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ABSTRACT: This work proposes to improve robustness of a cascaded segmen-
tation neural network by adding discriminative image enhancement to its work-
flow. Unlike prior work, this image enhancement can also be applied as data
augmentation and easily adapted for existing models. Its generalization can im-
prove accuracy across multiple segmentation tasks and datasets. The method first
localizes a target organ in a 2D fashion to obtain a tight neighborhood of the organ
in each slice. Next, the method computes an HU histogram of a region combined
from multiple 2D neighborhoods. This allows the method to adaptively handle
HU-range difference among images. Then, HUs are nonlinearly stretched through
a parameterized mapping function providing discriminative features for the neural
network. Varying the function parameters creates different intensity distributions
of the target region. This effectively enhances and augments image data at the
same time. The HU-reassigned region is then fed to a segmentation model for
training. Our experiments and ablation analysis on liver and kidney segmentation
showed that even a simple cascaded 2D U-Net model with limited original train-
ing data could deliver competitive performance in a variety of datasets. Overall,
contributions of this work include adaptive image enhancement and data aug-
mentation that are specifically designed for CT image segmentation and cascaded
networks. The method was shown to be generalizable and effective in improving
robustness of existing networks in a way that enables a simple model to both save
computing resources and be highly accurate.

DOI: 10.37936/ecti-cit.2021152.240112
Article history: received March 18, 2020; revised May 13, 2020; accepted June 29, 2020; available online April 20, 2021

1. INTRODUCTION

Analysis of 3D medical images has become a com-
mon tool in many clinical practices, including dis-
ease screening, diagnosis, and treatment. Tumor and
polycyst analyses in the liver and kidney are among
the most popular subjects in recent years. Also, to-
tal kidney and liver volume has been found to be a
major risk factor for malnutrition in some patients.
Volumetric analysis of the liver and kidney through
computed tomography (CT) data is a convenient tool
in a case study [1]. These analyses usually rely on
region segmentation of involved organs and lesions.
Although there have been some significant improve-
ments in segmentation accuracy in the past few years,
researchers are still looking for batter methods that

are accurate across multiple tasks and datasets [2].

In recent years, many neural networks for medical
image segmentation have been proposed to improve
accuracy and efficiency. There are several noteworthy
achievements for livers, kidneys, and their tumor seg-
mentation (e.g. H-DenseUNet and a fined-tuned 3D
Residual U-Net) [3][4]. This work, however, tackles
the segmentation problem in another aspect. Instead
of trying to find a better neural network architec-
ture, we explored the challenge of the low contrast
issue common to most medical image segmentation
problems. To this end, we introduce a novel dis-
criminative image enhancement and data augmenta-
tion, which can be easily employed by most cascaded
image-segmentation networks.
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Fig.1: Ezamples of the proposed discriminative im-
age enhancement and data augmentation for liver
segmentation. The method both boosts contrast and
provides a variety of images for data augmentation.
From left to right: example images from the SLiver07,
3DIRCADbD, and LiTS datasets, respectively [7]-[9].
Top row: images with HU window [-450, +550] (red
arrows point at the livers). Second row: images when
enhanced by a method that assumes a fived HU range
of the liver. It is obvious that the liver from SLiver07
looks much different from others due to its different
HU range. This is not a major issue by itself, as
long as a model and training process can address such
HU differences. Howewver, that can be challenging in
many contexts. Third row: images after enhancement
by the proposed adaptive method with the default pa-
rameters and with focus on the liver. Bottom row:
similar to the third row, but are enhanced by differ-
ent parameters. This produces additional variation of
enhanced images for training data.

In our ablation analysis and cross validation, we
show that accuracy and robustness gained from the
proposed discriminative image enhancement and data
augmentation is particularly significant when applied
to a cascaded segmentation network. Without the
proposed image enhancement, variances of accuracy
in liver and kidney segmentation were much higher,
and there were several cases that were poorly seg-
mented.

Fig.2: FExzamples of the proposed adaptive image en-
hancement and data augmentation for kidney segmen-
tation. The arrangement of rows and columns are
the same as Fig.1. The red arrows point to the kid-
neys. All images in this figure are from the KiTS
dataset [17]. In the third and fourth rows, the pro-
posed method does not make enhanced images from
the three cases look similar, but contrast between the
kidneys and their neighborhood becomes promounced
in different ways.

1.1 Study Overview

The low contrast issue can usually be ameliorated
by image enhancement, but there may be consider-
able Housfield-Unit (HU) variation in a target region
among patient cases. It is hard to specify a fixed,
tight HU range on which an image enhancement will
focus and achieve robustness in region segmentation
throughout a large dataset. If we, however, know
the HU profile of a target region of a patient case,
it is possible to select better image-enhancement pa-
rameters resulting in improvement of segmentation
accuracy for that patient case. In addition, if we em-
ploy different sets of image-enhancement parameters,
a variety of images can be generated and utilized as
augmented data for neural network training. This has
potential to improve segmentation accuracy in many
tasks.

For the sake of concreteness, Fig.1 and Fig.2 are
provided to illustrate one of the main ideas of the
proposed image enhancement and data augmenta-
tion techniques. The figures depict how HU reas-
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signment can enhance the image and ameliorate the
low-contrast issue, and how we can adapt it to aug-
ment a dataset. Furthermore, the underlying HU-
reassignment function is partially based on a sigmoid
function. It can provide discriminative advantages for
region segmentation as well.

To achieve our goal, the method first needs to fo-
cus on a target region. It adaptively creates new data
from HU-value profiles in the target neighborhood.
The method employs a RetinaNet-based model for
region localization to obtain a bounding box [5][6].
Then, a histogram of HU values in the bounding box
is computed and redistribution of the HU values is
performed to enhance and augment image data.

It is important to note that region localization be-
comes a typical step before actual segmentation in a
variety of tasks, especially when a target region in a
cross-sectional image is relatively small. This is es-
pecially true for the spine and tumors [10]-[14]. This
segmentation workflow is referred to as a cascaded
segmentation or a ‘hard-attention’ model. Many
other methods employ a soft-attention mechanism
that allows a segmentation model to focus better on
the neighborhood of a target region to locally enhance
an input image [14]-[16].

