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ABSTRACT: Modern Cryptographic methods consist of two parts, a key and
an algorithm, which are used to encrypt and decrypt data. The key is an essential
part that works with the algorithm. The security of encryption schemes depends
on the key size (key length) and the longer the key, the better the security it
provides. Applying an elliptic curve for key agreement provides a high-performance
architecture and high security. The main process for calculating key points in
Elliptic Curve Cryptography (ECC) is called scalar multiplication, which relates
to point addition and point doubling. An e�cient algorithm, proposed as the Large
Scalar Multiplication Algorithm using Modi�ed Pell Numbers (LSMA-MPN), was
introduced to speed up the calculation of points on elliptic curves during large
scalar multiplications. This system also reduced computation time by applying
Modi�ed Pell numbers in a 2×2 matrix representation. The experimental results
show that computation time was reduced by approximately 67% in comparison
with the computation time required by a general algorithm.
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1. INTRODUCTION

Valuable information is routinely transferred over
the Internet. However, most channels that we cur-
rently use to transfer information are not secure [1,2].
The emerging communication network known as the
Internet of Things (IoT) [3] makes daily life eas-
ier. Smart devices are connected to each other via
wireless networks. These connected devices generate
a tremendous amount of information held in Inter-
net storage such as cloud services. The security is
sues are considerable. Although most cloud provide
o�er security processes, cloud users still have con-
cerns about important information or sensitive data
[4], such as personal identi�cation numbers, �nan-
cial, health, and educational information. One of
the techniques used to secure data or information
is cryptography [5, 6]. Cryptography [5, 7] is the
art and science of encoding messages to make them
non-readable. Basic cryptographic terms used in this
research are plaintext, which is a message in an un-

derstandable or readable form; ciphertext, which is
the same message in an unreadable form; encryption,
which is the process of transforming plaintext into
ciphertext; and decryption, which is the process of
transforming ciphertext back into plaintext.

Many researchers have proposed cryptographic al-
gorithms to encrypt and decrypt data. These cryp-
tographic processes consist of two elements: a key
and an algorithm. Usually, the algorithm used for
encryption and decryption is available to everybody.
However, to secure encrypted data, a key is neces-
sary. Symmetric keys are simpler and take less time
because the same key is used for encryption and de-
cryption of data. The disadvantage of symmetric keys
is that all users (senders and receivers) must share
the key to encrypt data before they can decrypt it.
On the other hand, when using asymmetric keys, the
sender uses one key to encrypt the data and the re-
ceiver uses another key to decrypt it. Asymmetric
key algorithms are used in communication channels,
especially over the Internet.
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The most commonly used algorithms are RSA and
ECC (Elliptic Curve Cryptography). Each crypto-
graphic algorithm provides di�erent strength of secu-
rity or security level, depending on the algorithm and
the key size used. The National Institute of Stan-
dards and Technology (NIST) recommends security
levels in bits [8] which estimate the computational
operations to �nd a solution. The main problem of
conventional cryptographic algorithms is that the key
size has to be su�ciently large in order to meet the
high security level. For example, at a 128-bit security
level, the ECC-based algorithms use a 256-bit key,
whereas RSA algorithm uses a 3072-bit key. This
shows that ECC-based algorithms use smaller-sized
keys than RSA [9] and as a result, ECC-based algo-
rithms have gradually replaced RSA [10]. Although
much research into data security has focused on the
generation of small-sized keys, the strength of the
cryptographic process also depends on the algorithm
used to generate the key. ECC is now applied for
key eneration, and the main process is scalar multi-
plication. The e�ciency of the algorithm depends on
the cost of computing scalar multiplication. How-
ever, if the scalar number is large, the number of
arithmetic operations, especially multiplications, is
increased. Therefore, this research proposes a new
cryptographic key generation algorithm by applying
Modi�ed Pell Numbers that reduces the time needed
for large scalar multiplication but securely exchanges
keys over an unsecure channel and o�ers the same
level of security as longer keys.

This paper gives the background knowledge and
related work in Section 2 and 3, respectively. A new
method of calculating large scalar multiplication for
Elliptic Curve Cryptography is proposed in Section
4. We discuss the e�ciency analysis of the proposed
method in Section 5 before presenting the conclusion
in Section 6.

