conductor
(VSF); and palm oil coconut oil, and Lard oil were
selected as representative of classes A, B, C, D, and
K, respectively. These materials were used to ignited
fire flames for a total of 150 video clips which included
multiple fire flames with a hot object in each video
clip, and there exist 75 flame boundaries per each
fuel class. Some examples of thermal video frames
are shown in Table 4 which included more than one
fuel class. The fire flame boundaries detected by our
proposed method and examples of video sequences for
fuel class classification are shown in Tables 5 and 6,
respectively. Fire detection, which would be done all
the time, was performed in experiments, and evalu-
ation results are shown by comparison with conven-
tional methods in Table 7. The fuel class classifica-
tion using some existing machine learning tools such
as bidirectional long shortterm memory (BiLSTM),
long short-term memory (LSTM), was performed in
varying per cents for training and testing, and the re-
sults are shown in Table 8. In addition, classification
errors in all classes are shown in Table 9.

Table 3: FExperimental specification.

Part Devices/Software Specification
Hardware Computer CPU: Intel Core
i7-9700K
GPU: Nvidia GeForce RTX
2060
Memory Size: 16 GB DDR4
Solid state drive: 512 GB
Thermal camera FLIR one pro and
FLIR i3
Software ~MATLAB R2019b
Fuel Class A Paper, Plastic and Wood
Class B Alcohol, Gasoline, and Diesel
Class C VFF, AWG and VSF
Class D Magnesium
Class K Palm oil, Coconut oil and
Lard oil
Data Thermal video seven frames per second

s nnnas

Fig.13: Environment set up for experiments.



Table 4: Ezamples of thermal video frames in ex-
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Table 5: FExtracted samples of fire boundaries in
experiments.
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Table 6: Ezamples of fire flames used for training
and testing.
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Table 7: Accuracy of fire detection compared with
conventional methods.

Image False False Accurac,
Technique Iant Methods Positive | Negative %) y
(%) (%)
Thermal | Proposed method 6.67 0.00 93.33
Decision Rafiece et al. [17] 17.65 7.14 74.20
based RGB Celik et al. [18] 29.41 0.00 83.87
Chen et al. [19] 11.76 14.29 37.10
ﬁ;}’ib“gle ot al. 5.88 14.29 90.32
[[;;]La““’ et al. 13.33 | 0.00 92.86
Foggia et al. [11] 11.67 0.00 93.55
Khan Muhammad
Learning RGB et al. [9] 8.87 2.12 9450
based Khan Muhammad -
et al. [10] 0 0.14 95.86
Arpit Jadon et al. B
[11113 " 1.23 2.25 96.53
ﬁ““ngj““ etal 194y 1.38 97.92
s . . .
Table 8: Classification results obtained by classi-
fiers.
Training Testing
BiLSTM D LSTM D
(%) (%) S S S S
90 10 90.13 0.086 90.74 0.071
80 20 89.54 0.062 89.97 0.051
70 30 88.56 0.062 88.32 0.074
60 40 87.56 0.075 88.22 0.063
50 50 87.20 0.065 86.79 0.070

6. DISCUSSION

Based on the proposed method using the heat in-
formation for fuel prediction, the system practically
monitors and detects fire flame in an indoor environ-
ment. The proposed method utilizes heat change pat-
terns to detect the fire flame, which is different from
conventional methods using brightness information.
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The advantage of heat-change information usage is to
be able to detect fire, especially in a dark environment
without light. In our experiments with a cup of hot
coffee with high temperature, the proposed method
could detect fire flame boundaries without picking up
the boundary of coffee due to less heat change. It
meant the proposed method can deal with fire flame
in the environment including some high temperature
objects. To compare with conventional methods us-
ing brightness information, although our proposed
fire detection method using heat information was not
able to get the best accuracy, it could achieve as high
as 93.33% accuracy without false negatives, as shown
in Table 7. The 6.67% of fire detection errors pro-
duced by our proposed method analytically were false
positives. This practically meant we detect suspicious
fire flames and ensured more reliability for fire detec-
tion. The advantage of our fire detection method is
that it can deal with the fire cases in not only light
but also a dark environment due to the usage of heat
change information.