The major differences of our work from other cas-
caded models are (1) our region localization method
is a 2D-3D hybrid which enables it to accumulate HU
data more relevant to a target region across slices, (2)
our image enhancement is not a common histogram
equalization; it specifically aims at providing discrim-
inative features for segmentation, (3) its parameteriz-
able nature allows it to work as a data augmentation
technique; more interestingly, our data augmentation
is executed in the middle of a segmentation workflow,
not at the beginning, and (4) its modular design is
‘pluggable’ to existing cascaded models.

1.2 Contributions of the Proposed Method

Considering common preprocessing steps and
data-augmentation techniques, we see that neural
network models for medical image segmentation in
CT/MRI data rarely make use of characteristics of
target regions or the nature of the CT/MRI image
itself, at least not explicitly. Specifically, the image
is generally similar to a grayscale image. A target re-
gion, such as the liver or kidney, has a typical HU
range. Yet, the range may be significantly differ-
ent for some cases. If we can utilize these charac-
teristics beyond the common preprocessing steps and
data-augmentation techniques, a seemingly less pow-
erful model can probably deliver comparable accu-
racy with much less inference time and computing
resources. Also, segmentation accuracy of a state-of-
the-art technique can be further improved.

This work proposes discriminative image enhance-
ment and data augmentation that can be applied
in general CT image segmentation tasks. This is

achieved via an effort to exploit knowledge of actual
HU values of a target region in an input image, rather
than relying on a fixed HU range as is done in most
other work. For example, a common HU range of the
liver is 45 to 65HU, while that of the kidney is 20 to
40HU. However, these ranges may not hold true due
to various conditions such as use of a contrast agent
and lesion involvement. Therefore, it is important
to find good approximations for each case, since HU
values may greatly vary among patients’ cases.

Through that effort, this work does not need to set
a tight HU window for a specific organ. Instead, we
set HU windows to [-450, 550] for both liver and kid-
ney segmentation in our experiments. The method,
then, adaptively enhances and normalizes data ac-
cording to HU values in the neighborhood of a target
organ located by a detector.

It is worth noting that the HU window in our ex-
periments is mainly utilized only for region localiza-
tion, and it is not important during a segmentation
step. This generalized method offers improved ro-
bustness in segmentation and enables a basic U-Net
model to deliver competitive accuracy which we have
demonstrated in liver and kidney segmentation.

The design of the method can also be readily uti-
lized by other cascaded models where a neighborhood
of a target region is extracted by the models. In de-
tail, once the neighborhood is located, we can feed
it to the proposed method to generate discriminative
features for either prediction or data augmentation.
Fig.3 illustrates how our work can collaborate with
other cascaded models. We expect that the proposed
method will provide similar benefits in other tasks
and that it can be generalized to a greater extent.
Evaluation of its impacts on other models, however,
is beyond the scope of this work.

Discriminative ‘
Feature Maps Refined
Segmentation
t Network
Discriminative

Feature
Generator

®

Localization
Network

-

Bounding Boxes

Segmented

Input CT Image Region

Fig.3: Block diagram illustrating how the proposed
method can work with other cascaded models. In a
typical scenario, Block 1 is a localization network.
The block creates bounding boxzes for its cascaded
mechanism. Block 2 is the proposed method for gen-
eration of additional discriminative features and data
augmentation.
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The rest of this article is organized as follows: Sec-
tion 2 discusses studies related to CT-image segmen-
tation, especially those involving liver and kidney
segmentation. Section 3 explains the configuration
of our neural network models and the proposed im-
age enhancement and data augmentation. Section
4 presents the experiment setups and results of our
method. Finally, Section 5 concludes the article.

2. RELATED WORK

Many recent studies of CT-image segmentation fo-
cus on proposing neural network models. The U-
Net model is arguably one of the most successful
models. It has inspired many other competent seg-
mentation models. There are a few recent studies
that do not rely on a neural network, but still de-
liver a competitive accuracy, employing techniques
such as a variation-based method and graph-cut algo-
rithms [18][19]. Many research efforts are conducted
toward multi-task segmentation or methods general-
izable to perform segmentation for other organs or
lesions [20]-[25].

Since this work aims at providing a generalizable
method for CT-image enhancement and data aug-
mentation applicable to neural network training and
inference, we mainly cover related work focusing on
cascaded/attention-based segmentation, highly com-
petent models, preprocessing, and data augmenta-
tion.

2.1 Cascaded Segmentation and Attention

Mechanism

Recently, there have been several studies in cas-
caded segmentation in medical image processing.
Cascaded segmentation provides an attention mech-
anism for a model to focus on the neighborhood of
a target region. Christ et al. showed that a cas-
caded U-Net was significantly more accurate than a
basic U-Net in liver and tumor segmentation [26][27].
Yin et al. utilized a similar approach for kidney seg-
mentation [28], while Myronenko and Hatamizadeh
used boundary-aware networks to create an attention
gate for kidneys and kidney tumor segmentation [15].
Jiang et al. proposed an AHCNet, which successively
employs cascaded segmentation to segment both liv-
ers and liver tumors. The last part of AHCNet ap-
plies the segmented liver to enhance contrast between
livers and associated tumors.

2.2 Highly Competent Models

There are several models having high accuracy on
medical image segmentation, and some of them are
highly competitive in segmentation challenges. In the
LiTS challenge, H-DenseUNet was shown to be signif-
icantly accurate in both liver and liver-tumor segmen-
tation, especially in the 3DIRCADbD dataset [3]. In
fact, H-DenseUNet is also a cascaded segmentation

model. However, its main contribution is a hybrid
feature-fusion layer where both 2D and 3D features
are jointly optimized for final segmentation. In the
KiTS challenge, Isensee and Maier-Hein, the top per-
former, employed a Residual 3D U-Net [4], along with
extensive data augmentation, and marginally outper-
formed an ensembled model in a composite Dice score
of kidney and kidney-tumor segmentation [29].
Interestingly, these highly competent models are
all inspired by U-Net [3][4][29]. However, Xia et
al. proposed a deep adversarial network based on
DeepLab-v3 for segmentation tasks and their own
Pix2Pix to complete their adversarial model [30]-32].
It was shown in experiments that their adversarial
model outperformed models competing in the LiTS
challenge and demonstrated improvements over the
baseline DeepLab-v3 in many performance metrics.