2. MATHEMATICAL BACKGROUND

In this section, some basic conceptual terms are
presented.

2.1 Elliptic Curve Scalar Multiplication

Elliptic Curve Cryptography is a widely used ap-
proach, since it provides a high level of security with
a smaller key size. To generate a key, key points are
calculated along an elliptic curve using scalar multi-
plication. De�nition 1 describes a point operation on
an elliptic curve. All operations on the elliptic curve
are performed in the order of the prime �eld [2, 11,
12], as shown in Fig.1 and De�nition 2.

De�nition 1: Let E be an elliptic curve and Q be
a scalar multiplication on E. Then Q is derived by
adding point P on E by k times and is de�ned as

Fig.1: Rational points of Ep : y2 = x3 + x+ 7 with
(a) prime p = 29, (b) prime p = 97, and (c) prime p
= 769.

Q = kP =

k∑
i=1

P (1)

where k is a positive integer and P is a point on the
elliptic curve.

De�nition 2: Let Ep be an elliptic curve over a
�nite �eld F and Fp be an integer modulo p from a
prime �eld. Then Ep is de�ned as

Ep : {(x, y) ∈ Fp|y2 = x3 + ax+ b} mod p (2)

where p is a prime number, and the discriminant is
4a3+27b2 6= 0 to ensure that the curve is nonsingular.

Basically, scalar multiplication on an elliptic curve
consists of 2 arithmetic operations: point addition
and point doubling. De�nition 3 and Example 1 re-
fer to point addition while De�nition 4 and Example
2 refer to point doubling.

De�nition 3: Let point addition be adding two
points from di�erent co-ordinates on an elliptic curve.

Let P1(x1, y1) and P2(x2, y2) be two di�erent co-
ordinates and P3(x3, y3) = Q ∈ E(Fp). The point
addition operation is de�ned as



222 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY, Vol.15, No.2, August 2021

Fig.2: Point addition on the elliptic curve y2 =
x3 − 3x+ 5.

Q = P3(x3, y3) = P1(x1, y1) + P2(x2, y2) (3)

Assuming that P1 6= P2 and that P1, P2 6∈ ∞ , the
line through P1 and P2 is depicted in Fig. 2, where

x3 = λ2 − x1 − x2 mod p (4)

y3 = λ(x1 − x3) mod p (5)

λ =
y2 − y1
x1 − x2

mod p (6)

Example 1: Let an elliptic curve be E17 : y2 =
x3 + x + 13 mod 17. Choose P1(x1, y1) = (1, 7) and
P2(x2, y2) = (3, 14). From De�nition 3, the point
addition P3(x3, y3) is

λ =
14− 7

3− 1
mpd 17

=

{
7 mod 17

2 mod 17
mod 17

}
= {(7 mod 17)× (2−1 mod 17)} mod 17

= {(7)× (9)} mod 17

= 63 mod 17

= 12

x3 = (12)2 − 1− 3 mpd 17

= 140 mod 17

= 4

Fig.3: Point doubling on the elliptic curve y2 =
x3 − 3x+ 5.

y3 = 12(1− 4)− 7 mpd 17

= (−43) mod 17

= 8

Therefore, on the elliptic curve E17, the result of
Q = P1 + P2, in other words P3(x3, y3), is (4, 8).

De�nition 4: Let point doubling be adding the
same points from the same co-ordinates on an ellip-
tic curve. Let P1(x1, y1) and P2(x2, y2) be 2 points
from co-ordinates such that P1(x1, y1) = P2(x2, y2),
P3 = 2P1 = Q ∈ E(Fp). The point addition opera-
tion is de�ned by

Q = P3(x3, y3) = p1(x1, y1) + P1(x1, y1) = 2P1 (7)

Assuming that P1 = P2, the line through P1 and
curve E is depicted in Fig. 3, where

x3 = λ2 − 2x1 mod p (8)

y3 = λ(x1 − x3)− y1 mod p (9)

λ =
3(x1)

2 + a

2y1
mod p (10)