As the main objective of our proposed method
which is assumed to be applied for automatic extin-
guishers in indoor environments, fuel of fire flames
in multiple boundaries in an image would be classi-
fied into fuel classes (A-D and K), and a fire extin-
guisher is expected to be selected appropriately based
on the fire flame class. As shown in Table 8, our pro-
posed method using LSTM achieved fire flame classi-
fication in each boundary in as high as 92% accuracy
with low standard deviation. The results proved the
proposed method can be applied in fire fuel classifi-
cation in each boundary for fire extinguishers. Al-
though the research problem has been established
for solving multiple isolated boundaries with differ-
ent fuel classes as a merit of the proposed method,
overlapping boundaries of different fuel classes were
not solved in this paper, and should be considered as
future work.

The classification errors were analyzed in a con-
fusion matrix, as shown in Table 9. Most samples
in experiments were successfully classified into fuel
class, and an appropriate extinguisher might be se-
lected for extinguishment, as shown by highlighted
cells in a diagonal direction of the matrix. Errors lo-
cated in the cells outside the diagonal direction were
analyzed, and analysis results based on those error
causes are divided into 12 groups, as shown in Ta-
ble 10. Some fire flames look like others in term of
features, and the scores in the last column indicate
the mistakes of the classification. Although these are
counted as minority compared with the whole number
of experimental samples, feature design for classifica-
tion should be reconsidered to improve this in future
work. Furthermore, in the last four rows which reveal
analysis of non-fuel as mistaken classification results,
it is observed there exist a couple of classes which
got high scores in the top level, but still less than

the thresholding value. The thresholding method also
should be reconsidered for solving this problem as an-
other topic of future work.

Table 9: Classification errors in all fuel classes.

. Predicted
.. | ClassA | ClassB | ClassC | Class D Class K Non-Fuel
Actual |
ClassA | 84.57% | 5.33% 1.33% | 2.85% 0.57% 5.35%
ClassB | 5.52% | 90.28% 0% 1.52% 0.38% 2.3%
Class C 0% 0% 94.47% 4% 0% 1.53%
ClassD | 1.71% | 247% | 438% | 85.14% 0.19% 6.11%
Class K 0% 0.37% 0% 0% 99.24% 0.39%

7. CONCLUSION

It is important to detect fire in an early stage and
extinguish the fire by an appropriate extinguisher as
soon as possible. For an automatic fire-extinguishing
system in an indoor environment, the system needs to
automatically detect fire, classify the fuel for selecting
a suitable distinguisher, and immediately extinguish
the fire in an early stage. This paper proposed a
method of fuel prediction based on heat information
for an intelligent fire extinguisher in an indoor envi-
ronment. While a fire flame rises rapidly according to
the fuel type and expands to give damage to property
in the early stage, heat and temperature simultane-
ously increase and are observed to be different based
on fuel types. The increment of heat can be first used
to detect early-stage fire, and then fire flame changes
are considered to classify fuel type for automatic ex-
tinguisher selection. These form our basic concept.
The concept can be implemented on a system using
heat sensor, and thermal video as input data from
the sensor would be employed to detect fire and clas-
sify fuel type in the case of fire occurrence. Although
some warm things such as a cup of coffee and so on
are in a high temperature level which is suspiscious
to be detected as fire, fire in the early stage will be
simply detected by immediate changes of heat in the
indoor environment. The detected fire, which may
increase rapidly, is subsequently used to classify fuel
type based on the change pattern of the fire flame.
For evaluation of the proposed method, experiments
with fire have been performed with some fuel samples
in classes based on NFPA fuel-class standard, and the
results showed acceptable performance.
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Table 10: Analysis of classification errors.
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