2.3 Preprocessing and Data Augmentation

Common preprocessing steps for medical segmen-
tation tasks include resampling, truncating HU val-
ues, image equalization, normalizing HU values by a
zero-mean, and using unit-variance approaches. Data
augmentation in 3D medical segmentation, nonethe-
less, appears to be generic for typical image data and
not specially designed for 3D medical segmentation
tasks. For example, Isensee and Maier-Hein employed
scaling, rotations, brightness, contrast, gamma, and
Gaussian noise augmentations [4].

The typical HU range for each target region is also
different. H-DenseUNet and AHCNet used an HU
range of [—200, 250] for liver and liver-tumor segmen-
tation [3][14], while Isensee and Maier-Hein employed
an HU range of [—79,304] for kidney and kidney-
tumor segmentation [4]. Wang et al. set an HU range
for a liver tumor to [—110,190] and to [—100, 200] for
pancreas segmentation in their Nested Dilation Net-
work (NDN) [33].

3. METHODOLOGY
3.1 Overview

To perform discriminative image enhancement, we
first acquire HU values of a target region and its vicin-
ity in a bounding box. This is done by region lo-
calization based on a neural network. We create an
HU histogram and assume that the HU with max-
imum frequency in the bounding box of the target
region represents typical HU values of the target. We
assume further that a low contrast problem can be
ameliorated if contrast is mainly stretched around
the maximum-frequency HU. Once the image is en-
hanced, a neural network model for segmentation can
employ it for training. During prediction, the image
is enhanced and segmented in the same way. Since
contrast can be stretched with a different parame-
ter, utilizing multiple parameters during training ef-
fectively augments the data. During prediction, how-
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ever, only the default image enhancement parameter
is employed.

3.2 Region Localization

Region localization is done in the context of object
detection. For the sake of concreteness, assume that
we are to localize the liver. We employ a RetinaNet
model implemented by Fizyr B.V. as a base model
[6]. Since the model localizes the liver in a 2D con-
text, we need additional steps to localize the liver and
accumulate needed HU data.

The method first finds the largest 2D bounding
box detected during liver localization. Then it keeps
incorporating other consecutive slices with detected
liver regions. At this point, the method has the
largest 2D bounding box and related slices. Next,
it expands the related slices in the superior direction
(to the patient’s head) and inferior direction (to the
patient’s feet) by 10 slices in each direction. This step
is needed since the top and bottom parts of the liver
are small and mis-detection often occurs.

Since the segmentation model assumes a cross-
section size of 384 voxels x 384 voxels, the final 3D
bounding box has the same cross-section size. In de-
tail, the method expands the largest detected bound-
ing box from its center to the size of 384 x 384. From
the expanded cross-section, it incorporates all the re-
lated slices to build a 3D bounding box of the liver.
It is important to note that 2D detection may not be
reliable in some slices, and that there may be multi-
ple liver regions in a slice, but the aforementioned
steps only need to know the slices involved. The
cross-section expansion corrects regression errors of
bounding-box scope.

Regarding data preprocessing for this step, the HU
window was set to [-450, 550] as mentioned in Section
1.2. HU values in the window are linearly normalized
to the range [0, 1]. This work later refers to this
normalization procedure as NMIM.

To generalize the idea for other organs, we demon-
strate the concept kidney localization where there are
typically 2 kidneys per case study. In this scenario,
the localization model is trained to detect each kidney
as a different object. Consequently, there are usually
two 2D bounding boxes of kidneys in each slice. The
method then finds the two largest 2D bounding boxes
that do not overlap and incorporates related slices for
each kidney.

Since the kidneys’ cross-sections are smaller than
the liver, the size of their expanded cross-section is
set to 192 x 192. There are a few cases where largest
bounding box exceeds the expanded size. In such a
case, the method shrinks the box to fit the ‘expanded’
size, i.e. 384 x 384 for the liver and 192 x 192 for
the kidneys. Fig.4 depicts the relationship between
a bounding box directly obtained from a RetinaNet
model and its corresponding expanded box.

3.3 Discriminative Image Enhancement

As mentioned earlier, the proposed image enhance-
ment needs to know the HU value that can represent
the target organ well in order to focus on the value
during intensity stretching. Although the localization
step creates a 3D bounding box for segmentation, 2D
bounding boxes lying inside the 3D one play a key
role in this adaptive image enhancement.

First of all, those 2D bounding boxes fit target
organs better than the 3D one, since they adjust to
actual presence of a target region in each slice. There-
fore, when an HU histogram for a target region is to
be created, voxels inside the 2D ones provides more
accurate data. In other words, our discriminative HU
mapping function is built upon statistics accumulated
inside 2D bounding boxes obtained from region local-
ization, not the expanded 3D bounding box defining
the region scope for segmentation.

Specifically, HU values from all voxels inside these
2D bounding boxes are accumulated to create the HU
histogram. Then, the HU value whose frequency is
the maximum is selected as the center for contrast
stretching. The process of creating the HU histogram
is illustrated in Fig.5.

Fig.6 and Fig.7 show examples of HU histograms
for the liver and kidneys. These histograms are cre-
ated from HU statistics accumulated from 2D bound-
ing boxes directly obtained by a RetinaNet model. It
is worth noting that these 2D bounding boxes may
not fully cover the target organs, but in those cases,
the missing statistical values are relatively small since
they come from the upper and lower edges of the or-
gans. Also, the HUs in the histograms are from the
input image, not values which have undergone trun-
cation by an HU window. The maximum-frequency
HU in accumulated 2D bounding boxes will be re-
ferred to as the center HU (i), which is employed in
the proposed parameterized discriminative HU map-
ping function.

Fig.4: Region localization and corresponding
cropped regions fed to a segmentation model. Yel-
low (smaller boxzes): largest 2D bounding boxes de-
tected by RetinaNet. Red (larger bozes): correspond-
ing cropped regions (corresponding expanded boxzes).
Left: results for liver detection. Right: results for
kidney detection.
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Fig.5:  Procedure for creating an HU histogram.
This histogram is employed for discriminative image
enhancement. Bounding boxes from involved slices
detected by RetinaNet connected with the slice with
the largest box are employed for HU statistics accu-
mulation. These boxes may be significantly different
in size, as displayed by the orange bounding bozxes.