Example 2: Let an elliptic curve be E17 : y2 =
x3+x+13 mod 17. Choose P1(x1, y1) = (1, 7). From
De�nition 4, the point doubling to derive P3(x3, y3)
is performed as follows:
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λ =
3(1)2 + 1

2(7)
mpd 17

=

{
4 mod 17

14 mod 17
mod 17

}
= {(4 mod 17)× (14−1 mod 17)} mod 17

= {(4)× (11)} mod 17

= 44 mod 17

= 10

x3 = (10)2 − 2(1) mpd 17

= 98 mod 17

= 13

y3 = 10(1− 13)− 7 mpd 17

= 9 mod 17

= 9

Therefore, on the elliptic curve E17, the result of
Q = 2P1, in other words P3(x3, y3), is (13, 9) .

2.2 Modi�ed Pell Numbers

The Fibonacci sequence [13] is a set of numbers in
which each number is the sum of the two predecessors.
Pell numbers [14] are based on Fibonacci numbers ex-
cept the number in a Pell sequence is greater than the
number in a Fibonacci sequence at the same index.
A Pell and Modi�ed Pell sequence [15] are de�ned
in De�nition 5 and 6, respectively. De�nition 7 de-
scribes how the ratio of two consecutive Pell numbers
gets closer to the silver ratio as the ith Pell number
approaches in�nity.

De�nition 5: [15] Let the sequence of Pell numbers
be

n1, n2, n3, n4, n5, . . . , ni, . . . (11)

where ni is the number at the ith index in the Pell
sequence. The ith Pell number is de�ned as follows:

ni =

 0 if i = 1;
1 if i = 2;
2ni−1+ni−2 otherwise.

(12)

Therefore, the recurrence relation of the Pell se-
quence can be shown as

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378,. . .
De�nition 6: [15] Let the sequence of Modi�ed Pell

numbers be

m1,m2,m3,m4,m5, . . . ,mi, . . . (13)

where mi is the number at the i
th index in the Mod-

i�ed Pell sequence. The ith Modi�ed Pell numbers is
de�ned as follows:

mi =

{
1 if i = 1, 2;
2mi−1+mi−2

otherwise.
(14)

Therefore, the recurrence relation of the Modi�ed
Pell sequence can be shown as

1, 1, 3, 7, 17, 41, 99, 239, 577,. . .
De�nition 7: [16] Let ϕ be the silver ratio that is

denoted by the ratio of two consecutive Pell numbers
in sequence. The silver ratio can be de�ned by the
following rule:

ϕ = lim
i→∞

ni
ni−1

= 1 +
√
2 (15)

where ni, ni−1 ∈ Z+

3. RELATED WORK

Every encryption and decryption process consists
of an algorithm and a key. Generally, the algorithm
used for both processes is revealed to everyone, but
the key makes the process of cryptography secure.
The strength of cryptographic algorithms is normally
based on the di�culty of knowing the pattern of the
algorithm without additional information, and the
key size. Consequently, e�orts to make keys more
secure have usually generated large keys. One way to
solve this problem is ECC [17, 18]. Koblitz and Miller
[19] introduced the ECC technique to reduce key size,
basing their innovation on the concept of the Elliptic
Curve Discrete Logarithm Problem (ECDLP). Com-
pared with Rivest-Shamir-Adleman (RSA) [20], ECC
o�erred the same level of security using a smaller key
size [21, 22]. An elliptic curve is applied for key agree-
ment [23, 24] in both symmetric and asymmetric key
algorithms.

Keys schemes generated from ECC use much fewer
bits than those generated for cryptographic systems
that are based on integer factorization and discrete
logarithm problems. Many researchers have exploited
this advantage of ECC and implemented it in cryp-
tographic algorithms and various tasks of key agree-
ment. The main process in ECC is a scalar multi-
plication (Q) de�ned in De�nition 1. If k is large,
the number of multiplication operations is increased.
Therefore, current research has focused on reducing
the number of these arithmetic operations. An ellip-
tic curve used for scalar multiplication is de�ned over
a �nite �eld which could be binary or a prime �eld
[25, 26]. The basic methods used for scalar multipli-
cation over a binary �eld are the right-to-left binary
(RLB) and the left-to-right binary (LRB) methods.
There are three general methods for scalar multipli-
cation over prime �elds [27�29]: the double-and-add
method, the NAF method, and the window method.
The cost of scalar multiplication methods depends on
the cost of arithmetic operations.