Now that we have explained how the center HU for
nonlinear contrast stretching is calculated, we next
discuss how HU reassignment is computed for image
enhancement. The rationale of our HU reassignment
is based on observations that HUs of a target organ
usually cluster around the center value p. In addi-
tion, HUs of non-target voxels in detected bounding
boxes are relatively far away from the center value.
These HUs are represented by gray regions under the
blue dotted line in Fig.6 and Fig.7.

Since we want to make the HU difference between
the target and non-target voxels more pronounced
to discriminate between the two groups, we opt to
stretch the HUs around the center value y. Because
a sigmoid function can provide smooth HU stretch-
ing, the proposed HU reassignment function is based
on a sigmoid function. In contrast, typical histogram
equalization may be significantly affected by voxels
irrelevant to a target organ since they can make up
a large portion of the voxels inside bounding boxes
detected by RetinaNet (Fig.6). If typical histogram
equalization is applied, these irrelevant voxels may
distort the probability distribution in a way such that
it barely helps discriminate between a target and ir-
relevant voxels.

Our method reassigns HU values by using a func-
tion fx*, which is described by using a the following
equations:

fa'(z,p,w) =2 — p+w/2 (1)

1
1 + e~ _(ma_l")
!

EELACYITI Y U) 3)
fJ? (1‘ — 20 M ’U))
p(m,w,a) — 0(0,0.5,0') (4)
¢(1,0.5,0) — ¢(0,0.5,0)
x is an HU value, p is the center HU, w is the width of
the HU window, and o is HU stretching factor. The
first equation is a linear mapping of = that prevents
a negative value of the first parameter of ¢ in (3) and
(4). cis a function based on sigmoid. Function fa*

employs a scaling method to make the maximum and
minimum be one and zero respectively.
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Fig.6: HU histograms of liver ground truth (red), ac-
cumulated 2D bounding bozxes detected by RetinaNet
(blue dotted line), and original CT slices contain-
ing the liver region (gray). Top: histograms of the
SLiver07 case in Fig.1. Bottom: histograms of the
LiTS case in Fig.1. The horizontal azis represents
HU values, while the vertical one displays frequency of
vozxels having corresponding HUs. The HU values of
the SLiver07 and LiTS cases significantly differ. The
blue line indicates the HU with mazimum frequency
within the accumulated 2D bounding boxes. This HU
is the same, or almost the same, as the maximum-
frequency HU of the ground truth. The orange line is
set at HU = 50, which is close to a mean value of the
liver in unenhanced data [34).

In our experiment’s settings, the width of the HU
window w is a constant. Although it seems that we
change from depending on a specific HU range to de-
pending on the window size, w can be relatively large
and cover an HU range of many organs and lesions.
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In our experiments, w=1,000 and the default value
of 0=0.07. While the default ¢ may not be optimal
in some cases, we empirically found that it signifi-
cantly helped improve robustness of the method in
most cases. Fig.8 and Fig.9 illustrate how the pro-
posed method reassigns HU values and the impor-
tance of a suitable center HU.

The center HU p obtained through accumulated
2D bounding boxes detected by RetinaNet signifi-
cantly improves contrast of a target region. On the
other hand, using a fixed center HU may result in
contrast being stretched on an unrelated HU range of
a target region. Also, using the maximum-frequency
HU in the original CT slice (gray regions in Fig.6 and
Fig.7) may suffer from the same issue. Once param-
eters for HU reassignment are determined, HU reas-
signment is executed on an input image as depicted
in Fig.10. Outputs from a localization network (or-
ange rectangles) are applied to crop neighborhoods of
a target. These neighborhoods (red rectangles) have
the same size (384 x 384 pixels in our settings), and
they undergo HU reassignment.
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Fig.7: HU histograms for a kidney-segmentation

task from two cases in the KiTS dataset. Since the
kidneys are much smaller than the liver, the HU fre-
quencies appear much smaller when compared to the
whole CT slices. Similar to the liver data, HU val-
ues from two cases may be greatly different, but the
RetinaNet bounding boxes can find the center HUs as
intended.

The adaptability of the method is closely con-
nected to the value of u specific to each input image.

That was illustrated earlier in Fig.1, Fig.2, Fig.6, and
Fig.7. Since function c¢(z, u,0) is partially based on
a sigmoid function, it provides discriminative advan-
tages for segmentation of regions whose HUs are close
to w. It helps enhance contrast and normalize an im-
age at the same time. The significance of parameter
o related to data augmentation will be discussed in
the next section.
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Fig.8: Histograms of normalized HUs obtained from
different methods of the SLiver07 case shown ear-
lier in Fig.6. Histograms from Fig.6 are shown here
only for comparisons between normalized and origi-
nal histograms. The horizontal axis represents nor-
malized HU in range [0, 1]. The vertical azis denotes
frequency of HU values. FEzxcept for the NDSF his-
tograms, which are based on function z, fx*, value
normalization is done through the HU windows [-450,
550] as their centers are fized at HU = 50. The or-
ange line is the histogram computed for the default
NDSF model (0=0.07 and the center HU calculated
from accumulated 2D bounding boxzes). The center
HU for the NDSF model is shifted to 0.50. When the
center of HU stretching is not close to the mazimum-
frequency HU, the HU reassignment does not focus on
the target region (green histogram). In this example,
the target region corresponds to the rightmost peak of
the original CT slices (gray histogram), but the green
histogram focuses on the middle one instead.

3.4 Data Augmentation

When using the HU reassignment function fz*,
we can adjust parameter o to change image-
enhancement outcomes. Since the center HU mostly
depends on the HU in the target organ, adjusting
o will create images with different contrast levels be-
tween the organ and its neighborhood. We have made
the assumption that utilizing multiple ¢ values during
model training will help the model learn features re-
lated to the organ boundary and improve robustness
of the resulting trained model.

Fig.11 delineates how =z, fa*, and o are related.
By decreasing the value of o, the graph appears
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steeper since reassigned values are distributed to a
smaller range close to u, thereby producing more con-
trast around p and providing discriminative benefits.
Fig.12 depicts impacts of ¢ on contrast stretching. A
larger value of ¢ has a higher probability of covering
the entire HU range of a target region, but it may not
focus well on the main body of the target region.
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Fig.9: Histograms of normalized HUs obtained from
different methods of the KiTS image shown earlier at
the bottom of Fig.7. Similar to the previous figure,
the center HU p helps the method stretch contrast in
a relevant region and provides discriminative benefits
for kidney segmentation.
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Fig.10: Illustration of how HU reassignment is ap-
plied for a cascade segmentation of the liver.
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In the top diagram of Fig.12, ¢ = 0.07 produces
a curve covering regions of two gray peaks from the
right. This is a suitable choice of ¢ for providing dis-
criminative features since it significantly helps differ-
entiate between the liver (red) and its neighborhood
(gray under dotted blue line). For the bottom dia-
gram, however, 0 = 0.07 produces a curve partially
covering regions of three gray peaks, but it should also
include the leftmost peak in order to cover the entire
target region (red). Specifically, o = 0.15 (dark green
line) provides better discriminative features in this
case and o should be adaptive. Nonetheless, there
are not many such cases in the dataset. We selected
o = 0.07 as a default value.

We refer to a segmentation model trained by im-
ages enhanced solely using the default ¢=0.07 as
an NDSF (Normalized Discriminative Sigmoid Func-
tion) model. Also, we refer to a segmentation model
trained with additional ¢’s as an NDSF+ model. For
a segmentation model where training images are nor-
malized by NMIM, we regard it as a baseline model.
All three types of models have exactly the same neu-
ral network architecture for both detection and seg-
mentation tasks. The only difference between them is
the training data utilized for a segmentation model.
Their architecture is discussed next.

~=- NMIM u=50
1.0 { --- NDSFu=50,0=0.07
— NDSF u=181, 0=0.07
-=+ NDSFu=50,0=0.10
0.8 4 --- NpsFu=50,0-015
2 NDSF 4 =50, 0=0.20
o= NDSF u =50, 0=0.30
e | — NDSFu=181,0=0.1
g 061 — NDSF =181, 0=0.15
% NDSF =181, 0=0.2
i NDSF =181,
g 0.4
o
=
0.2
0.0 a : . . — HU
s e S > c &
Fig.11: Diagrams of HU reassignment functions
fx* and NMIM. An input HU (horizontal azis) is

mapped to normalized HU range [0, 1] (vertical azis).
The dotted lines represent the functions with u = 50,
while the solid lines represent the functions when p is
found by the proposed method in the SLiver07 case.
In brief, center HU p only translates the diagrams,
while o affects how much contrast there will be.
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Fig.12: Relationship of o and normalized HU his-
tograms of enhanced images.

3.5 Segmentation Model

Our segmentation model is essentially a basic U-
Net proposed by Ronneberger et al. [35]. The main
differences are (1) incorporation of dropout and batch
normalization [36][37], and (2) different input and
output sizes. For liver segmentation, the input and
output sizes are 384 x 384, while they are 192 x 192
for kidney segmentation. Fig.13 depicts the U-Net
architecture employed in this work. Another differ-
ence from the original U-Net model is the number of
convolutional layers and feature maps for each reso-
lution.

3.6 Cascaded Prediction

Due to the goals of our study, we explicitly sepa-
rate detection and segmentation tasks. First, explicit
separation allows us to study the impact of the pro-
posed method. It excludes side-effects from region
localization during ablation study. Second, there is
no need to repeat the detection task that provides
information about the center HU. Although we can
combine both detection and segmentation capabilities
in a single model and jointly optimize hyperparame-
ters for both tasks, doing so may make it harder to
study the impact of the proposed method.

Consequently, our cascaded prediction has two ex-
plicit stages executed. First the method resamples
the input image so that its voxel spacing is 0.75 mm

No.2, August 2021

x 0.75 mm x 0.75 mm. Next, it performs NMIM
normalization and employs RetinaNet to find the slice
whose detected bounding box is the largest. Finally,
it builds up the 3D bounding box to finalize the de-
tection task, while using 2D bounding boxes to accu-
mulate HU values and compute the center HU.

The segmentation task depends on the model type.
For a baseline, the same NMIM normalization is em-
ployed for segmentation. For the NDSF and NDSF+
models, image enhancement steps with default o =
0.07 are executed. Fig.14 illustrates how an NDSF
model is applied to segment regions in HU-reassigned
2D CT slices. Other models are processed in the same
manner.
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NDSF: 2D CT Segmented
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(384 x 384) 2D CT Slices
Fig.14: The U-Net architecture employed in this
work.
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4. EXPERIMENTS AND RESULTS
4.1 Experiment Setup

The experiments were conducted on liver and kid-
ney segmentation tasks. For liver segmentation, the
LiTS dataset was utilized for both training and test-
ing, while the SDIRCADDb and SLiver07 datasets were
employed solely for testing. For kidney segmentation,
both the training and testing data was from the KiTS
dataset. We merged tumor regions with their corre-
sponding organ into a single region since images in
SLiverQ7 were created as such. Due to the termina-
tion of evaluation service of SLiver07, we needed to
use SLiver07’s 20 training images as test images here.

Robustness of the proposed method was validated
in various aspects: (1) accuracy, (2) variance of accu-
racy between folds and datasets, (3) ablation analy-
sis, and (4) comparison with existing methods. The
accuracy indices are Dice similarity, Volume Over-
lap Error (VOE), Relative Volume Difference (RVD),
Average Symmetric Surface Distance (ASSD), Root
Mean Square Symmetric Surface Distance (RMSD),
and Maximum Symmetric Surface Distance (MSSD)
[38]. All Dice scores in this section were ‘Dice per
case’.

4.2 Data Partitioning for Multi-fold Cross
Validation

For both the LiTS and KiTS datasets, we first par-
titioned data into three groups. For the sake of con-
creteness, we initially discuss our data partitioning
for the LiTS dataset. Data partitioning for the KiTS
dataset in our experiments was done in the same man-
ner.