Some research has applied elliptic curves over bi-
nary �elds. Susantio and Muchtadi-Alamsyah [27]
separated plaintext into several blocks using a sim-
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ple version of the Elliptic Curve Integrated Encryp-
tion Scheme (ECIES). Javeed, et al. [30] designed a
method of providing new high-performance hardware
for calculating scalar multiplication based on paral-
lel modular multiplication operations implemented on
Xilinx Virtex-6, Virtex-5, and Virtex-4 FPGA plat-
forms. However, some research has applied elliptic
curves over prime �elds for large scalar multiplica-
tion. Panchbhai and Ghodeswar [31] explained the
Verilog implementation by digitizing serial computa-
tions on elliptic curves to calculate point addition and
point doubling for faster computation and more ef-
�cient algorithms. Phalakarn, et al. [28] extended
the idea of optimal representation for a right-to-left
parallel to calculate the scalar multiplication on an
elliptic curve based on NAF and devised a mathe-
matical model to reduce computation time by using
parallel computing. Additionally, one of the interest-
ing methods used for the ECC approach is Fibonacci
numbers. Fibonacci numbers have been applied in
both the process of algorithms and key generation
to reduce the computation time. Raphael and Sun-
daram [32] designed a secured communication using
Fibonacci numbers and Unicode symbols to generate
encryption and decryption algorithms. Plaintext was
converted into ciphertext by replacing one character
with another based on Fibonacci numbers and then
the ciphertext was converted to Unicode symbols.
Mukherjee and Samanta [33] presented a new tech-
nique to encrypt data using Fibonacci numbers hid-
den in an image. Agarwal, et al. [34] then extended
the two-phase encryption of Raphael and Sundaram
[32] by converting plaintext using characters based on
Fibonacci numbers and Unicode symbols and then en-
crypting the Unicode symbols into an image. Zhang
and Tan [35] explained the use of Fibonacci numbers
in scalar multiplication operations for key generation.
They used the Zeckendorf and Pell representation to
construct Binary Scalar Multiplication (BSM). Liu,
et al. [36] then proposed new addition and dou-
bling formulas, called Fibonacci-type Addition Chain
(DFAC) algorithm, to reduce computation time. For
the same reason, Duemong and Preechaveerakul [37]
proposed a new approach of calculating large scalar
multiplication that was based on Pell numbers.

As the decrement of computation time for large
scalar multiplication is an important part of key gen-
eration, this paper introduces an e�cient algorithm
by applying Modi�ed Pell numbers in a 2 × 2 matrix
representation.

4. LARGE SCALAR MULTIPLICATION

ALGORITHM USING MODIFIED PELL

NUMBERS

Elliptic curve cryptography provides a high level
of security with a smaller key size. Scalar multipli-
cation on an elliptic curve is the main process for
calculating key points. If the scalar k is large, the

number of arithmetic operations, especially multipli-
cations, is increased. This complexity increases com-
putation time. To reduce the computation time, we
propose a new algorithm called Large Scalar Mul-
tiplication Algorithm using Modi�ed Pell Numbers
(LSMA − MPN). LSMA − MPN consists of
two main processes: creating a table of points at the
numbers in the Modi�ed Pell sequence (P4MP ta-
ble), and calculating scalar multiplication on an el-
liptic curve.

Theorems 1 - 2 are presented next, then Example
3 explains how to �nd the index of a number in the
Modi�ed Pell sequence. Example 4 explains how to
�nd the numbers in the sequence.