There were 131 samples with ground truth in the
LiTS dataset. We randomly partitioned them into
three groups G1, G2, and G3 with 45, 45, and 41
samples, respectively. Then, 31 samples in group G1
were randomly picked as test samples when fold F1
was utilized for training and testing. In other words,
out of 131 samples in the LiTS dataset, when we work
with fold F1, 31 samples were reserved as test sam-
ples and they were taken from group G1. Then, there
were 100 training samples for fold F1; 14 were from
G1, 45 from G2, and 41 from G3.

Similarly, when fold F2 was utilized for training
and testing, there were 100 training samples; 45 were
from G1, 14 from G2, and 41 from G3. The same was
done for F3. Table 1 summarizes the data partition-
ing. Regarding Datasets 3SDIRCADDb and SLiver(7,
they both have 20 samples with ground truth and all
of them were employed as test data.

For the KiTS dataset, there were 210 samples with
ground truth. We partitioned them into three groups,
each with 70 samples. Data in each group was fur-
ther partitioned for training and testing in the same
fashion as LiTS. Out of 70 samples of a group, 42
samples were reserved for test data when its corre-

sponding fold was studied.

Table 1: This table shows how samples from each
group in the LiTS dataset was partitioned for each
fold. As shown in Column G1, out of the total 45
samples of G1, 81 were employed as test data for
F1 and none for F2 and F3. During training, how-
ever, 14 samples from G1 were training data for F1,
while all 45 samples were training data for F2 and F3.
Groups G2 and G3 underwent a similar procedure.

Gl | G2 | G3 | Total
Type | Samples 45 45 41 131
F1 31 0 0 31
Test F2 0 31 0 31
F3 0 0 31 31
F1 14 45 41 100
Train F2 45 14 41 100
F3 45 15 10 100

These three groups for each dataset were intro-
duced to make robustness validation simpler when
fewer training samples were employed. Specifically,
we wanted to validate each model’s robustness when
it was trained with smaller training sets. In our
experiments, there were four sizes of training sets:
TR025, TR050, TRO75, and TR100, denoting 25%,
50%, 75%, and 100% of the total training samples
in a dataset. For example, out of 168 training sam-
ples in the KiTS dataset, TR025, TR050, TR075, and
TR100 had 42, 84, 126, and 168 training samples, re-
spectively.

4.3 Model Training

All models in our experiments were based on Reti-
naNet and 2D U-Net as discussed in Section 3, and
their HU windows were set to [-450, 550] during lo-
calization. The localization model was trained for
20 epochs and there were 3 folds. All of these folds
used 100% of the training data (TR100). Data aug-
mentation for training RetinaNet included the default
random transform implemented by Fizyr B.V. [6].

Regarding image enhancement, models were
trained with three configurations: baseline, NDSF,
and NDSF+. The baseline model linearly mapped
HUs in the window to range [0, 1]. The NDSF re-
assigned HUs by the proposed image enhancement
with ¢ = 0.07. NDSF+ reassigned HUs with ¢ =
0.07,0.10,0.15,0.20, and 0.30. We trained all of the
models with the Nadam optimizer for 150 epochs.
The number of training samples fed to each network
was exactly the same. For example, data augmenta-
tion for an NDSF+ model was performed online with
probability 0.20 for each o.

4.4 Ablation Study

As in the first part, we trained and tested models
against the LiTS, 3DIRCADD, and SLiver(7 datasets.
The results from the test sets are shown in Table 2.
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In the LiTS test set, even the baseline model per-
formed well in the Dice metric, but in the surface-
distance metrics, its performance fell significantly be-
hind the NDSF+ model in all training sets. Overall,
the NDSF+ models slightly outperformed the NDSF
ones in Dice scores, but not in surface-distance met-
rics.

NDSF | Baseline | Input |

NDSF+

Fig.15: Ezample segmentation outputs from the
methods. Top: bounding boxes from RetinaNet (light
yellow) and ezxpanded bounding bozes for segmenta-
tion (red). 2" — 4™ rows: example segmentation
outputs compared with the ground truth. Red is the
ground-truth boundary, while yellow, blue, and green
are the boundaries of outputs from baseline (2™ row),
NDSF (8™ row), and NDSF+ (4" row) models, re-
spectively. Left: examples of liver-segmentation out-
puts. Middle and right: example segmentation out-
puts of the right and left kidneys. The intensities of
images in this figure corresponds to actual intensities
seen by the models. For instance, the intensities of
the last two rows are outcomes of the proposed adap-
tive image enhancement with o = 0.07.

NDSF+ models, however, performed more consis-
tently on all datasets (discussed in more detail later).
Interestingly, increasing the number of training sam-
ples did not improve Dice scores, but accuracy in
other metrics was affected. Fig.15 illustrates out-
puts from the bounding-box detection process and
certain segmentation differences from the three meth-
ods. The proposed method significantly improved
contrast of target regions for both unenhanced and
enhanced CT data.

The most interesting finding of the liver-
segmentation results is that the NDSF and NDSF+
models were barely affected by the test sets, but
the baseline model performed poorly in the SLiver07
test set. Visually, CT images from the SLiver(Q7
dataset looked much different from those in LiTS and
3DIRCADbD (Fig.1). The proposed method provided
robustness to the trained models and prevented them
from performing poorly when the input images sig-
nificantly differed in appearance.

In a kidney-segmentation task, the NDSF and
NDSF+ models significantly outperformed the base-
line model in both volume-based and surface-distance
metrics (Table 3). Overall, the NDSF+ tended to
provide advantages over NDSF in volume-based met-
rics, which are directly related to the loss function
utilized in model training.

We also observed robustness of the proposed
method through the standard deviation of Dice scores
in the test sets. It is clear from Fig.16 and Fig.17
that NDSF models produced more consistent Dice
scores when compared to the baseline scores. Also,
Dice scores of NDSF+ models were the most consis-
tent and they outperformed the NDSF scores in every
training combination. Interestingly, while increas-
ing the number of training samples hardly affected
Dice scores for all model types, the NDSF-based mod-
els’ Dice scores became less varied for TR100 in the
SLiverQ7 dataset.

Further observations on the minimum of Dice
scores reveal that baseline models tended to have poor
Dice scores for some cases in both liver and kidney
segmentation tasks. Although overall Dice scores of
the baseline models were arguably satisfactory, this
indicates that the baseline method lacks robustness
against great variation of input data. The NDSF and
NDSF+ models, on the other hand, had much better
minimum Dice scores (Fig.18).

Robustness gained from the proposed methods was
additionally observed from the distributions of Dice
scores of each method (Fig.19). It is clear that the
proposed methods successfully handled cases whose
Dice scores were low in the baseline method. It is in-
teresting to see that although NDSF had many cases
with very high Dice scores, it tended to have more
cases whose Dice scores were somewhat low. This
indicates that NDSF+ could segment regions more
consistently than the other two methods.



Discriminative Image Enhancement for Robust Cascaded Segmentation of CT Images 161

Table 2: Accuracy indices from three HU map-
ping techniques, grouped by the size of training sets,
when models were tested against the three datasets.
Column ‘Tr Size’ denotes the size of training set,
while Columns Dice and RMSD represent perfor-
mance metrics discussed in Section 4.1. The baseline
model is Cascaded 2D U-Net with NMIM normaliza-
tion.

LiTS 3DIRCADbDb SLiver07
TrSize] Model Dice | RMSD Dice RMSD Dice RMSD
baseline 0.963 4.481 0.942 4.929 0.868 6.016
TRO25] NDSF 0.977 2.770 0.963 7.224 0.948 4.888
NDSF+ [ 0.977 1.968 0.966 6.068 0.954 5.629
baseline 0.962 4.404 0.942 4.509 0.867 6.300
TRO050[ NDSF 0.976 1.719 0.965 3.058 0.947 4.418
NDSF+ | 0.976 1.631 0.966 3.018 0.953 4.765
baseline 0.961 4.447 0.942 3.929 0.864 10.67
TRO75] NDSF 0.976 1.666 0.966 2.456 0.948 4,167
NDSF+ [ 0.977 1.634 0.967 2.528 0.953 4.754
baseline 0.963 4.326 0.943 3.165 0.868 6.512
TR100[ NDSF 0.977 1.653 0.967 1.881 0.951 3.659
NDSF+ | 0.977 1.581 0.968 2.048 0.958 3.755

Table 3: Accuracy indices from three HU mapping
techniques, grouped by the size of training sets, when
models were tested against the KiTS dataset.

TrSize] Model Dice VOE RVD ASD | RMSD | MSSD
baseline 0.930 12.05 -7.530 2.606 6.427 69.48
TR025] NDSF 0.960 7.387 -1.602 1.836 5.358 75.43
NDSF+ | 0.963 | 6.903 | -1.226 | 1.692 5.099 69.77
baseline 0.930 12.04 -8.011 2.259 4.840 45.85
TR050] NDSF 0.961 7.320 -2.261 1.352 3.309 37.25
NDSF+ | 0.963 | 6.960 | -1.761 1.387 3.429 37.43
baseline 0.930 12.04 -8.058 2.551 5.718 51.88
TRO75] NDSF 0.961 7.189 -2.092 1.281 2.961 35.18
NDSF+ | 0.964 | 6.848 | -1.598 1.351 3.238 36.19
baseline 0.937 10.97 -7.319 1.968 3.974 35.31
TR100] NDSF 0.963 6.948 -2.216 1.130 2.520 26.79
NDSF+ | 0.966 | 6.518 | -1.765 1.143 2.625 27.59

4.5 Comparison with Other Methods

Due to different settings and goals from prior work,
it is important to note that the results of our work
cannot be directly compared with others. For ex-
ample, SLiver07 includes both liver and lesions as a
single region, while LiTS and 3DIRCADDb separate
them. Also, we have more interest in knowing the
volumes of the liver and kidneys to help diagnose
symptoms not directly connected to tumors [1][39].

However, comparison with other work still pro-
vides some insights about the benefits of the proposed
method, especially when considering the fact that the
models of our methods were using just simple 2D U-
Net, while others mostly relied on much more com-
plex 3D models. In this comparison, the average ac-
curacy from 3 folds where our models where trained
with 100% of the training data (TR100) represents
the performance of the proposed method in this sec-
tion.
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Fig.16: Comparison of standard deviation of liver
segmentation Dice scores from models trained by dif-
ferent methods (lower is better). Prefizes L-, 3-, and
S- denote results from LiTS, SDIRCADb, and SLiver
datasets, while Prefiz A- denote average results from
the three datasets. Suffives TR025, TR050, TRO75,
and TR100 denote the training sizes as described ear-
lier.
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Fig.17: Comparison of standard deviation of

kidney-segmentation Dice scores from models trained
by different methods (lower is better). Since there was
only one dataset (KiTS), we observed results with re-
gard to training sizes and folds. Once again, NDSF+
was the best in this aspect and outperformed other
methods in all training sizes and folds.
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Fig.19:  Distributions of Dice scores from each

method. Top: histograms of liver-segmentation Dice
scores. Bottom: histograms of kidney-segmentation
Dice scores.

According to Tables 4 through 6, the proposed
method performed comparatively well across the
three datasets. When compared to most methods
reporting results on both 3DIRCADDb and SLiver(07
datasets [40]-[42], it is clear that our method was
much less influenced by change of datasets. In ad-
dition, on average, our method outperformed those
methods in VOE. Only the work of S. Zheng et
al. achieved the same accuracy as our method [18].
Nonetheless, our models were solely trained with the
LiTS dataset and not trained with the 3DIRCADD or
SLiver07 datasets, while others had more opportuni-
ties to tune their methods for the two datasets. This
could make our models appear less competent when
tested against these datasets. In addition, prior work
dealt with only one or two datasets, while ours dealt
with three.

X. Li et al. reported accuracy for both LiTS and
3DIRCADbD [3]. Their method performed extraor-
dinarily well in 3DIRCADb. However, their accu-
racy in the LiTS dataset was lower. Our proposed
method, on the other hand, delivers similar accuracy
for both datasets (difference < 0.01 in a Dice score)
and it also achieved better average accuracy for the
two datasets. F. Lu et al.’s method [42] was the best
one for SLiver07, but it performed relatively poorly
for SDIRCADbD. Once again, on average, our NDSF+
outperformed F. Lu et al.’s. This implies that our
method performed consistently well across multiple
datasets.