Theorem 1: Letmi be the number at the index i in
a Modi�ed Pell sequence (1, 1, 3, 7, 17, 41, 99, 239, . . .)
where m, i ∈ Z+, and let δ be the normalization ratio
of two consecutive Modi�ed Pell numbers in the se-
quence. Then a relation of two consecutive Modi�ed
Pell numbers in the sequence is 1 +

√
2 denoted by

lim
i→∞

mi

mi−1
= 1 +

√
2 (16)

Proof:

Assume that δ is the normalization ratio of two
consecutive Modi�ed Pell numbers in the sequence,
then

δ = lim
i→∞

mi

mi − 1

where i ∈ Z+.
From (14), for i ≥ 3;

mi = 2mi−1 +mi−2

Thus,
mi

mi−1
= 2 +

mi−2

mi−1

Suppose δi =
mi

mi−1
,

then δi = 2 +
mi−2

mi−1
,

when i = 3; δ3 = 2 +
m1

m2
= 2 +

1

1
= 2

i = 4; δ4 = 2 +
m2

m3
= 2 +

1

3
= 2.3333

i = 5; δ5 = 2 +
m3

m4
= 2 +

3

7
= 2.4286

i = 6; δ6 = 2 +
m4

m5
= 2 +

7

17
= 2.4118

i = 7; δ7 = 2 +
m5

m6
= 2 +

17

41
= 2.4146

i = 8; δ8 = 2 +
m6

m7
= 2 +

41

99
= 2.4141

i = 9; δ9 = 2 +
m7

m8
= 2 +

99

239
= 2.4142

As i approaches in�nity; therefore, limi→∞ =
1 +
√
2

From now on, we will de�ne the index i in the
Modi�ed Pell sequence (mi) as follows:
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i = b1 + (µ× log(mi) + ω)c (17)

where ω, µ, and δ are de�ned as

ω = log
√
2× µ,

µ =
1

log δ
,

δ = 1 +
√
2

To reduce time calculating scalar multiplication on
an elliptic curve, the ratio in Theorem 1 is applied to
�nd the index of a number in the Modi�ed Pell se-
quence using the �oor function (the largest integer
less than or equal to the given number) as shown in
(17).

Example 3: To �nd the index i of the number 135
in the Modi�ed Pell sequence by using (17), the op-
eration is performed along these lines:

i = b1 +
(

1

log(1 +
√
2)
× log(135) + log

√
2× 1

log(1 +
√
2)

)
c

= b1 + (2.6125× 2.1303 + 0.1505× 2.3125)c
= b1 + 5.9587c
= b6.9587c
= 6

In fact, via rounding, the closest number to 135 s
99 at the index 7 in the Modi�ed Pell sequence (see
Table 1; m7 = 99). However, using (17) to reduce
computation time, the closest number to 135 is 41 at
the index 6 (see Table 1; m6 = 41) and this index will
be used to the last index of 135 in the Modi�ed Pell
Sequence.

Table 1: Modi�ed Pell number at index i.

i 1 2 3 4 5 6 7 8 9
mi 1 1 3 7 17 41 99 239 577

We then have applied a 2 × 2 matrix to speed up
calculating the numbers of the Modi�ed Pell sequence
from index 1 (m1) to index i (mi) as shown in Theo-
rem 2 and presented the time complexity in Lemma
1.

Theorem 2: Let mi be the number at the index
i in a Modi�ed Pell sequence where the number of
the Modi�ed Pell sequence mi where i ≥ 4, is derived
from a matrixM i based on the following 2× 2 matrix:

M i = NM i−1;M i =

[
mi mi−1
mi−1 mi−2

]
, (18)

and a matrix N that can be de�ned by

N =

[
2 1
1 0

]
, (19)

and for i ≥ 3;

mi = 2mi−1 +mi−2

proof:

The following property of the initial matrix M i at
initial index i = 4 is

M4 = NM3

=

[
2 1
1 0

] [
m3 m2

m2 m1

]
=

[
2m3 +m2 2m2 +m1

m3 m3

]
=

[
m4 m3

m3 m2

]
Therefore, the number of the Modi�ed Pell se-

quence mi in the matrix M i is true for i = 4.
Suppose the number of the Modi�ed Pell sequence

at index i (mi) in the matrix M i is true for i = j.
Then,

M j =

[
mi−1 mi−2
mi−2 mi−3

]
= NM j−1 (20)

Now, we will show it is true for i = j + 1 by using
(20)

M j+1 =M.M j

=M(NM j−1)

= NM j

=

[
2 1
1 0

] [
mi−1 mi−2
mi−2 mi−3

]
=

[
2mi−1 +mi−2 2mi−2 +mi−3

mi−1 mi−2

]
=

[
mi mi−1
mi−1 mi−2

]
Thus it is true for i = j + 1. By the principle of

mathematical induction, the number of the Modi�ed
Pell sequence of index i (mi) in the matrixM i is true
for all i ≥ 4.