For the kidney segmentation task, the models com-
peting in the KiTS challenge that were based on a cas-
caded 3D U-Net performed well and achieved 0.967
or more in the Dice score.

Table 7 displays the top-5 teams from the competi-
tion leaderboard [43]. Although the proposed method
significantly improved the accuracy of a baseline cas-
caded 2D U-Net and delivered high segmentation ac-
curacy (Dice score > 0.965), its accuracy was less
than those top-5 3D U-Net variants. Since their work
did not report standard variation of Dice scores, we
could not evaluate the robustness of their methods
against ours.

Table 4: Comparison of liver segmentation accu-
racy with prior work in the LiTS dataset. Accuracy
of Models deepX, leHealth, mabc, and H-DenseUNet
(HDUNet) were taken from the leaderboard of MIC-
CAI 2017 challenge. Prior works whose names are
in bold face reported performance in at least two
datasets.

Model Dice VOE | RVD ASD | RMSD | MSSD
deepX 0.963 7.1 -0.010 1.104 2.303 23.85
leHealth 0.961 7.5 0.023 1.268 2.776 27.02
mabc 0.960 7.0 0.000 1.130 2.390 24.45
HDUNet[3] 0.961 74 0.000 1.692 3.729 29.41
Xia[30] 0.970 7.9 0.006 1.925 - 35.58
our baseline | 0.963 7.085 | -3.912 1.754 4.326 31.34
NDSF 0.977 | 4.506 | -1.126 | 0.680 1.653 19.31
NDSF+ 0.977 | 4.460 | -0.730 | 0.661 1.581 21.30

Table 5: Comparison of liver segmentation accuracy
with prior work in the 3DIRCADb dataset.

Model Dice VOE RVD ASD RMSD | MSSD
Christ[26] 0.943 10.7 -1.4 1.5 - 24.01
G.Li[40] - 9.15 -0.07 1.55 3.15 28.22
FJu[d7] - 936 | 0.07 | 189 115 33.14
X.Lu[41] - 9.21 1.27 1.75 3.95 36.17
HDUNet[3] 0.982 3.57 0.01 1.28 3.58 -
S.Zheng[18] - 6.5 2.1 1.9 2.1 18.9
Jiang[14] 0.959 - - - - -
our baseline 0.943 10.539 | -6.209 1.733 3.165 26.19
NDSF 0.967 6.411 -0.770 0.955 1.881 22.24
NDSF+ 0.968 6.279 -0.972 | 0.962 2.048 26.71

5. CONCLUSION

This work presents a discriminative image en-
hancement and data augmentation method which can
be generalized for multiple segmentation tasks and
applied to other existing cascaded models. During
model training, we can adjust the image-enhancement
parameters to produce more image data in the middle
of a segmentation workflow.

Robustness and accuracy were significantly im-
proved from a common cascaded segmentation
method when the discriminative image enhancement
was utilized. The proposed data augmentation fur-
ther improved robustness and the trained models had
less variation in Dice scores. It is interesting that we
could significantly improve robustness and accuracy
of a cascaded model without any change to the model
itself. This can help avoid unnecessary model com-
plexity while achieving comparable accuracy to more
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complex models. It can also improve robustness of a
competent model if needed.

The proposed discriminative feature generation
may also be applied to an attention-based model in
that we create an HU histogram based on voxels hav-
ing high likelihood of belonging to a target region.
This means that instead of employing a localization
network to find bounding boxes and accumulate HU
statistics from them, we may resort to an attention
mechanism and gather HU statistics from attention
masks. This is future work we think worthy of explo-
ration.

Table 6: Comparison of liver segmentation accuracy
with prior work in the SLiver07 dataset.

Model Dice | VOE | RVD | ASD | RMSD | MSSD
WulT9] - 7.54 116 | 0.95 1.94 18.48
G.Li[40] s 6.24 T.18 .13 2.11 18.82
FJu[42] - 5.09 270 | 0.91 1.88 18.94
X Lu[d1] s 5.92 1.03 1.06 1.68 12.33
S.Zheng|[18] , 760 | -0.01 | 0.8 1.5 20.8
Y .Zheng[#4] s 7.83 5.06 1.06 1.39 11.12
our baseline | 0.868 | 20.649 | -19.60 | 3.569 | 6.512 49.009
NDSF 0.051 | B.787 | -4.469 | 1.554 | 3.650 35.686
NDSF+ 0.958 | 7.827 | -3.134 | 1.579 | 3.755 31.858

Table 7: Comparison of kidney segmentation accu-
racy with prior work in the KiTS dataset. Accuracy
of Models X. Hou, G. Mu, and Y. Zhang were taken
from the leaderboard of KiTS19 (MICCAI 2019) chal-
lenge [17], [43]. The technical reports of these meth-
ods are accessible through the leaderboard website [43].
Since only Dice scores were reported, most entries in
this table have no data.

Model Dice VOE RVD ASD RMSD | MSSD
Isensee[4] 0.9737 - - - - -
X.Hou 0.9674

G.Mu 0.9729

Y.Zhang 0.9742 - - - - -
our baseline 0.9368 10.968 | -7.3189 | 1.9680 3.9742 35.315
NDSF 0.9628 6.948 -2.2160 | 1.1299 2.5199 26.789
NDSF+ 0.9655 6.518 -1.7649 | 1.1427 2.6249 27.595

Our method, however, has some limitations that
can be addressed in future work. First, it employs a
predefined constant stretching parameter o = 0.07,
but we observed that HUs of several kidney regions
were not well stretched. They were far left of the
center value. This issue may be handled by adap-
tively finding a more appropriate stretching parame-
ter value for 0. Second, if a target region has multiple
dominant peaks far away from one another in the HU
histogram, the proposed HU reassignment function
may not provide adequate discriminative features to
certain regions. In all datasets in our experiments,
however, no such case was ever encountered. More
testing with larger and more varied datasets is needed
to investigate this.
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