Example 4: Find the Modi�ed Pell number at the
index 7 (m7) in the sequence. Using Theorem 2, the
number at the index 7 is

M7 = NM (7−1)

=

[
2 1
1 0

] [
m6 m5

m5 m4

]
So, we can simply multiply matrix N with matrix

M6 to give the result.

M7 =

[
99 41
41 17

]
=

[
m7 m6

m6 m5

]
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Therefore, the number of the Modi�ed Pell se-
quence at the index 7 (m7) in matrix M7 is 99. The
set of numbers in the sequence from index 1 to 7 is
{1, 1, 3, 7, 17, 41, 99}.

Lemma 1: Let T (n) be a function over the pos-
itive numbers de�ned by the recurrence that �nds
the numbers (mi) in the matrix M i from Theorem 2.
Then, the time complexity of calculating the numbers
in Modi�ed Pell sequence is O(log2 n), where n is the
number of indices of the Modi�ed Pell sequence.

Proof:

From Theorem 2, a matrix M i based on 2 × 2
matrix is [

mi mi−1
mi−1 mi−2

]
and a matrix N is [

2 1
1 0

]
We use matrix multiplication for multiplying the

matrix M to recursively compute M i+1 where i ≥ 4,
and m, i ∈ Z+ expressed as

M i+1 = NM i

=

[
2 1
1 0

] [
mi mi−1
mi−1 mi−2

]
=

[
2mi +mi−1 2mi−1 +mi−2

m1 mi−1

]
and i represents the ith power of the matrix M as

i = 1;

M1 =M1/2 ·M1/2

=M1

i = 2;

M2 =M2/2 ·M2/2

=M1 ·M1

i = 3;

M3 =M3/2 ·M3/2

=M6/2

=M3

=M1 ·M1 ·M1

and for any i;

M i =

i∏
1

M1 (21)

Hence, the number of multiplications T (n) satis�es

T (n) = T (
n

2
) + 1 (22)

where n = 2i, and i = log2 n from which we �nd
T (n) and the answer of calculating the numbers in
Modi�ed Pell sequence is O(log2 n).

4.1 Creating Modi�ed Pell Table

The process of creating a table of points P at the
numbers in the Modi�ed Pell sequence (P4MP table)
stores the number at the index i (mi) in the sequence,
the point P derived from scalar multiplication at the
index i (Pi), and the number of times to calculate
the scalar multiplication at the point Pi (ti). The
creation of a P4MP table requires �nding the last
index (li) of scalar k using (17), calculating each of
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Fig.4: The set of points of E23 : y2 = x3 + x +
7 mod 23.

the Modi�ed Pell numbers from index 1 to the last
index (li) using Theorem 2, and �nding the point P
on the elliptic curve related to each index i using Def-
inition 3 and De�nition 4, respectively. Algorithm 1
outlines the process.

4.2 Calculating Large Scalar Multiplication

The scalar multiplication (Q) of scalar k at point P
on an elliptic curve (kP ) uses the P4MP table. The
process is described in Algorithm 2 and Example 5
demonstrates how LSMA − MPN works.

Example 5: Suppose an elliptic curve E23 : y2

= x3 + x + 7 mod 23. Find Q for the scalar k =
293 and the starting point P0 = (7, 9). Fig. 4
shows the graph of E23. The set of points on this
curve is {(1,3), (1,20), (4,11), (4,12), (7,9), (7,14),
(9,3), (9,20), (13,3), (13,20), (15,4), (15,19), (16,5),
(16,18),(19,10), (19,13), (20,0)}.

Following Algorithm 1 to create the P4MP table,
the last index i of scalar k = 293 in the Modi�ed Pell
sequence is calculated using (17) as follows:

li = b1 +
(

1

log(1 +
√
2)
× log(293) + log

√
2× 1

log(1 +
√
2)

)
c

= b1 + (2.6125× 2.4669 + 0.1505× 2.6125)c
= b1 + 6.8379c
= b7.8379c
= 7

Then, we �nd the Modi�ed Pell numbers (mi) from
index 1(i = 1) to the last index (i = li) via the 2×2
matrix shown in Theorem 2 (Example 4). Next, we
calculate point Pi on the elliptic curve related to the
number mi using De�nition 3 and 4, respectively. The
results are shown in Table 2.

Table 2: The P4MP table of k = 293.

i 1 2 3 4 5 6 7
mi 1 1 3 7 17 41 99
Pi (7,9) (7,9) (4,11) (16,5) (7,14) (19,10) (20,0)
ti 0 0 0 0 0 0 0

After the P4MP table has been created, Algo-
rithm 2 is applied with two sub-processes. The �rst
sub-process determines the number of times to mul-
tiply the points (ti) of k = 293. The sub-process
starts from the last index in the P4MP table (li =
7) which is related to 99. We multiply 99 by 2 (i.e.,
2 × 99 = 198) and subtract product from k to �nd
the remaining scalar k: (i.e., 293 - 198 = 95). We
then read the number at the previous index in the
P4MP table to verify that mi is less than or equal
to the remaining scalar k. The number at index 6
(m6) is 41, and we multiply 41 by 2 (i.e., 2 × 41 =
82). The process is continued to �nd the remaining
scalar k is 13 (i.e., 95 - 82 = 13) and the number at
index 4 (m4) is found. Thereafter, we de�ne index
4 and the remaining scalar k is 6 (i.e., 13 - 7 = 6).
Finally, using ti from Table 3, the number at index 3
(m3) is applied two times (i.e., 2 × 3 = 6). The sec-
ond sub-process calculates the scalar multiplication
Q = 293P using ti in the P4MP table (see Table 3).
Consequently, the scalar multiplication of 293P con-
sists of 2(99P ) = (7, 9); 2(41P ) = (9, 3); 7P = (16,
5); and 2(3P) = (1, 3). Therefore, the co-ordinates
of 293P = 2(99P ) + 2(41P ) + 1(7P ) + 2(3P ) yields
(1,3).

Table 3: The number of times in P4MP of k = 293.

i 1 2 3 4 5 6 7
mi 1 1 3 7 17 41 99
Pi (7,9) (7,9) (4,11) (16,5) (7,14) (19,10) (20,0)
ti 0 0 2 1 0 2 2

5. EFFICIENCY ANALYSIS

This section presents the computation time by ap-
plying the 2 × 2 matrix which compares the results
with the iteration method, the time complexity of
LSMA − MPN algorithm, experimental results and
discussion.

5.1 2 × 2 Matrix representation

We calculated large scalar multiplication using
Modi�ed Pell numbers and applied our 2 × 2 ma-
trix representation to reduce computation time. Fig-
ure 5 describes the comparison of computation time
between the iteration method and our matrix repre-
sentation method. The result shows that the com-
putation time by applying our matrix representation
method to calculate scalar multiplication takes less
time than the iteration method, especially when the
index i is very large.
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Fig.5: Comparison of the computation time between
the iteration method and our matrix representation
method.

5.2 Time Complexity

To discusses the time complexity, Lemma 2 is de-
�ned for the general algorithm. For LSMA − MPN
algorithm, we de�ne Lemma 3 and 4.

Lemma 2: For the general algorithm, the cost of
calculating scalar multiplication is O(k).

Proof: The cost of the scalar multiplication de-
pends on the cost of arithmetic operations. The oper-
ations of point addition and point doubling are O(1).
The process to calculate kP is used k times to cal-
culate the scalar multiplication. Equation (23) shows
the time complexity of the general algorithm.

O(1× k) = O(k) (23)

Therefore, the time complexity of the general al-
gorithm is O(k).

Lemma 3: For the LSMA − MPN algorithm,
the best case of calculating scalar multiplication is
O(log2 n).

Proof: The best case for the LSMA −MPN algo-
rithm occurs when a scalar k equals to the number of
last index (mli) in P4MP table. The time to calcu-
late the scalar multiplication k using the 2×2 matrix
to �nd the number in P4MP table is O(log2 n) where
n = li and li < k.

Lemma 4: For the LSMA − MPN algorithm,
the worst case of calculating scalar multiplication is
O(n).

Proof: The worst case for the LSMA − MPN al-
gorithm includes the time to create the P4MP table
using Algorithm 1, which is O(log2 n) where n = li,
the time for �nding the numbers of calculating point
doubling in the P4MP table which is O(n), and the
time to calculate the scalar multiplication k which is
O(n). The time complexity of the worst case is shown
in (24)

O(log2 n+ n+ n) = O(n) (24)

Therefore, the time complexity of the worst case
for the LSMA − MPN algorithm is O(n).

Fig.6: Computation time of the scalar multiplication
on the elliptic curve between the general and LSMA -
MPN algorithm.

Fig.7: Time to break key using standardized
curves:secp160r1 and secp256k1.

5.3 Experimental Results

This work compared the performance of a general
algorithm to the LSMA − MPN algorithm in calcu-
lating scalar multiplications on an elliptic curve im-
plemented in Python. The hardware used in this ex-
periment was a computer with a 3.1 GHz Core i5
processor and 16 GB memory. Using both the gen-
eral algorithm and the LSMA − MPN algorithm,
we compared computation times for multiplications
of scalars k from k = 5,000 to k = 1,000,000. Figure
6 shows the high speed of scalar multiplication using
LSMA − MPN , which was also more e�cient than
the general algorithm in all of the elliptic curve point
multiplications. The experimental result shows that
LSMA − MPN reduces the computation time by
approximately 67% in comparison with the general
algorithm.

In addition, to achieve reasonable security, we
compared the time required to break a key for a 160-
bit key and a 256-bit key. The values are computed in
MIPS years. A MIPS year represents the computing
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time of 1 year on a machine capable of performing
one million instructions per second. The scalar mul-
tiplication for two SECG-standardized elliptic curves
over a prime �eld, secp160r1 for 160-bit key (80-bit
security level) and secp256k1 for 256-bit key (128-bit
security level) [38, 39] were implemented. Figure 7
shows the time taken on a brute force attack for mul-
tiplication of scalar k from k = 1; 000 to 10; 000;
000. To clarify the result in Fig. 7, Table 4 displays
some scalars (k) with the times to break a key. The
experimental result indicated that at the same key
size

Table 4: Examples of time to break key using stan-
dardized curves: secp160r1 and secp256k1.

Number of
Time to break key

scalars: k
(MIPS Years)

secp160r1 secp256k1
5,000 1.45× 1040 1.53× 1069

10,000 1.16× 1041 1.35× 1070

50,000 1.58× 1041 2.05× 1070

100,000 9.47× 1041 1.33× 1071

500,000 1.02× 1042 1.49× 1071

1,000,000 9.61× 1042 9.62× 1071

6. CONCLUSION

To calculate large scalar multiplication on the el-
liptic curve, we proposed an LSMA − MPN al-
gorithm based on Modi�ed Pell numbers and 2 × 2
matrix representation to speed up the large scalar
multiplication of point addition and point doubling.
The results showed that the proposed algorithm pro-
cessed scalar multiplications at high speed and was
more e�cient than a general algorithm in all of the
elliptic curve point multiplications. Using our pro-
posed algorithm to calculate Modi�ed Pell numbers
in a sequence, we also demonstrated a di�erence in
execution time between the iteration and our ma-
trix representation methods. Additionally, we com-
pared the time required to break keys for high secu-
rity using two SECG-standardized elliptic curves over
a prime �eld: secp160r1 and secp256k1, which are
80-bit level security level and 128-bit security level,
respectively. This �nding proves that at the same key
size with a large scalar (k), breaking a key required
much more computing time. In future work, we will
compare the LSMA − MPN algorithm e�ciency
with other related algorithms. Furthermore, we will
apply LSMA − MPN that is suitable for the gen-
erated key to propose a new e�cient cryptographic
algorithm for encryption and decryption of data.
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